A Responsible Softmax Layer in Deep Learning

Total Page:16

File Type:pdf, Size:1020Kb

A Responsible Softmax Layer in Deep Learning A Responsible Softmax Layer in Deep Learning Item Type text; Electronic Dissertation Authors Coatney, Ryan Dean Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 03:05:29 Link to Item http://hdl.handle.net/10150/642087 A Responsible Softmax Layer in Deep Learning by Ryan Coatney Copyright © Ryan Coatney 2020 A Dissertation Submitted to the Faculty of the Department of Mathematics In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Graduate College The University of Arizona 2 0 2 0 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by: Ryan Coatney titled: and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Marek Rychlik _________________________________________________________________ Date: ____________Jun 22, 2020 Marek Rychlik Robert S. Maier _________________________________________________________________ Date: ____________Jun 23, 2020 Robert S. Maier _________________________________________________________________ Date: ____________Jun 25, 2020 David A Glickenstein _________________________________________________________________ Date: ____________Jun 22, 2020 Clayton T Morrison Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Marek Rychlik _________________________________________________________________ Date: ____________Jun 22, 2020 Marek Rychlik Mathematics 3 Acknowledgements I would like to acknowledge everyone who had a very close hand in this work. My Advisor, Marek Rychlik, has been essential in his guidance and insight. Though it was a role he agreed to take on, I appreciate his patience in he;ping me finish. I would also like to thank my committee, David Glickenstein, Clayton Morrison, and Robert Maier for their time and input. This dissertation is much better for their input. My family also has been an excellent source of emotional support and motivation. My father, Thomas, has played a special role in helping me refine my thoughts during this process. Thanks for lending a listening ear and asking questions dad. My wife and children have been surviving with much less attention than they deserve for some time now. Their love and support has been demonstrably unconditional. I could not have come to this point without any of these people, and many others I have failed to mention. 4 Dedication To my family. My parents, my children, and most of all my wife. 5 Table of Contents List of Figures ................................. 7 List of Tables .................................. 8 Abstract ..................................... 9 Chapter 1. Introduction .......................... 11 1.1. Introduction . 11 Chapter 2. Background ........................... 14 2.1. Clustering and Classification . 14 2.1.1. Clustering . 14 2.1.2. Classification . 16 2.2. Unsupervised and Supervised Machine Learning . 16 2.3. Softmax and Logistic Regression . 20 2.4. Basic Neural Nets . 23 2.4.1. Single Layer Perceptron . 23 2.4.2. Multilayer Perceptron as a Multi-Class Classifier . 25 2.4.3. Backpropagation . 27 2.4.4. Derivative Notation . 29 2.5. Responsible Clustering Algorithms . 33 2.5.1. K-means algorithm . 33 2.5.2. Expectation Maximization . 35 2.6. Clustering with Mixture Models . 38 2.7. A Brief Introduction to Discrete Dynamical Systems . 41 Chapter 3. Dynamic Responsibility and Cluster Proportions .. 45 3.1. An Iterative Algorithm . 45 3.2. Further Examination of the K = 2 Case for Arbitrary N ....... 46 3.3. Some Basic Examples of the K = 2 Case . 49 3.3.1. An Example for a simple family of matrices Fα ........ 50 3.3.2. A GMM Example with an Unknown Mean . 51 3.4. Convergence of RF for Arbitrary K ................... 56 3.5. Relationship to the MLE . 67 Chapter 4. Responsible Softmax Layer ................. 71 4.1. Neural Net Learning of the Parameters for Dynamic Responsibility . 72 4.1.1. Choice of Loss Function . 73 6 Table of Contents|Continued 4.1.2. Method for determining F .................... 75 4.2. Proposed Neural Network Layer . 76 4.3. Backpropagation and Responsibility . 82 @Y 4.3.1. Computation of @F ........................ 82 4.4. Methods to compute DR ......................... 84 4.4.1. Calculating DR on SK ...................... 85 4.4.2. Calculating DR on Parameter Matrices . 89 @L 4.5. Using Derivatives of R to compute @Y ................. 90 Chapter 5. Applied Examples ....................... 97 5.1. Empirical Evidence of Convergence Rate . 98 5.2. Experimental Neural Network Setup . 103 5.3. Data Selection . 106 5.4. Evaluation Methods . 108 5.5. Results for GMM . 110 5.6. Results for MNIST . 116 5.7. Summary of Conclusions . 120 Appendices .................................... 121 Appendix A. Dynamic Responsibility Code ............... 121 A.1. Implementation of Responsibility Map . 121 A.2. Implementation of Algorithm 1 . 122 A.3. Implementation of Algorithm 2 . 123 A.4. Code for Experiments on Convergence . 124 Appendix B. Responsible Softmax Code ................. 128 B.1. Responsible Softmax Layer . 128 B.2. Fixed Responsibility Softmax layer . 135 Appendix C. Code for Examples on GMM Data ............ 138 Appendix D. Code for Example on MNIST Data ........... 142 References .................................... 145 7 List of Figures Figure 2.1. Network graph of a perceptron with N input units. 24 Figure 2.2. Network graph of a multilayer perceptron. 26 Figure 2.3. Conceptualized model of a single network layer. 28 Figure 3.1. A plot of fixed points for Fα .................... 53 Figure 3.2. Example with K = 2 and N = 12 . 54 Figure 3.3. Example GMM Histogram . 54 Figure 3.4. Fixed Point Estimates of GMM Mixing Probabilities . 55 Figure 4.1. Graphical Model of the Responsible Softmax Layer . 78 Figure 4.2. Computation Graph for Y ..................... 83 −1 Figure 5.1. Plot of residues σF − jbF j for various F ............. 101 Figure 5.2. Plots of distances and convergence errors for various F .... 102 Figure 5.3. A sample GMM data set used for training and testing . 107 Figure 5.4. Classification Regions for the MAP classifier 1 . 112 Figure 5.5. Classification Regions for GMM nets #1-#4 . 112 Figure 5.6. Classification regions for MAP estimator 2 . 115 Figure 5.7. Classification regions for RS GMM nets with large C ...... 116 Figure 5.8. Confusion matrices for MNIST nets #1-#4 . 118 8 List of Tables Table 3.1. Dynamic Responsibility Algorithm . 46 Table 3.2. A Newton Method version of Dynamic Responsibility . 68 Table 3.3. Experimental Evidence of Consistency . 69 Table 4.1. Forward prediction algorithm for responsible softmax. 81 Table 4.2. Backward propagation algorithm for responsible softmax. 81 Table 4.3. Intermediate Terms for Computation of @Y /@F ......... 84 Table 4.4. Computing gradients with backpropagation, iterative portion . 96 Table 5.1. General layer setup for GMM classification . 104 Table 5.2. Common convolutional layers for MNIST classification . 104 Table 5.3. A table of neural net setups used in numerical experiments . 106 Table 5.4. Confusion matrices with error estimates for GMM nets #1-#4 . 113 Table 5.5. Per class precision and recall for GMM nets #1-#4 . 114 Table 5.6. MLE of Class weights for GMM nets #2 and #3 . 115 Table 5.7. Accuracy of MNIST training with imbalanced data . 117 Table 5.8. Confusion matrix diagonal for MNIST nets #1-#4 . 119 Table 5.9. MLE of class weights for MNIST nets #2 and #3 . 119 9 Abstract Clustering algorithms are an important part of modern data analysis. The K-means and EM clustering algorithm both use an iterative process to find latent (or hidden) variables in a mixture distribution. These hidden variables may be interpreted as class label for the data points of a sample. In connection with these algorithms, I consider a family of nonlinear mappings called responsibility maps. The responsibility map is obtained as a gradient of the log likelihood of N independent samples, drawn from a mixture of K distributions. I look at the discrete dynamics of this family of maps and give a proof that iteration of responsibility converges to an estimate of the mixing coefficients. I also show that the convergence is consistent in the sense that the fixed point acts as a maximizer of the log likelihood. I call the process of determining class weight by iteration dynamic responsibil- ity and show that it converges to a unique set of weights under mild assumptions. Dynamic responsibility (DR) is inspired by the expectation step of the expectation maximization (EM) algorithm and has a useful association with Bayesian methods. Like EM, dynamic responsibility is an iterative algorithm, but DR will converge to a unique maximum under reasonable conditions. The weights determined by DR can also be found using gradient descent but DR guarantees non-negative weights and gradient descent does not. I present a new algorithm which I call responsible softmax for doing classification with neural networks. This algorithm
Recommended publications
  • Lecture 4 Feedforward Neural Networks, Backpropagation
    CS7015 (Deep Learning): Lecture 4 Feedforward Neural Networks, Backpropagation Mitesh M. Khapra Department of Computer Science and Engineering Indian Institute of Technology Madras 1/9 Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4 References/Acknowledgments See the excellent videos by Hugo Larochelle on Backpropagation 2/9 Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4 Module 4.1: Feedforward Neural Networks (a.k.a. multilayered network of neurons) 3/9 Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4 The input to the network is an n-dimensional hL =y ^ = f(x) vector The network contains L − 1 hidden layers (2, in a3 this case) having n neurons each W3 b Finally, there is one output layer containing k h 3 2 neurons (say, corresponding to k classes) Each neuron in the hidden layer and output layer a2 can be split into two parts : pre-activation and W 2 b2 activation (ai and hi are vectors) h1 The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer a1 W 2 n×n and b 2 n are the weight and bias W i R i R 1 b1 between layers i − 1 and i (0 < i < L) W 2 n×k and b 2 k are the weight and bias x1 x2 xn L R L R between the last hidden layer and the output layer (L = 3 in this case) 4/9 Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4 hL =y ^ = f(x) The pre-activation at layer i is given by ai(x) = bi + Wihi−1(x) a3 W3 b3 The activation at layer i is given by h2 hi(x) = g(ai(x)) a2 W where g is called the activation function (for 2 b2 h1 example, logistic, tanh, linear, etc.) The activation at the output layer is given by a1 f(x) = h (x) = O(a (x)) W L L 1 b1 where O is the output activation function (for x1 x2 xn example, softmax, linear, etc.) To simplify notation we will refer to ai(x) as ai and hi(x) as hi 5/9 Mitesh M.
    [Show full text]
  • Revisiting the Softmax Bellman Operator: New Benefits and New Perspective
    Revisiting the Softmax Bellman Operator: New Benefits and New Perspective Zhao Song 1 * Ronald E. Parr 1 Lawrence Carin 1 Abstract tivates the use of exploratory and potentially sub-optimal actions during learning, and one commonly-used strategy The impact of softmax on the value function itself is to add randomness by replacing the max function with in reinforcement learning (RL) is often viewed as the softmax function, as in Boltzmann exploration (Sutton problematic because it leads to sub-optimal value & Barto, 1998). Furthermore, the softmax function is a (or Q) functions and interferes with the contrac- differentiable approximation to the max function, and hence tion properties of the Bellman operator. Surpris- can facilitate analysis (Reverdy & Leonard, 2016). ingly, despite these concerns, and independent of its effect on exploration, the softmax Bellman The beneficial properties of the softmax Bellman opera- operator when combined with Deep Q-learning, tor are in contrast to its potentially negative effect on the leads to Q-functions with superior policies in prac- accuracy of the resulting value or Q-functions. For exam- tice, even outperforming its double Q-learning ple, it has been demonstrated that the softmax Bellman counterpart. To better understand how and why operator is not a contraction, for certain temperature pa- this occurs, we revisit theoretical properties of the rameters (Littman, 1996, Page 205). Given this, one might softmax Bellman operator, and prove that (i) it expect that the convenient properties of the softmax Bell- converges to the standard Bellman operator expo- man operator would come at the expense of the accuracy nentially fast in the inverse temperature parameter, of the resulting value or Q-functions, or the quality of the and (ii) the distance of its Q function from the resulting policies.
    [Show full text]
  • On the Learning Property of Logistic and Softmax Losses for Deep Neural Networks
    The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) On the Learning Property of Logistic and Softmax Losses for Deep Neural Networks Xiangrui Li, Xin Li, Deng Pan, Dongxiao Zhu∗ Department of Computer Science Wayne State University {xiangruili, xinlee, pan.deng, dzhu}@wayne.edu Abstract (unweighted) loss, resulting in performance degradation Deep convolutional neural networks (CNNs) trained with lo- for minority classes. To remedy this issue, the class-wise gistic and softmax losses have made significant advancement reweighted loss is often used to emphasize the minority in visual recognition tasks in computer vision. When training classes that can boost the predictive performance without data exhibit class imbalances, the class-wise reweighted ver- introducing much additional difficulty in model training sion of logistic and softmax losses are often used to boost per- (Cui et al. 2019; Huang et al. 2016; Mahajan et al. 2018; formance of the unweighted version. In this paper, motivated Wang, Ramanan, and Hebert 2017). A typical choice of to explain the reweighting mechanism, we explicate the learn- weights for each class is the inverse-class frequency. ing property of those two loss functions by analyzing the nec- essary condition (e.g., gradient equals to zero) after training A natural question then to ask is what roles are those CNNs to converge to a local minimum. The analysis imme- class-wise weights playing in CNN training using LGL diately provides us explanations for understanding (1) quan- or SML that lead to performance gain? Intuitively, those titative effects of the class-wise reweighting mechanism: de- weights make tradeoffs on the predictive performance terministic effectiveness for binary classification using logis- among different classes.
    [Show full text]
  • CS281B/Stat241b. Statistical Learning Theory. Lecture 7. Peter Bartlett
    CS281B/Stat241B. Statistical Learning Theory. Lecture 7. Peter Bartlett Review: ERM and uniform laws of large numbers • 1. Rademacher complexity 2. Tools for bounding Rademacher complexity Growth function, VC-dimension, Sauer’s Lemma − Structural results − Neural network examples: linear threshold units • Other nonlinearities? • Geometric methods • 1 ERM and uniform laws of large numbers Empirical risk minimization: Choose fn F to minimize Rˆ(f). ∈ How does R(fn) behave? ∗ For f = arg minf∈F R(f), ∗ ∗ ∗ ∗ R(fn) R(f )= R(fn) Rˆ(fn) + Rˆ(fn) Rˆ(f ) + Rˆ(f ) R(f ) − − − − ∗ ULLN for F ≤ 0 for ERM LLN for f |sup R{z(f) Rˆ}(f)| + O(1{z/√n).} | {z } ≤ f∈F − 2 Uniform laws and Rademacher complexity Definition: The Rademacher complexity of F is E Rn F , k k where the empirical process Rn is defined as n 1 R (f)= ǫ f(X ), n n i i i=1 X and the ǫ1,...,ǫn are Rademacher random variables: i.i.d. uni- form on 1 . {± } 3 Uniform laws and Rademacher complexity Theorem: For any F [0, 1]X , ⊂ 1 E Rn F O 1/n E P Pn F 2E Rn F , 2 k k − ≤ k − k ≤ k k p and, with probability at least 1 2exp( 2ǫ2n), − − E P Pn F ǫ P Pn F E P Pn F + ǫ. k − k − ≤ k − k ≤ k − k Thus, P Pn F E Rn F , and k − k ≈ k k R(fn) inf R(f)= O (E Rn F ) . − f∈F k k 4 Tools for controlling Rademacher complexity 1.
    [Show full text]
  • Loss Function Search for Face Recognition
    Loss Function Search for Face Recognition Xiaobo Wang * 1 Shuo Wang * 1 Cheng Chi 2 Shifeng Zhang 2 Tao Mei 1 Abstract Generally, the CNNs are equipped with classification loss In face recognition, designing margin-based (e.g., functions (Liu et al., 2017; Wang et al., 2018f;e; 2019a; Yao angular, additive, additive angular margins) soft- et al., 2018; 2017; Guo et al., 2020), metric learning loss max loss functions plays an important role in functions (Sun et al., 2014; Schroff et al., 2015) or both learning discriminative features. However, these (Sun et al., 2015; Wen et al., 2016; Zheng et al., 2018b). hand-crafted heuristic methods are sub-optimal Metric learning loss functions such as contrastive loss (Sun because they require much effort to explore the et al., 2014) or triplet loss (Schroff et al., 2015) usually large design space. Recently, an AutoML for loss suffer from high computational cost. To avoid this problem, function search method AM-LFS has been de- they require well-designed sample mining strategies. So rived, which leverages reinforcement learning to the performance is very sensitive to these strategies. In- search loss functions during the training process. creasingly more researchers shift their attention to construct But its search space is complex and unstable that deep face recognition models by re-designing the classical hindering its superiority. In this paper, we first an- classification loss functions. alyze that the key to enhance the feature discrim- Intuitively, face features are discriminative if their intra- ination is actually how to reduce the softmax class compactness and inter-class separability are well max- probability.
    [Show full text]
  • Deep Neural Networks for Choice Analysis: Architecture Design with Alternative-Specific Utility Functions Shenhao Wang Baichuan
    Deep Neural Networks for Choice Analysis: Architecture Design with Alternative-Specific Utility Functions Shenhao Wang Baichuan Mo Jinhua Zhao Massachusetts Institute of Technology Abstract Whereas deep neural network (DNN) is increasingly applied to choice analysis, it is challenging to reconcile domain-specific behavioral knowledge with generic-purpose DNN, to improve DNN's interpretability and predictive power, and to identify effective regularization methods for specific tasks. To address these challenges, this study demonstrates the use of behavioral knowledge for designing a particular DNN architecture with alternative-specific utility functions (ASU-DNN) and thereby improving both the predictive power and interpretability. Unlike a fully connected DNN (F-DNN), which computes the utility value of an alternative k by using the attributes of all the alternatives, ASU-DNN computes it by using only k's own attributes. Theoretically, ASU- DNN can substantially reduce the estimation error of F-DNN because of its lighter architecture and sparser connectivity, although the constraint of alternative-specific utility can cause ASU- DNN to exhibit a larger approximation error. Empirically, ASU-DNN has 2-3% higher prediction accuracy than F-DNN over the whole hyperparameter space in a private dataset collected in Singapore and a public dataset available in the R mlogit package. The alternative-specific connectivity is associated with the independence of irrelevant alternative (IIA) constraint, which as a domain-knowledge-based regularization method is more effective than the most popular generic-purpose explicit and implicit regularization methods and architectural hyperparameters. ASU-DNN provides a more regular substitution pattern of travel mode choices than F-DNN does, rendering ASU-DNN more interpretable.
    [Show full text]
  • Pseudo-Learning Effects in Reinforcement Learning Model-Based Analysis: a Problem Of
    Pseudo-learning effects in reinforcement learning model-based analysis: A problem of misspecification of initial preference Kentaro Katahira1,2*, Yu Bai2,3, Takashi Nakao4 Institutional affiliation: 1 Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan 2 Department of Psychology, Graduate School of Environment, Nagoya University 3 Faculty of literature and law, Communication University of China 4 Department of Psychology, Graduate School of Education, Hiroshima University 1 Abstract In this study, we investigate a methodological problem of reinforcement-learning (RL) model- based analysis of choice behavior. We show that misspecification of the initial preference of subjects can significantly affect the parameter estimates, model selection, and conclusions of an analysis. This problem can be considered to be an extension of the methodological flaw in the free-choice paradigm (FCP), which has been controversial in studies of decision making. To illustrate the problem, we conducted simulations of a hypothetical reward-based choice experiment. The simulation shows that the RL model-based analysis reports an apparent preference change if hypothetical subjects prefer one option from the beginning, even when they do not change their preferences (i.e., via learning). We discuss possible solutions for this problem. Keywords: reinforcement learning, model-based analysis, statistical artifact, decision-making, preference 2 Introduction Reinforcement-learning (RL) model-based trial-by-trial analysis is an important tool for analyzing data from decision-making experiments that involve learning (Corrado and Doya, 2007; Daw, 2011; O’Doherty, Hampton, and Kim, 2007). One purpose of this type of analysis is to estimate latent variables (e.g., action values and reward prediction error) that underlie computational processes.
    [Show full text]
  • Lecture 18: Wrapping up Classification Mark Hasegawa-Johnson, 3/9/2019
    Lecture 18: Wrapping up classification Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original. Modified by Julia Hockenmaier Today’s class • Perceptron: binary and multiclass case • Getting a distribution over class labels: one-hot output and softmax • Differentiable perceptrons: binary and multiclass case • Cross-entropy loss Recap: Classification, linear classifiers 3 Classification as a supervised learning task • Classification tasks: Label data points x ∈ X from an n-dimensional vector space with discrete categories (classes) y ∈Y Binary classification: Two possible labels Y = {0,1} or Y = {-1,+1} Multiclass classification: k possible labels Y = {1, 2, …, k} • Classifier: a function X →Y f(x) = y • Linear classifiers f(x) = sgn(wx) [for binary classification] are parametrized by (n+1)-dimensional weight vectors • Supervised learning: Learn the parameters of the classifier (e.g. w) from a labeled data set Dtrain = {(x1, y1),…,(xD, yD)} Batch versus online training Batch learning: The learner sees the complete training data, and only changes its hypothesis when it has seen the entire training data set. Online training: The learner sees the training data one example at a time, and can change its hypothesis with every new example Compromise: Minibatch learning (commonly used in practice) The learner sees small sets of training examples at a time, and changes its hypothesis with every such minibatch of examples For minibatch and online example: randomize the order of examples for
    [Show full text]
  • Categorical Data
    Categorical Data Santiago Barreda LSA Summer Institute 2019 Normally-distributed data • We have been modelling data with normally-distributed residuals. • In other words: the data is normally- distributed around the mean predicted by the model. Predicting Position by Height • We will invert the questions we’ve been considering. • Can we predict position from player characteristics? Using an OLS Regression Using an OLS Regression Using an OLS Regression • Not bad but we can do better. In particular: • There are hard bounds on our outcome variable. • The boundaries affect possible errors: i.e., the 1 position cannot be underestimated but the 2 can. • There is nothing ‘between’ the outcomes. • There are specialized models for data with these sorts of characteristics. The Generalized Linear Model • We can break up a regression model into three components: • The systematic component. • The random component. • The link function. 푦 = 푎 + 훽 ∗ 푥 + 푒 The Systematic Component • This is our regression equation. • It specifies a deterministic relationship between the predictors and the predicted value. • In the absence of noise and with the correct model, we would expect perfect prediction. μ = 푎 + 훽 ∗ 푥 Predicted value. Not the observation. The Random Component • Unpredictable variation conditional on the fitted value. • This specifies the nature of that variation. • The fitted value is the mean parameter of a probability distribution. μ = 푎 + 훽 ∗ 푥 푦~푁표푟푚푎푙(휇, 휎2) 푦~퐵푒푟푛표푢푙푙(휇) Bernoulli Distribution • Unlike the normal, this distribution generates only values of 1 and 0. • It has only a single parameter, which must be between 0 and 1. • The parameter is the probability of observing an outcome of 1 (or 1-P of 0).
    [Show full text]
  • Mixed Pattern Recognition Methodology on Wafer Maps with Pre-Trained Convolutional Neural Networks
    Mixed Pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks Yunseon Byun and Jun-Geol Baek School of Industrial Management Engineering, Korea University, Seoul, South Korea {yun-seon, jungeol}@korea.ac.kr Keywords: Classification, Convolutional Neural Networks, Deep Learning, Smart Manufacturing. Abstract: In the semiconductor industry, the defect patterns on wafer bin map are related to yield degradation. Most companies control the manufacturing processes which occur to any critical defects by identifying the maps so that it is important to classify the patterns accurately. The engineers inspect the maps directly. However, it is difficult to check many wafers one by one because of the increasing demand for semiconductors. Although many studies on automatic classification have been conducted, it is still hard to classify when two or more patterns are mixed on the same map. In this study, we propose an automatic classifier that identifies whether it is a single pattern or a mixed pattern and shows what types are mixed. Convolutional neural networks are used for the classification model, and convolutional autoencoder is used for initializing the convolutional neural networks. After trained with single-type defect map data, the model is tested on single-type or mixed- type patterns. At this time, it is determined whether it is a mixed-type pattern by calculating the probability that the model assigns to each class and the threshold. The proposed method is experimented using wafer bin map data with eight defect patterns. The results show that single defect pattern maps and mixed-type defect pattern maps are identified accurately without prior knowledge.
    [Show full text]
  • Arxiv:1910.04465V2 [Cs.CV] 16 Oct 2019
    Searching for A Robust Neural Architecture in Four GPU Hours Xuanyi Dong1;2,Yi Yang1 1University of Technology Sydney 2Baidu Research [email protected], [email protected] Abstract 0 0 : input GDAS Conventional neural architecture search (NAS) ap- 3 : output on a DAG proaches are based on reinforcement learning or evolution- : sampled ary strategy, which take more than 3000 GPU hours to find : unsampled a good model on CIFAR-10. We propose an efficient NAS 1 approach learning to search by gradient descent. Our ap- proach represents the search space as a directed acyclic graph (DAG). This DAG contains billions of sub-graphs, each of which indicates a kind of neural architecture. To 2 avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sam- pler is learnable and optimized by the validation loss af- ter training the sampled architecture. In this way, our ap- proach can be trained in an end-to-end fashion by gra- 3 dient descent, named Gradient-based search using Differ- entiable Architecture Sampler (GDAS). In experiments, we Figure 1. We utilize a DAG to represent the search space of a neu- can finish one searching procedure in four GPU hours on ral cell. Different operations (colored arrows) transform one node CIFAR-10, and the discovered model obtains a test error (square) to its intermediate features (little circles). Meanwhile, of 2.82% with only 2.5M parameters, which is on par with each node is the sum of the intermediate features transformed from the state-of-the-art.
    [Show full text]
  • Reinforcement Learning with Dynamic Boltzmann Softmax Updates Arxiv
    Reinforcement Learning with Dynamic Boltzmann Softmax Updates Ling Pan1, Qingpeng Cai1, Qi Meng2, Wei Chen2, Longbo Huang1, Tie-Yan Liu2 1IIIS, Tsinghua University 2Microsoft Research Asia Abstract Value function estimation is an important task in reinforcement learning, i.e., prediction. The Boltz- mann softmax operator is a natural value estimator and can provide several benefits. However, it does not satisfy the non-expansion property, and its direct use may fail to converge even in value iteration. In this paper, we propose to update the value function with dynamic Boltzmann softmax (DBS) operator, which has good convergence property in the setting of planning and learning. Experimental results on GridWorld show that the DBS operator enables better estimation of the value function, which rectifies the convergence issue of the softmax operator. Finally, we propose the DBS-DQN algorithm by applying dynamic Boltzmann softmax updates in deep Q-network, which outperforms DQN substantially in 40 out of 49 Atari games. 1 Introduction Reinforcement learning has achieved groundbreaking success for many decision making problems, including roboticsKober et al. (2013), game playingMnih et al. (2015); Silver et al. (2017), and many others. Without full information of transition dynamics and reward functions of the environment, the agent learns an optimal policy by interacting with the environment from experience. Value function estimation is an important task in reinforcement learning, i.e., prediction Sutton (1988); DEramo et al. (2016); Xu et al. (2018). In the prediction task, it requires the agent to have a good estimate of the value function in order to update towards the true value function.
    [Show full text]