Pseudo-Learning Effects in Reinforcement Learning Model-Based Analysis: a Problem Of
Pseudo-learning effects in reinforcement learning model-based analysis: A problem of misspecification of initial preference Kentaro Katahira1,2*, Yu Bai2,3, Takashi Nakao4 Institutional affiliation: 1 Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan 2 Department of Psychology, Graduate School of Environment, Nagoya University 3 Faculty of literature and law, Communication University of China 4 Department of Psychology, Graduate School of Education, Hiroshima University 1 Abstract In this study, we investigate a methodological problem of reinforcement-learning (RL) model- based analysis of choice behavior. We show that misspecification of the initial preference of subjects can significantly affect the parameter estimates, model selection, and conclusions of an analysis. This problem can be considered to be an extension of the methodological flaw in the free-choice paradigm (FCP), which has been controversial in studies of decision making. To illustrate the problem, we conducted simulations of a hypothetical reward-based choice experiment. The simulation shows that the RL model-based analysis reports an apparent preference change if hypothetical subjects prefer one option from the beginning, even when they do not change their preferences (i.e., via learning). We discuss possible solutions for this problem. Keywords: reinforcement learning, model-based analysis, statistical artifact, decision-making, preference 2 Introduction Reinforcement-learning (RL) model-based trial-by-trial analysis is an important tool for analyzing data from decision-making experiments that involve learning (Corrado and Doya, 2007; Daw, 2011; O’Doherty, Hampton, and Kim, 2007). One purpose of this type of analysis is to estimate latent variables (e.g., action values and reward prediction error) that underlie computational processes.
[Show full text]