Colony Growth and Bioactivity of the European

Total Page:16

File Type:pdf, Size:1020Kb

Colony Growth and Bioactivity of the European Dresch et al. AMB Express (2015) 5:4 DOI 10.1186/s13568-014-0093-0 ORIGINAL ARTICLE Open Access Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus Philipp Dresch1, Maria Nives D´Aguanno2, Katharina Rosam1, Ulrike Grienke3, Judith Maria Rollinger3 and Ursula Peintner1* Abstract Polypores have been applied in traditional Chinese medicine up to the present day, and are becoming more and more popular worldwide. They show a wide range of bioactivities including anti-cancer, anti-inflammatory, antiviral and immuno-enhancing effects. Their secondary metabolites have been the focus of many studies, but the importance of fungal strain for bioactivity and metabolite production has not been investigated so far for these Basidiomycetes. Therefore, we screened several strains from three medicinal polypore species from traditional European medicine: Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. A total of 22 strains were compared concerning their growth rates, optimum growth temperatures, as well as antimicrobial and antifungal properties of ethanolic fruit body extracts. The morphological identification of strains was confirmed based on rDNA ITS phylogenetic analyses. Our results showed that species delimitation is critical due to the presence of several distinct lineages, e.g. within the Fomes fomentarius species complex. Fungal strains within one lineage showed distinct differences in optimum growth temperatures, in secondary metabolite production, and accordingly, in their bioactivities. In general, F. pinicola and P. betulinus extracts exerted distinct antibiotic activities against Bacillus subtilis and Staphylococcus aureus at minimum inhibitory concentrations (MIC) ranging from 31-125 μgmL−1; The antifungal activities of all three polypores against Aspergillus flavus, A. fumigatus, Absidia orchidis and Candida krusei were often strain-specific, ranging from 125-1000 μgmL−1. Our results highlight that a reliable species identification, followed by an extensive screening for a ‘best strain’ is an essential prerequisite for the proper identification of bioactive material. Keywords: Fungal strain selection; Temperature optimum; Wood-rotting fungi; Antimicrobial activity of fungal extracts; Phylogeny Introduction health food supplements. They show a wide range of Polypores are a diverse group of Agaricomycetes (Basid- bioactivities including anti-cancer, anti-inflammatory, iomycota) with tough poroid hymenophores. These fungi antiviral and immuno-enhancing effects (Grienke et al. have been extensively applied in traditional Chinese 2014; Molitoris 2005; Paterson 2006). The large number medicine (TCM) up to the present day (Chang 2000; of scientific studies focusing on their bioactivity (Khatun Chang and Wasser 2012; Hobbs 1995; Ying et al. 1987) et al. 2011; Lo and Wasser 2011; Xu et al. 2010; Zhao and are becoming more and more popular also in other 2013; Zhong and Xiao 2009; Zhou et al. 2011), secondary parts of the world where they are used as a source for metabolite production (Hwang et al. 2013; You et al. medicinal compounds and therapeutic adjuvants, or as 2013) and genomics (Floudas et al. 2012; Liu et al. 2012) is therefore not surprising. * Correspondence: [email protected] Secondary metabolites of medicinal polypores have 1 Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 been the focus of many studies (Grienke et al. 2014; Innsbruck, Austria Full list of author information is available at the end of the article Zjawiony 2004), but the importance of fungal strain for © 2015 Dresch et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Dresch et al. AMB Express (2015) 5:4 Page 2 of 14 bioactivity and metabolite production has not been inves- properties or their metabolic fingerprint. We therefore tigated so far. Strain-specific differences in bioactivities investigated strain-specific differences of three medicinal (on the function of macrophages) were detected for differ- polypore species of the traditional European medicine. ent strains of the Ascomycete Ophiocordyceps sinensis, The applications of these polpores in traditional medicine, whose fruit bodies are highly praised as traditional remedy and knowledge on their metabolite profile have been ex- (Meng et al. 2013). Distinct strain differences are also tensively reviewed by Grienke et al. (2014). known for anamorphic ascomycetes, e.g. for the secondary When using defined commercially available culture metabolite production of Fusarium avenaceum,where strains, interpretation of the results is often difficult due substrate is playing an additional important role in the to lack of information, e.g. on the environment, substrate, regulation of secondary metabolite biosynthesis (Sørensen or on the fruit body morphology. We therefore used newly and Giese 2013). isolated strains, and extensively documented their habitat, Fungal medicinal polypore species belonging to the substrate, and the morphology of fruit bodies. This also same genus differ clearly in their metabolite profile (Hseu allowed for a comparison of strains based on both, bioac- et al. 1996; Lv et al. 2012). tivities of fruit body extracts and the physiological proper- Species delimitation of polypores was long based upon ties of cultures in vitro. macro-morphological and ecological characters. However, Physiological properties are often used for species de- these classical morphological species concepts have proven limitation because they reflect genetic distance: Fomes to be too wide for many important medicinal polypore strains belonging to different species have different species, e.g. for Ganoderma lucidum, G. applanatum,or physiological properties, like colony growth responses Laetiporus sulphureus (Banik et al. 2010; Banik et al. 2012; to temperature (McCormick et al. 2013). The question Hseu et al. 1996, Ota et al. 2009). Polypore species, de- whether also strains within one species, e.g. F. fomentar- scribed upon morphology as generalists on several hosts, ius, differ in growth responses to temperature was not have often turned out to consist of multiple phylogenetic addressed so far. (cryptic) lineages, and the description of new species if The main aim of this work was to study the influence often necessary within such species complexes (Skaven of fungal strain (isolate) of three selected, medicinal Seierstad et al. 2013). This makes comparison of studies polypores on their antimicrobial bioactivity and physio- working on metabolites from medicinal polypores forming logical properties. The bioactivity was assessed for ethano- a morphological species complex especially critical and lic extracts from the same fruit bodies, which had been difficult. It is therefore essential to document, from which used for isolation of mycelial cultures. Bioactivity was habitat and substrate the fruit body was obtained, to tested against potentially pathogenic fungi and bacteria. deposit a voucher in a public mycological collection and a Physiological properties of mycelial cultures (colony growth culture in a public culture collection, in order to check or rate and optimum temperature) were investigated under to re-identify the fungus. Moreover, it is also recom- standard in vitro conditions. All polypore strains used were mended to sequence barcoding regions of the investigated characterized by rDNA ITS sequences, and phylogenetic fungal material, in order to allow for a later verification of analyses were carried out to verify species identification. the identification of the fungus. The potential influence of geographic provenance and A recent study on the secondary metabolites of the substrate on strain evolution and properties are discussed. medicinal polypore Laricifomes officinalis was carried out in an exemplary way by also including rDNA ITS Material and methods sequences of the used strain (Hwang et al. 2013). But Organism collection, identification, culture screening for optimal strains is rarely carried out, and F. fomentarius, F. pinicola, and P. betulinus fruit bodies strain differences within polypore species are usually were mainly collected in Tyrol, Austria in 2013. Fruit not taken into account, although it is well known that a body vouchers were deposited in the Mycological large variety of existing alleles are promoting outcrossing Collection of the Herbarium Innsbruck (IB), cultures of polypores; genetic exchange in dikaryons by somatic were deposited in the Jena Microbial Resource Collection recombination creates additional new combinations of al- (JMRC), sequences were deposited in GenBank. Voucher leles (Peabody et al. 2000). This implies that ecologically numbers, GenBank accession numbers, JMRC collection relevant genetic variation permanently occurs within numbers, plant hosts, as well as habitat information are dikaryotic fungal individuals, allowing for evolutionary given in Table 1. adaptation and thus for the evolution of physiologically Sterile techniques were used to obtain cultures from the distinct strains. context tissue. Small pieces of context tissue (2.0 mm3) To study polypore species with known bioactivities were excised from each basidiome, plated on 2-3 % w/v allows for an
Recommended publications
  • Evaluation of Two Extraction Methods for the Analysis of Hydrophilic Low
    applied sciences Article Evaluation of Two Extraction Methods for the Analysis of Hydrophilic Low Molecular Weight Compounds from Ganoderma lucidum Spores and Antiproliferative Activity on Human Cell Lines 1, 2,3, 4 Maria Michela Salvatore y , Vincenza De Gregorio y , Monica Gallo , Maria Michela Corsaro 1 , Angela Casillo 1, Raffaele Vecchione 3,* , Anna Andolfi 1,* , 1, 2,3,5, Daniele Naviglio z and Paolo Antonio Netti z 1 Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; [email protected] (M.M.S.); [email protected] (M.M.C.); [email protected] (A.C.); [email protected] (D.N.) 2 Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; [email protected] (V.D.G.); [email protected] (P.A.N.) 3 Center for Advanced Biomaterials for Health Care @ CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy 4 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; [email protected] 5 Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, 80125 Naples, Italy * Correspondence: raff[email protected] (R.V.); andolfi@unina.it (A.A.); Tel.: +39-081-2539179 (A.A.) These authors contributed equally to this work. y These authors contributed equally to this work. z Received: 24 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Featured Application: In this study two extraction methods for Ganoderma lucidum spores were evaluated for the potential use of extracted compounds in cancer treatments. Our findings showed that the innovative Rapid Solid Liquid Dynamic Extraction (RSLDE) permits the successful extraction of compounds with antiproliferative activity against human cell lines Abstract: Background: The genus Ganoderma includes about 80 species of mushrooms.
    [Show full text]
  • Shropshire Fungus Group Newsletter 2017
    Shropshire Fungus Group Newsletter 2017 Grifola frondosa – photo by Philip Leather Contents 1. A question for you – Jo Weightman 2. The Old Man of the Woods – Ted Blackwell 3. A new member writes... – Martin Scott 4. Foray at home! – Les Hughes 5. Bury Ditches foray – Jo Weightman 6. Pre-historic tinder fungi – Ted Blackwell 7. Foray at the Hurst – Rob Rowe 8. Another new member writes – Concepta Cassar 9. BMS Study week 2016 – Ray James 10. Foray at the Bog – Jo Weightman 11. Earthstars at Lydbury North – Rob Rowe 12. Foray at Oswestry Racecourse – Susan Leather 13. Some pictures from 2016 14. A foreign fungus – Les Hughes 15. The answer to the question A question for you from Jo Weightman What do these four have in common? Buglossoporus quercinus Laetiporus sulphureus Polyporus squamosus Polyporus umbellatus All photos copyright Jo Weightman Answer at the end! Who first called it “Old Man of the Woods”? The toadstool Strobilomyces strobilaceus is obviously one of the Boletus Tribe but differs in several ways. Apart from its striking appearance, the spore print is violaceus-to-black, and although not poisonous it is not considered worth eating. It doesn’t usually decay readily and mummified specimens can sometimes be found still standing in the woods tinged with green algae and encroaching mosses long after the fruiting season. The late Dr Derek Reid of Kew Mycology considered the Severn Valley to be its UK headquarters and although there are approaching 50 Shropshire records on the national database (FRDBI), however it was not recorded in the county between 2008 and 2016.
    [Show full text]
  • Instituto De Botânica
    MAIRA CORTELLINI ABRAHÃO Diversidade e ecologia de Agaricomycetes lignolíticos do Cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTORA em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. SÃO PAULO 2012 MAIRA CORTELLINI ABRAHÃO Diversidade e ecologia de Agaricomycetes lignolíticos do Cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTORA em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. ORIENTADORA: DRA. VERA LÚCIA RAMOS BONONI Ficha Catalográfica elaborada pelo NÚCLEO DE BIBLIOTECA E MEMÓRIA Abrahão, Maira Cortelellini A159d Diversidade e ecologia de Agaricomycetes lignolíticos do cerrado da Reserva Biológica de Mogi-Guaçu, estado de São Paulo, Brasil (exceto Agaricales e Corticiales) / Maira Cortellini Abrahão -- São Paulo, 2012. 132 p. il. Tese (Doutorado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2012 Bibliografia. 1. Basidiomicetos. 2. Basidiomycota. 3. Unidade de Conservação. I. Título CDU: 582.284 AGRADECIMENTOS Agradeço a Deus por mais uma oportunidade de estudar, crescer e amadurecer profissionalmente. Por colocar pessoas tão maravilhosas em minha vida durante esses anos de convívio e permitir que tudo ocorresse da melhor maneira possível. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pela bolsa de doutorado (processo 2009/01403-6) e por todo apoio financeiro que me foi oferecido, desde os anos iniciais de minha carreira acadêmica (processos 2005/55136-8 e 2006/5878-6).
    [Show full text]
  • Wood Research Wood Degrading Mushrooms
    WOOD RESEARCH doi.org/10.37763/wr.1336-4561/65.5.809818 65 (5): 2020 809-818 WOOD DEGRADING MUSHROOMS POTENTIALLY STRONG TOWARDS LACCASE BIOSYNTHESIS IN PAKISTAN Zill-E-Huma Aftab, Shakil Ahmed University of The Punjab Pakistan Arusa Aftab Lahore College for Women University Pakistan Iffat Siddique Eastern Cereal and Oilseed Research Centre Canada Muzammil Aftab Government College University Pakistan Zubaida Yousaf Lahore College for Women University Pakistan Farman Ahmed Chaudhry Minhaj University Pakistan (Received November 2019) ABSTRACT In present study, Pleurotus ostreatus, Ganoderma lucidum, Ganoderma ahmadii, Ganoderma applanatum, Ganoderma australe, Ganoderma colossus, Ganoderma flexipes, Ganoderma resinaceum, Ganoderma tornatum, Trametes hirsutus, Trametes proteus, Trametes pubescens, Trametes tephroleucus, Trametes versicolor, Trametes insularis, Fomes fomentarius, Fomes scruposus, Fomitopsis semitostus, Fomes lividus, Fomes linteus, Phellinus allardii, Phellinus badius, Phellinus callimorphus, Phellinus caryophylli, Phellinus pini, Phellinus torulosus, Poria ravenalae, Poria versipora, Poria paradoxa, Poria latemarginata, Heterobasidion insulare, Schizophyllum commune, Schizophyllum radiatum, 809 WOOD RESEARCH Daldinia sp., Xylaria sp., were collected, isolated, identified and then screened qualitatively for their laccase activity. Among all the collected and tested fungi Pleurotus ostreatus 008 and 016, Ganoderma lucidum 101,102 and 104 were highly efficient in terms of laccase production. The potent strains were further subjected
    [Show full text]
  • Cultural Characterization and Chlamydospore Function of the Ganodermataceae Present in the Eastern United States
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith To cite this article: Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith (2019): Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States, Mycologia To link to this article: https://doi.org/10.1080/00275514.2018.1543509 View supplementary material Published online: 24 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1543509 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd a, Eric R. Lindera, Matthew E. Smith b, Robert A. Blanchettec, and Jason A. Smitha aSchool of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611; bDepartment of Plant Pathology, University of Florida, Gainesville, Florida 32611; cDepartment of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 ABSTRACT ARTICLE HISTORY The cultural characteristics of fungi can provide useful information for studying the biology and Received 7 Feburary 2018 ecology of a group of closely related species, but these features are often overlooked in the order Accepted 30 October 2018 Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of KEYWORDS cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management Chlamydospores; tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species.
    [Show full text]
  • Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
    molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H.
    [Show full text]
  • Basidiomycota) in Finland
    Mycosphere 7 (3): 333–357(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/3/7 Copyright © Guizhou Academy of Agricultural Sciences Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland Kunttu P1, Kulju M2, Kekki T3, Pennanen J4, Savola K5, Helo T6 and Kotiranta H7 1University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland 2Biodiversity Unit P.O. Box 3000, FI-90014 University of Oulu, Finland 3Jyväskylä University Museum, Natural History Section, P.O. BOX 35, FI-40014 University of Jyväskylä, Finland 4Pentbyntie 1 A 2, FI-10300 Karjaa, Finland 5The Finnish Association for Nature Conservation, Itälahdenkatu 22 b A, FI-00210 Helsinki, Finland 6Erätie 13 C 19, FI-87200 Kajaani, Finland 7Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland Kunttu P, Kulju M, Kekki T, Pennanen J, Savola K, Helo T, Kotiranta H 2016 – Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland. Mycosphere 7(3), 333–357, Doi 10.5943/mycosphere/7/3/7 Abstract This article contributes the knowledge of Finnish aphyllophoroid funga with nationally or regionally new species, and records of rare species. Ceriporia bresadolae, Clavaria tenuipes and Renatobasidium notabile are presented as new aphyllophoroid species to Finland. Ceriporia bresadolae and R. notabile are globally rare species. The records of Ceriporia aurantiocarnescens, Crustomyces subabruptus, Sistotrema autumnale, Trechispora elongata, and Trechispora silvae- ryae are the second in Finland. New records (or localities) are provided for 33 species with no more than 10 records in Finland. In addition, 76 records of aphyllophoroid species are reported as new to some subzones of the boreal vegetation zone in Finland.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,765,138 B2 Stamets (45) Date of Patent: Jul
    US008765138B2 (12) United States Patent (10) Patent No.: US 8,765,138 B2 Stamets (45) Date of Patent: Jul. 1, 2014 (54) ANTIVIRAL AND ANTIBACTERIAL Moore et al. "Fungal Products as Food” pp. 1-17. Reprint of Moore, ACTIVITY FROMIMEDICINAL D. & Chiu, S. W. Fungal products as food. Chapter 10 in Bio MUSHROOMS Exploitation of Fkilamentous Fungi (ed S.B. Pointing & K. D. Hyde), pp. 223-251. Fungal Diversity Press: Hong Kong.* (76) Inventor: Paul Edward Stamets, Shelton, WA “Tinctura Cinchonae Compsita' from King's American Dispensa (US) tory, 1898. Retrieved from: Henriette's Herbal Homepage on May 2, 2012. Retrieved from: <URL: http://www.henriettesherbal.com/ (*) Notice: Subject to any disclaimer, the term of this eclectic/kings, cinchona tinc 1.html>. patent is extended or adjusted under 35 Schar, D. Plant botanic. Retrieved from the Interneton: May 2, 2012. U.S.C. 154(b) by 1183 days. Retrieved from: <URL: http://www.planetbotanic.ca/maitake jour nal materia.htm>. (21) Appl. No.: 12/284,646 "Alcohol.-Alcohol, U.S.P. From: A Handbook of Useful Drugs, by State Medical Examining and Licensing Boards, Press of the Ameri (22) Filed: Sep. 24, 2008 can Medical Association: 1913.Retrieved from the Internet on: May 2, 2012. Retrieved from the Internet: <URL: http://chestofbooks. (65) Prior Publication Data com/health/materia-medica-drugs/American-Medical-Association? A-Handbook-of-Useful-Drugs).* US 2009/O 130 138A1 May 21, 2009 Hobbs, C. Medicinal Mushrooms (Herbs and Health Series). Feb. 1. 2002. Retrieved from the Internet on: May 2, 2012. Retrieved from: Related U.S.
    [Show full text]
  • A New Record of Ganoderma Tropicum (Basidiomycota, Polyporales) for Thailand and First Assessment of Optimum Conditions for Mycelia Production
    A peer-reviewed open-access journal MycoKeys 51:A new65–83 record (2019) of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand... 65 doi: 10.3897/mycokeys.51.33513 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production Thatsanee Luangharn1,2,3,4, Samantha C. Karunarathna1,3,4, Peter E. Mortimer1,4, Kevin D. Hyde3,5, Naritsada Thongklang5, Jianchu Xu1,3,4 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2 University of Chinese Academy of Sciences, Bei- jing 100049, China 3 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, Yunnan, China 4 Centre for Mountain Ecosystem Studies (CMES), Kunming Institute of Botany, Kunming 650201, Yunnan, China 5 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Jianchu Xu ([email protected]); Peter E. Mortimer ([email protected]) Academic editor: María P. Martín | Received 30 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 Citation: Luangharn T, Karunarathna SC, Mortimer PE, Hyde KD, Thongklang N, Xu J (2019) A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 51: 65–83. https://doi.org/10.3897/mycokeys.51.33513 Abstract In this study a new record of Ganoderma tropicum is described as from Chiang Rai Province, Thailand. The fruiting body was collected on the base of a livingDipterocarpus tree.
    [Show full text]
  • The Tinder Fungus, the Ice Man, and Amadou by Matt Bowser
    Refuge Notebook • Vol. 18, No. 9 • February 26, 2016 The tinder fungus, the Ice Man, and amadou by Matt Bowser Amadou cap given to me by Dominique Collet. Conchs of tinder fungus (Fomes fomentarius) on a birch log near Nordic Lake, Kenai National Wildlife Refuge, A couple of years ago I was given a remarkable, 17.Feb.2016 (http://bit.ly/1OsJXAa). beautiful hat by my friend Dominique Collet. This cap is made of a soft, brown material with decora- tive, stamped trim of the same. Light and velvety, it is reminiscent of wool felt but finer and smoother. Do- minique had traveled through Eastern Europe specifi- cally to learn how these amadou caps were made from a kind of tree-killing fungus. Known by several names including hoof fungus, tinder fungus, and the “true” tinder fungus, Fomes fomentarius grows on hardwoods, especially birch, around the world in northern latitudes. It is quite com- mon here on the Kenai and anywhere else in Alaska where birch trees grow. Ecologically, tinder fungus acts both as a pathogen, causing wood rot and contributing to the demise of living trees, and as a decomposer, continuing to break down dead wood in snags and logs. The fungus enters the tree through damaged bark or broken branches, then ramifies through wood and bark. Woody, durable conchs of the tinder fungus appear on the outside of the tree or log and grow larger each year as new layers An amadou patch for drying flies (image from http: are added to the underside of the conchs. //www.orvis.com/).
    [Show full text]
  • A Translation of the Linnaean Dissertation the Invisible World
    BJHS 49(3): 353–382, September 2016. © British Society for the History of Science 2016 doi:10.1017/S0007087416000637 A translation of the Linnaean dissertation The Invisible World JANIS ANTONOVICS* AND JACOBUS KRITZINGER** Abstract. This study presents the first translation from Latin to English of the Linnaean disser- tation Mundus invisibilis or The Invisible World, submitted by Johannes Roos in 1769. The dissertation highlights Linnaeus’s conviction that infectious diseases could be transmitted by living organisms, too small to be seen. Biographies of Linnaeus often fail to mention that Linnaeus was correct in ascribing the cause of diseases such as measles, smallpox and syphilis to living organisms. The dissertation itself reviews the work of many microscopists, especially on zoophytes and insects, marvelling at the many unexpected discoveries. It then discusses and quotes at length the observations of Münchhausen suggesting that spores from fungi causing plant diseases germinate to produce animalcules, an observation that Linnaeus claimed to have confirmed. The dissertation then draws parallels between these findings and the conta- giousness of many human diseases, and urges further studies of this ‘invisible world’ since, as Roos avers, microscopic organisms may cause more destruction than occurs in all wars. Introduction Here we present the first translation from Latin to English of the Linnaean dissertation published in 1767 by Johannes Roos (1745–1828) entitled Dissertatio academica mundum invisibilem, breviter delineatura and republished by Carl Linnaeus (1707– 1778) several years later in the Amoenitates academicae under the title Mundus invisibi- lis or The Invisible World.1 Roos was a student of Linnaeus, and the dissertation is important in highlighting Linnaeus’s conviction that infectious diseases could be trans- mitted by living organisms.
    [Show full text]