Introduction to Heat Potential Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theory of Capacities Annales De L’Institut Fourier, Tome 5 (1954), P
ANNALES DE L’INSTITUT FOURIER GUSTAVE CHOQUET Theory of capacities Annales de l’institut Fourier, tome 5 (1954), p. 131-295 <http://www.numdam.org/item?id=AIF_1954__5__131_0> © Annales de l’institut Fourier, 1954, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ THEORY OF CAPACITIES (l) by Gustave CHOQUETOQ. INTRODUCTION This work originated from the following problem, whose significance had been emphasized by M. Brelot and H. Cartan : Is the interior Newtonian capacity of an arbitrary borelian subset X of the space R3 equal to the exterior Newtonian capacity of X ? For the solution of this problem, I first systematically studied the non-additive set-functions, and tried to extract from their totality certain particularly interesting classes, with a view to establishing for these a theory analogous to the classical theory of measurability. I succeeded later in showing that the classical Newtonian capacity f belongs to one of these classes, more precisely: if A and B are arbitrary compact subsets of R3, then AAU^+AAflB^/^+AB). It followed from this that every borelian, a^rid even every analytic set is capacitable with respect to the Newtonian capa- city, a result which can, moreover, be extended to the capa- (') This research was supported by the United States Air Force, throught the Office of Scientific Research of the Air Research and Development Command. -
Riemann Surfaces, Conformal Fields and Strings I. FIELD THEORY and RIEMANN SURFACES the Space-Time on Which the Particl Physicis
Riemann Surfaces, Conformal Fields and Strings I he ru k uf Rtc m:rnn s url acc~ in modern pa rticle r h y~ i cs I\ discussed. M<i thc111at- 1r :1!1 \. q11 :1111urn ri cld th eories c:1 11 he tlclinccl 011 the" : mani fo lds if the <1rc co11 - lmm11lll' in ari 11 n1. I hysic•tll y. Ri 1:t11 nnn surl:i tcs provide n 111 od1: I for th • wqrlJ , h~ c l ~ 'vc p t out IJ n prop:1gating rcla1i vistk stri ng. Thuh Ricmu nn surl uccs nrc th e natural se ll ing for confom1al fiel d theory. and. both these co n cc pl ~ together pruvidc .1 1i1r11tul .1 t1 011 of smng theory. I\~\ Words: string theory, conformal symmetry , 11•orld sh eets, Riemann surfaces I. FIELD THEORY AND RIEMANN SURFACES The space- tim e on whi ch th e particl ph ysici st writes a Lagrnngian field theory and deduces equations ol moiion, c b ss i c~ d solutions anJ quantum scaucring amplitud s is usually taken to be a Ri e nian111a11 manifold . 1 T he. ii.l ea is cent rn l l ' ge neral relati vi ty and grav1tat1 n.2 and has becom · mor imporlanl in pnrticlc phys ics w11h increasi ng cmphasi on unified th eo ries o f all for es including grav itation . R1cmannian gcomotr is usually incorpo.ratctl as a se ri es of pre Knpti ons. starting with the introduction of a i..:c ond -r:rnk ~y m mctril: tcn·or fi ' ld, the metri c g1.,,(x). -
Conformal Field Theories of Stochastic Loewner Evolutions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Conformal Field Theories of Stochastic Loewner Evolutions. [ CFTs of SLEs ] Michel Bauer1 and Denis Bernard2 Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France Abstract Stochastic Loewner evolutions (SLEκ) are random growth pro- cesses of sets, called hulls, embedded in the two dimensional upper half plane. We elaborate and develop a relation between SLEκ evo- lutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to define an in- finite set of SLEκ zero modes, or martingales, whose existence is a consequence of the existence of a null vector in the appropriate Vira- soro modules. This identification leads, for instance, to linear systems for generalized crossing probabilities whose coefficients are multipoint CFT correlation functions. It provides a direct link between confor- mal correlation functions and probabilities of stopping time events in SLEκ evolutions. We point out a relation between SLEκ processes and two dimensional gravity and conjecture a reconstruction proce- dure of conformal field theories from SLEκ data. 1Email: [email protected] 2Member of the CNRS; email: [email protected] 1 1 Introduction. Two dimensional conformal field theories [2] have produced an enormous amount of exact results for multifractal properties of conformally invariant critical clusters. See eg. refs.[15, 5, 9] and references therein. -
The Dimension of Chaotic Attractors
Physica 7D (1983) 153-180 North-Holland Publishing Company THE DIMENSION OF CHAOTIC ATTRACTORS J. Doyne FARMER Center for Nonlinear Studies and Theoretical Division, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Edward OTT Laboratory of Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, USA and James A. YORKE Institute for Physical Science and Technology and Department of Mathematics, University of Maryland, College Park, Maryland, USA Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on the frequency with which a typical trajectory visits different regions of the attractor. Both our example and the previous work that we review support the conclusion that all of the frequency dependent dimensions take on the same value, which we call the "dimension of the natural measure", and all of the metric dimensions take on a common value, which we call the "fractal dimension". Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension. Table of contents 1. -
Second Kind Integral Equations for the Classical Potential Theory on Open Surfaces I: Analytical Apparatus
Journal of Computational Physics 191 (2003) 40–74 www.elsevier.com/locate/jcp Second kind integral equations for the classical potential theory on open surfaces I: analytical apparatus Shidong Jiang *,1, Vladimir Rokhlin Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA Received 6 February 2003; accepted 21 May 2003 Abstract A stable second kind integral equation formulation has been developed for the Dirichlet problem for the Laplace equation in two dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained apparatus is illustrated with several numerical examples. Ó 2003 Elsevier Science B.V. All rights reserved. AMS: 65R10; 77C05 Keywords: Open surface problems; Laplace equation; Finite Hilbert transform; Second kind integral equation; Dirichlet problem 1. Introduction Integral equations have been one of principal tools for the numerical solution of scattering problems for more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the equations used have been of the first kind, since numerical instabilities associated with such equations have not been critically important for the relatively small-scale problems that could be handled at the time. The combination of improved hardware with the recent progress in the design of ‘‘fast’’ algorithms has changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting from the discretization of integral equations of potential theory have become critical, and the simplest way to limit such condition numbers is by starting with second kind integral equations. Hence, interest has increased in reducing scattering problems to systems of second kind integral equations on the boundaries of the scatterers. -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Hep-Th/0101032V1 5 Jan 2001 Uhawyta H Eutn Trpoutcntuto Ol No Would Construction Star-Product O Resulting So field) the (Tensor Coordinates
WICK TYPE DEFORMATION QUANTIZATION OF FEDOSOV MANIFOLDS V. A. DOLGUSHEV, S. L. LYAKHOVICH, AND A. A. SHARAPOV Abstract. A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The main ingredient of this approach is a bilinear symmetric form defined on the complexified tangent bundle of the symplectic manifold and subject to some set of algebraic and differential conditions. It is precisely the structure which describes a deviation of the Wick-type star-product from the Weyl one in the first order in the deformation parameter. The geometry of the symplectic manifolds equipped by such a bilinear form is explored and a cer- tain analogue of the Newlander-Nirenberg theorem is presented. The 2-form is explicitly identified which cohomological class coincides with the Fedosov class of the Wick-type star-product. For the particular case of K¨ahler manifold this class is shown to be proportional to the Chern class of a complex manifold. We also show that the symbol construction admits canonical superexten- sion, which can be thought of as the Wick-type deformation of the exterior algebra of differential forms on the base (even) manifold. Possible applications of the deformed superalgebra to the noncommutative field theory and strings are discussed. 1. Introduction The deformation quantization as it was originally defined in [1], [2] has now been well established for every symplectic manifold through the combined efforts of many authors (for review see [3]). The question of existence of the formal associative deformation for the commutative algebra of smooth functions, so-called star product, has been solved by De Wilde and Lecomte [4]. -
Potential Theory of Schr~Dingew Operator
PROBABILITY. AND MATHEMAT[CAL STATISTICS POTENTIAL THEORY OF SCHR~DINGEWOPERATOR - BASED -ONFRACTIONAL LABLACIAN 5 BY - Abstract. We develop potential theory of Schrdinger operators based on fractional Laplacian on Euclidean spaces of arbitrary dimen- sion. We focus on questions related to gaugeability and existence of q-harmonic functions. Results are obtained by analyzing properties of a symmetric a-stable Gvy process on Rd, including the recurrent case. We provide some relevant techniques and apply them to give explicit examples of gauge functions for a general class of domains. 1W1 Mathematics Subject Claasificadon: Primary 31B25,60J50. Key words and phrases: symmetric a-stable Gvy process, Feyn- man-Kac semigroup, Schrodinger operator, q-harmonic functions, Kel- vin transform, conditional gauge theorem. 1. INTRODUCTION The paper deals with Schrodinger type operators corresponding to sym- metric a-stable Lbvy processes X,on Rd equipped with a multiplicative func- tional e,(t) = exp (lb q (X.)ds), where q is a given function (in a Kato class). We study the existence and properties of q-harmonic functions. In particular, we address ourselves to problems related to gaugeability. - - Many potential-theoretic properties of X, for aE(0, 2) are dramatically different from those of Brownian motion yet they may be regarded as typical for a general class of LCvy processes on Rd. This motivates a thorough study of the Feynman-Kac semigroups related to the symmetric stable Lbvy processes, especially that the explicit calculations are very often feasible in this particular case, which stimulates and enriches the general theory. Results of this paper complement the earlier ones contained in [6].Results of [6] were basically restricted to bounded Lipschitz domains and were based * Institute of Mathematics, Wroclaw University of Technology. -
Ends, Fundamental Tones, and Capacities of Minimal Submanifolds Via Extrinsic Comparison Theory
ENDS, FUNDAMENTAL TONES, AND CAPACITIES OF MINIMAL SUBMANIFOLDS VIA EXTRINSIC COMPARISON THEORY VICENT GIMENO AND S. MARKVORSEN ABSTRACT. We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the comparison of those volumes and capacities with the corresponding entities in a rotation- ally symmetric model manifold. Using the asymptotic behavior of the volumes and ca- pacities we then obtain upper bounds for the number of ends as well as estimates for the fundamental tone of the submanifolds in question. 1. INTRODUCTION Let M be a complete non-compact Riemannian manifold. Let K ⊂ M be a compact set with non-empty interior and smooth boundary. We denote by EK (M) the number of connected components E1; ··· ;EEK (M) of M n K with non-compact closure. Then M EK (M) has EK (M) ends fEigi=1 with respect to K (see e.g. [GSC09]), and the global number of ends E(M) is given by (1.1) E(M) = sup EK (M) ; K⊂M where K ranges on the compact sets of M with non-empty interior and smooth boundary. The number of ends of a manifold can be bounded by geometric restrictions. For ex- ample, in the particular setting of an m−dimensional minimal submanifold P which is properly immersed into Euclidean space Rn, the number of ends E(P ) is known to be re- lated to the extrinsic properties of the immersion. -
On Essential Self-Adjointness, Confining Potentials & the Lp-Hardy
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. On Essential Self-adjointness, Confining Potentials & the Lp-Hardy Inequality A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand A.D.Ward - New Zealand Institute of Advanced Study August 8, 2014 Abstract Let Ω be a domain in Rm with non-empty boundary and let H = −∆ + V be a 1 Schr¨odingeroperator defined on C0 (Ω) where V 2 L1;loc(Ω). We seek the minimal criteria on the potential V that ensures that H is essentially self-adjoint, i.e. that en- sures the closed operator H¯ is self-adjoint. Overcoming various technical problems, we extend the results of Nenciu & Nenciu in [1] to more general types of domain, specifically unbounded domains and domains whose boundaries are fractal. As a special case of an abstract condition we show that H is essentially self-adjoint provided that sufficiently close to the boundary 1 1 1 V (x) ≥ 1 − µ (Ω) − − − · · · ; (1) d(x)2 2 ln( d(x)−1) ln( d(x)−1) ln ln( d(x)−1) where d(x) = dist(x; @Ω) and the right hand side of the above inequality contains a finite number of logarithmic terms. The constant µ2(Ω) appearing in (1) is the variational constant associated with the L2-Hardy inequality and is non-zero if and only if Ω admits the aforementioned inequality. -
Boundary and Defect CFT: Open Problems and Applications
Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept. -
Rectifiability Via Curvature and Regularity in Anisotropic Problems
©Copyright 2021 Max Goering Rectifiability via curvature and regularity in anisotropic problems Max Goering A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2021 Reading Committee: Tatiana Toro, Chair Steffen Rohde Stefan Steinerberger Program Authorized to Offer Degree: Mathematics University of Washington Abstract Rectifiability via curvature and regularity in anisotropic problems Max Goering Chair of the Supervisory Committee: Craig McKibben and Sarah Merner Professor Tatiana Toro Mathematics Understanding the geometry of rectifiable sets and measures has led to a fascinating interplay of geometry, harmonic analysis, and PDEs. Since Jones' work on the Analysts' Traveling Salesman Problem, tools to quantify the flatness of sets and measures have played a large part in this development. In 1995, Melnikov discovered and algebraic identity relating the Menger curvature to the Cauchy transform in the plane allowing for a substantially streamlined story in R2. It was not until the work of Lerman and Whitehouse in 2009 that any real progress had been made to generalize these discrete curvatures in order to study higher-dimensional uniformly rectifiable sets and measures. Since 2015, Meurer and Kolasinski began developing the framework necessary to use dis- crete curvatures to study sets that are countably rectifiable. In Chapter 2 we bring this part of the story of discrete curvatures and rectifiability to its natural conclusion by producing mul- tiple classifications of countably rectifiable measures in arbitrary dimension and codimension in terms of discrete measures. Chapter 3 proceeds to study higher-order rectifiability, and in Chapter 4 we produce examples of 1-dimensional sets in R2 that demonstrate the necessity of using the so-called \pointwise" discrete curvatures to study countable rectifiability.