Searching for A Robust Neural Architecture in Four GPU Hours Xuanyi Dong1;2,Yi Yang1 1University of Technology Sydney 2Baidu Research
[email protected],
[email protected] Abstract 0 0 : input GDAS Conventional neural architecture search (NAS) ap- 3 : output on a DAG proaches are based on reinforcement learning or evolution- : sampled ary strategy, which take more than 3000 GPU hours to find : unsampled a good model on CIFAR-10. We propose an efficient NAS 1 approach learning to search by gradient descent. Our ap- proach represents the search space as a directed acyclic graph (DAG). This DAG contains billions of sub-graphs, each of which indicates a kind of neural architecture. To 2 avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sam- pler is learnable and optimized by the validation loss af- ter training the sampled architecture. In this way, our ap- proach can be trained in an end-to-end fashion by gra- 3 dient descent, named Gradient-based search using Differ- entiable Architecture Sampler (GDAS). In experiments, we Figure 1. We utilize a DAG to represent the search space of a neu- can finish one searching procedure in four GPU hours on ral cell. Different operations (colored arrows) transform one node CIFAR-10, and the discovered model obtains a test error (square) to its intermediate features (little circles). Meanwhile, of 2.82% with only 2.5M parameters, which is on par with each node is the sum of the intermediate features transformed from the state-of-the-art.