Ends, Fundamental Tones, and Capacities of Minimal Submanifolds Via Extrinsic Comparison Theory

Total Page:16

File Type:pdf, Size:1020Kb

Ends, Fundamental Tones, and Capacities of Minimal Submanifolds Via Extrinsic Comparison Theory ENDS, FUNDAMENTAL TONES, AND CAPACITIES OF MINIMAL SUBMANIFOLDS VIA EXTRINSIC COMPARISON THEORY VICENT GIMENO AND S. MARKVORSEN ABSTRACT. We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the comparison of those volumes and capacities with the corresponding entities in a rotation- ally symmetric model manifold. Using the asymptotic behavior of the volumes and ca- pacities we then obtain upper bounds for the number of ends as well as estimates for the fundamental tone of the submanifolds in question. 1. INTRODUCTION Let M be a complete non-compact Riemannian manifold. Let K ⊂ M be a compact set with non-empty interior and smooth boundary. We denote by EK (M) the number of connected components E1; ··· ;EEK (M) of M n K with non-compact closure. Then M EK (M) has EK (M) ends fEigi=1 with respect to K (see e.g. [GSC09]), and the global number of ends E(M) is given by (1.1) E(M) = sup EK (M) ; K⊂M where K ranges on the compact sets of M with non-empty interior and smooth boundary. The number of ends of a manifold can be bounded by geometric restrictions. For ex- ample, in the particular setting of an m−dimensional minimal submanifold P which is properly immersed into Euclidean space Rn, the number of ends E(P ) is known to be re- lated to the extrinsic properties of the immersion. Indeed, V. G. Tkachev proved in [Tka94, Theorem 2] (see also [Che95]) that for any properly immersed m−dimensional minimal n submanifold P in R with finite volume growth Vw0 (P ) < 1 the number of ends is bounded from above by (1.2) E(P ) ≤ CmVw0 (P ) ; m where Cm = 1 (Cm = 2 in the original [Tka94]) and the volume growth Vw0 (P ) is n R Vol P \ BR (o) (1.3) Vw (P ) = lim m : 0 R!1 R Vol BR (o) m m R R arXiv:1401.1329v1 [math.DG] 7 Jan 2014 Here Vol BR (o) is the volume of a geodesic ball BR (o) of radius R centered at o in Rm. The inequality (1.2) thus shows a significant relation between the number of ends (i.e. a topological property) and the behavior of a quotient of volumes (i.e. a metric property). Motivated by Tkachev’s application of the volume quotient appearing in equation (1.3), we will consider the corresponding flux quotient and capacity quotient of the minimal sub- manifolds. These quotients are constructed in the same way as indicated by the volume quotient but here we generalize the setting as well as Tkachev’s result to minimal sub- manifolds in more general ambient spaces as alluded to in the abstract. Specifically we assume that the minimal immersion goes into an ambient manifold N with a pole and with 2010 Mathematics Subject Classification. Primary 53A, 53C. Key words and phrases. First Dirichlet eigenvalue, Capacity, Effective resistance, Minimal submanifolds. Work partially supported by DGI grant MTM2010-21206-C02-02. 1 2 V. GIMENO AND S. MARKVORSEN sectional curvatures KN bounded from above by the radial curvatures Kw of a rotationally n + n−1 M = × g n symmetric model space w R S1 , with warped metric tensor Mw constructed us- + + 2 2 ing a positive warping function w : ! in such a way that gM n = dr +w(r) g n−1 R R w S1 is also balanced from below (see [MP06] and x3 for a precise definitions). Our generalization of inequality (1.2) is thence the following: Theorem 1.1. Let ' : P m ! N n be a proper minimal and complete immersion into a n−dimensional ambient manifold N n which possesses a pole o 2 N n and its sectional curvatures KN at any point p 2 N are bounded by above by the radial curvatures Kw of n a balanced from below model space Mw w00 (1.4) KN (p) ≤ KM n (r (p)) = − (r (p)) : w w 0 Suppose moreover, that w > 0 and there exist R such that K n (R) ≤ 0 for any R > R . 0 Mw 0 N Then, the number of ends EDR (P ) with respect to the extrinsic ball DR = P \ BR (o) for R > R0 is bounded from above by !m t ! 2 R w(s)m−1ds Vol(D ) (1.5) E (P ) ≤ 0 t ; DR R tm=m Vol(Bw) 1 − t t for any t > R. Using the above theorem we can estimate the global number of ends as follows: Corollary 1.2. Under the assumptions of theorem 1.1, suppose moreover R t m−1 ! 0 w(s) ds (1.6) lim sup m = Cw < 1 ; t!1 t =m and suppose also that the submanifold has finite volume growth, namely Vol(Dt) (1.7) Volw(P ) = lim w < 1 : t!1 Vol(Bt ) Then m (1.8) E(P ) ≤ 2 Cw Volw(P ) : m Remark a. If we choose w(t) = w0(t) = t, the model space becomes R , which is bal- anced from below, and the hypothesis of theorem 1.1 are therefore automatically fulfilled for any complete minimal submanifold properly immersed in a Cartan-Hadamard ambient manifold. Inequality (1.5) becomes !m 2 Vol(D ) (1.9) E (P ) ≤ t ; DR R V tm 1 − t m m For any R > 0 and any t > R, being Vm the volume of a geodesic ball of radius 1 in R . From inequality (1.6) we get (1.10) Cw0 = 1 : Thus inequality (1.8) becomes m Vol(Dt) (1.11) E(P ) ≤ 2 lim m ; t!1 Vmt which is the original inequality obtained by Tkachev (inequality (1.2)), but now inequality (1.11) is valid for any minimal submanifold properly immersed in a Cartan-Hadamard ambient manifold with finite volume growth. ENDS, FUNDAMENTAL TONES, AND CAPACITIES 3 FIGURE 1. Two examples of extrinsic annuli in R3: A catenoid on the left and the singly periodic Scherk surface on the right. The extrinsic annuli are constructed by cutting the surfaces with two spheres (with the same center but of different radii) in the ambient manifold (R3). The catenoid has two ends and finite total curvature. Hence, by theorem 1.4, the capacity of the extrinsic annulus of the catenoid is greater than the capacity of the corresponding annulus of the Euclidean 2-plane but is smaller than two times that capacity. The same is true for the extrinsic annulus of the singly periodic Scherk surface (we refer the reader to the introduction of [MW07] for the area growth of the singly periodic Scherk surface). In [GP12, Che95] are also obtained lower bounds for the number of ends, but we note that those lower bounds seem to need stronger assumptions: Dimension greater than 2, or embeddedness of the ends and codimension 1, decay on the second fundamental form, and a rotationally symmetric ambient manifold. As a counterpart, those lower bounds are associated to the so-called gap type theorems. Combining the results of [GP12, Theorem 3.5] and corollary 1.2, and taking into ac- count the role of sectional curvatures of the model space (see [GP12, Proposition 2.6]) we have m n Corollary 1.3. Let ' : P ! Mw be a minimal and proper immersion into a balanced n from below model space Mw with increasing warping function w satisfying the following conditions: R t m−1 ! 0 w(s) ds lim sup m = Cw < 1 ; t!1 t =m (1.12) there exist R0 such that for any R > R0 8 w00(R) <− w(R) ≤ 0 2 1−(w0(R)) : w(R)2 ≤ 0 n −1 Suppose moreover that m > 2, that the center ow of Mw satisfies ' (ow) 6= ; and that the norm of the second fundamental form kBP k of the immersion is bounded for large r by (r) (1.13) kBP k ≤ ; w0(r)w(r) where is a positive function such that (r) ! 0 when r ! 1. Then the number of ends is bounded from below and from above by m (1.14) Volw(P ) ≤ E(P ) ≤ 2 Cw Volw(P ) : By using our results about the behavior of the comparison quotients we can also estimate N N the capacity of an extrinsic annulus Aρ,R = P \ BR (o) n Bρ (o) (see figure 1 and, x2 and x3 for a precise definition of capacity and extrinsic annulus): 4 V. GIMENO AND S. MARKVORSEN Theorem 1.4. Let ' : P m ! Rn denote a complete and proper minimal immersion into the Euclidean space Rn. Then, for any R > ρ > 0, the capacity of the extrinsic annulus Aρ,R is bounded by Vol(Dρ) Cap(Aρ,R) Vol(DR) (1.15) ≤ m ≤ ; m R m Vmρ Cap(Aρ,R) VmR m m R R m where Cap(Aρ,R) is the capacity of the geodesic annulus Aρ,R in R of inner radius ρ and outer radius R. Vol(Ds) Remark b. Since, from Theorem 2.1, the quotient m is a non-decreasing function on Vms s, we can state Theorem 1.4 in the limit case ( ρ ! 0 and R ! 1) and inequality (1.15) there becomes Cap(Aρ,R) Vol(DR) (1.16) 1 ≤ m ≤ lim = Vw (P ) : R R!1 m 0 Cap(Aρ,R) VmR When we deal with a minimal surface Σ ⊂ R3 which is properly embedded into the Euclidean space R3 the limit 3 R Vol(Σ \ BR (o)) (1.17) Vw (Σ) = lim 0 R!1 πR2 is well understood.
Recommended publications
  • Theory of Capacities Annales De L’Institut Fourier, Tome 5 (1954), P
    ANNALES DE L’INSTITUT FOURIER GUSTAVE CHOQUET Theory of capacities Annales de l’institut Fourier, tome 5 (1954), p. 131-295 <http://www.numdam.org/item?id=AIF_1954__5__131_0> © Annales de l’institut Fourier, 1954, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ THEORY OF CAPACITIES (l) by Gustave CHOQUETOQ. INTRODUCTION This work originated from the following problem, whose significance had been emphasized by M. Brelot and H. Cartan : Is the interior Newtonian capacity of an arbitrary borelian subset X of the space R3 equal to the exterior Newtonian capacity of X ? For the solution of this problem, I first systematically studied the non-additive set-functions, and tried to extract from their totality certain particularly interesting classes, with a view to establishing for these a theory analogous to the classical theory of measurability. I succeeded later in showing that the classical Newtonian capacity f belongs to one of these classes, more precisely: if A and B are arbitrary compact subsets of R3, then AAU^+AAflB^/^+AB). It followed from this that every borelian, a^rid even every analytic set is capacitable with respect to the Newtonian capa- city, a result which can, moreover, be extended to the capa- (') This research was supported by the United States Air Force, throught the Office of Scientific Research of the Air Research and Development Command.
    [Show full text]
  • The Dimension of Chaotic Attractors
    Physica 7D (1983) 153-180 North-Holland Publishing Company THE DIMENSION OF CHAOTIC ATTRACTORS J. Doyne FARMER Center for Nonlinear Studies and Theoretical Division, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Edward OTT Laboratory of Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, USA and James A. YORKE Institute for Physical Science and Technology and Department of Mathematics, University of Maryland, College Park, Maryland, USA Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on the frequency with which a typical trajectory visits different regions of the attractor. Both our example and the previous work that we review support the conclusion that all of the frequency dependent dimensions take on the same value, which we call the "dimension of the natural measure", and all of the metric dimensions take on a common value, which we call the "fractal dimension". Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension. Table of contents 1.
    [Show full text]
  • Introduction to Heat Potential Theory
    Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society http://dx.doi.org/10.1090/surv/182 Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Benjamin Sudakov MichaelA.Singer MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 31-02, 31B05, 31B20, 31B25, 31C05, 31C15, 35-02, 35K05, 31B15. For additional information and updates on this book, visit www.ams.org/bookpages/surv-182 Library of Congress Cataloging-in-Publication Data Watson, N. A., 1948– Introduction to heat potential theory / Neil A. Watson. p. cm. – (Mathematical surveys and monographs ; v. 182) Includes bibliographical references and index. ISBN 978-0-8218-4998-9 (alk. paper) 1. Potential theory (Mathematics) I. Title. QA404.7.W38 2012 515.96–dc23 2012004904 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2012 by the American Mathematical Society.
    [Show full text]
  • On Essential Self-Adjointness, Confining Potentials & the Lp-Hardy
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. On Essential Self-adjointness, Confining Potentials & the Lp-Hardy Inequality A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand A.D.Ward - New Zealand Institute of Advanced Study August 8, 2014 Abstract Let Ω be a domain in Rm with non-empty boundary and let H = −∆ + V be a 1 Schr¨odingeroperator defined on C0 (Ω) where V 2 L1;loc(Ω). We seek the minimal criteria on the potential V that ensures that H is essentially self-adjoint, i.e. that en- sures the closed operator H¯ is self-adjoint. Overcoming various technical problems, we extend the results of Nenciu & Nenciu in [1] to more general types of domain, specifically unbounded domains and domains whose boundaries are fractal. As a special case of an abstract condition we show that H is essentially self-adjoint provided that sufficiently close to the boundary 1 1 1 V (x) ≥ 1 − µ (Ω) − − − · · · ; (1) d(x)2 2 ln( d(x)−1) ln( d(x)−1) ln ln( d(x)−1) where d(x) = dist(x; @Ω) and the right hand side of the above inequality contains a finite number of logarithmic terms. The constant µ2(Ω) appearing in (1) is the variational constant associated with the L2-Hardy inequality and is non-zero if and only if Ω admits the aforementioned inequality.
    [Show full text]
  • Rectifiability Via Curvature and Regularity in Anisotropic Problems
    ©Copyright 2021 Max Goering Rectifiability via curvature and regularity in anisotropic problems Max Goering A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2021 Reading Committee: Tatiana Toro, Chair Steffen Rohde Stefan Steinerberger Program Authorized to Offer Degree: Mathematics University of Washington Abstract Rectifiability via curvature and regularity in anisotropic problems Max Goering Chair of the Supervisory Committee: Craig McKibben and Sarah Merner Professor Tatiana Toro Mathematics Understanding the geometry of rectifiable sets and measures has led to a fascinating interplay of geometry, harmonic analysis, and PDEs. Since Jones' work on the Analysts' Traveling Salesman Problem, tools to quantify the flatness of sets and measures have played a large part in this development. In 1995, Melnikov discovered and algebraic identity relating the Menger curvature to the Cauchy transform in the plane allowing for a substantially streamlined story in R2. It was not until the work of Lerman and Whitehouse in 2009 that any real progress had been made to generalize these discrete curvatures in order to study higher-dimensional uniformly rectifiable sets and measures. Since 2015, Meurer and Kolasinski began developing the framework necessary to use dis- crete curvatures to study sets that are countably rectifiable. In Chapter 2 we bring this part of the story of discrete curvatures and rectifiability to its natural conclusion by producing mul- tiple classifications of countably rectifiable measures in arbitrary dimension and codimension in terms of discrete measures. Chapter 3 proceeds to study higher-order rectifiability, and in Chapter 4 we produce examples of 1-dimensional sets in R2 that demonstrate the necessity of using the so-called \pointwise" discrete curvatures to study countable rectifiability.
    [Show full text]
  • Upper Large Deviations for the Maximal Flow Through a Domain of Bold0mu Mumu Rdrdrdrdrdrd in First Passage Percolation
    The Annals of Applied Probability 2011, Vol. 21, No. 6, 2075–2108 DOI: 10.1214/10-AAP732 c Institute of Mathematical Statistics, 2011 UPPER LARGE DEVIATIONS FOR THE MAXIMAL FLOW THROUGH A DOMAIN OF RD IN FIRST PASSAGE PERCOLATION By Raphael¨ Cerf and Marie Theret´ Universit´eParis Sud and Ecole´ Normale Sup´erieure We consider the standard first passage percolation model in the rescaled graph Zd/n for d ≥ 2 and a domain Ω of boundary Γ in Rd. Let Γ1 and Γ2 be two disjoint open subsets of Γ representing the parts of Γ through which some water can enter and escape from Ω. We investigate the asymptotic behavior of the flow φn through a discrete 1 2 version Ωn of Ω between the corresponding discrete sets Γn and Γn. We prove that under some conditions on the regularity of the domain and on the law of the capacity of the edges, the upper large deviations d−1 of φn/n above a certain constant are of volume order, that is, decays exponentially fast with nd. This article is part of a larger project in which the authors prove that this constant is the a.s. limit d−1 of φn/n . 1. First definitions and main result. We use notation introduced in [8] Zd Ed and [9]. Let d ≥ 2. We consider the graph ( n, n) having for vertices Zd Zd Ed n = /n and for edges n, the set of pairs of nearest neighbors for the 1 Ed standard L norm. With each edge e in n we associate a random vari- R+ Ed able t(e) with values in .
    [Show full text]
  • The Variational 1-Capacity and BV Functions with Zero Boundary Values on Metric Spaces
    The variational 1-capacity and BV functions with zero boundary values on metric spaces ∗ Panu Lahti June 9, 2021 Abstract In the setting of a metric space that is equipped with a doubling measure and supports a Poincar´einequality, we define and study a class of BV functions with zero boundary values. In particular, we show that the class is the closure of compactly supported BV functions in the BV norm. Utilizing this theory, we then study the variational 1-capacity and its Lipschitz and BV analogs. We show that each of these is an outer capacity, and that the different capacities are equal for certain sets. 1 Introduction Spaces of Sobolev functions with zero boundary values are essential in spec- ifying boundary values in various Dirichlet problems. This is true also in arXiv:1708.09318v1 [math.MG] 30 Aug 2017 the setting of a metric measure space (X,d,µ), where µ is a doubling Radon measure and the space supports a Poincar´einequality; see Section 2 for def- initions and notation. In this setting, given an open set Ω ⊂ X, the space of Newton-Sobolev functions with zero boundary values is defined for 1 ≤ p< ∞ by 1,p 1,p N0 (Ω) := {u|Ω : u ∈ N (X) with u =0 on X \ Ω}. ∗2010 Mathematics Subject Classification: 30L99, 31E05, 26B30. Keywords : metric measure space, bounded variation, zero boundary values, variational capacity, outer capacity, quasi-semicontinuity 1 Dirichlet problems for minimizers of the p-energy, and Newton-Sobolev func- tions with zero boundary values have been studied in the metric setting in [6, 10, 11, 41].
    [Show full text]
  • Capacity Theory on Algebraic Curves and Canonical Heights Groupe De Travail D’Analyse Ultramétrique, Tome 12, No 2 (1984-1985), Exp
    Groupe de travail d’analyse ultramétrique ROBERT RUMELY Capacity theory on algebraic curves and canonical heights Groupe de travail d’analyse ultramétrique, tome 12, no 2 (1984-1985), exp. no 22, p. 1-17 <http://www.numdam.org/item?id=GAU_1984-1985__12_2_A3_0> © Groupe de travail d’analyse ultramétrique (Secrétariat mathématique, Paris), 1984-1985, tous droits réservés. L’accès aux archives de la collection « Groupe de travail d’analyse ultramétrique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Groupe d’ étude d ~ Analyse ultrametrique 22-01 (Y. AMICE, G. CHRISTOL, P. ROBBA) 12e année, 1984/85, n° 22, 17 p. 13 mai 1985 CAPACITY THEORY ON ALGEBRAIC CURVES AND CANONICAL HEIGHTS by Robert RUMELY This note outlines a theory of capacity for adelic sets on algebraic curves. It was motivated by a paper of D. CANTOR where the theory was developed for P~ . Complete proofs of all assertions are given in a manuscript [R], which I hope to publish in the Springer-Verlag Lecture Notes in Mathematics series. The capacity is a measure of the size of a set which is defined geometrically but has arithmetic consequences. (It goes under several names in the literature, including "Transfinite diameter", "Tchebychev constant",, and "Robbins constant",, depending on the context.) The introduction to Cantor’s paper contains several nice applications, which I encourage the reader to see.
    [Show full text]
  • On the Dual Formulation of Obstacle Problems for the Total Variation and the Area Functional
    On the dual formulation of obstacle problems for the total variation and the area functional Christoph Scheven∗ Thomas Schmidty August 9, 2017 Abstract We investigate the Dirichlet minimization problem for the total variation and the area functional with a one-sided obstacle. Relying on techniques of convex analysis, we identify certain dual maximization problems for bounded divergence- measure fields, and we establish duality formulas and pointwise relations between (generalized) BV minimizers and dual maximizers. As a particular case, these considerations yield a full characterization of BV minimizers in terms of Euler equations with a measure datum. Notably, our results apply to very general obstacles such as BV obstacles, thin obstacles, and boundary obstacles, and they include information on exceptional sets and up to the boundary. As a side benefit, in some cases we also obtain assertions on the limit behavior of p-Laplace type obstacle problems for p & 1. On the technical side, the statements and proofs of our results crucially de- pend on new versions of Anzellotti type pairings which involve general divergence- measure fields and specific representatives of BV functions. In addition, in the proofs we employ several fine results on (BV) capacities and one-sided approxi- mation. Contents 1 Introduction2 2 Preliminaries7 2.1 General notation...............................7 2.2 Domains....................................8 2.3 Representatives of BV functions......................8 2.4 Admissible function classes.........................8 2.5 Anzellotti type pairings for divergence-measure fields...........9 2.6 De Giorgi's measure............................. 11 2.7 Total variation and area functionals for relaxed obstacle problems.... 13 2.8 Capacities and quasi (semi)continuity..................
    [Show full text]
  • On Hilbert Boundary Value Problem for Beltrami Equation
    Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 45, 2020, 957–973 ON HILBERT BOUNDARY VALUE PROBLEM FOR BELTRAMI EQUATION Vladimir Gutlyanskii, Vladimir Ryazanov, Eduard Yakubov and Artyem Yefimushkin National Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics Generala Batyuka str. 19, 84116 Slavyansk, Ukraine; [email protected] National University of Cherkasy, Physics Department, Laboratory of Mathematical Physics and National Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics Generala Batyuka str. 19, 84116 Slavyansk, Ukraine; [email protected] Holon Institute of Technology Golomb St. 52, Holon, 5810201, Israel; [email protected] National Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics Generala Batyuka str. 19, 84116 Slavyansk, Ukraine; a.yefi[email protected] In memory of Professor Bogdan Bojarski Abstract. We study the Hilbert boundary value problem for the Beltrami equation in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of the generalized regular solutions. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media. 1. Introduction Hilbert [31] studied the boundary value problem formulated as follows: To find an analytic function f(z) in a domain D bounded by a rectifiable Jordan contour C that satisfies the boundary condition (1.1) lim Re {λ(ζ) f(z)} = ϕ(ζ) ∀ ζ ∈ C, z→ζ where both the coefficient λ and the boundary date ϕ of the problem are continuously differentiable with respect to the natural parameter s on C.
    [Show full text]
  • Capacities in Metric Spaces
    Integr. equ. oper. theory 44 (2002) 212-242 0378-620X/02/020212-31 ' I Integral Equations BirkNiuser Verlag, Basel, 2002 and OperatorTheory CAPACITIES IN METRIC SPACES VLADIMIR GOL'DSHTEIN and MARC TROYANOV We discuss the potential theory related to the variational capacity and the Sobolev capacity on metric measure spaces. We prove our results in the ax- iomatic framework of [17]. 1 Introduction Various notions of Sobolev spaces on a metric measure spaces (X, d, #) have been introduced and studied in recent years (see e.g. [4], [18], [23] and [41]). Good sources of information are the books [20] and [21]. The basic idea of all these constructions is to associate to a given function u : X --+ R a collection D[u] of measurable functions g : X --+ N+ which control the variation of u. The Dirichlet p-energy of the function u is then defined as and the Sobolev space is WI'v(X):= {u C Lv(X) I gp(u) < oo}. We say that g is a pseudo-gradient of u if g E D[u] and the correspondence u -+ D[u] (i.e. the way pseudo-gradients are defined) is called a D-structure. The theory of D-structures is axiomatically developped in [17]. In the present paper, we introduce two notions of capacities on a metric measure space X equipped with a D-structure. First the Sobolev capacity of an arbitrary subset F C X is defined to be @(F) := inf{ IlUllwl.p I u E Bp(F) }, where Bp(F) := {u C Wt'P(X)I u _> 1 near F and u > 0 a.e.}.
    [Show full text]
  • Sobolev Spaces
    JUHA KINNUNEN Sobolev spaces Department of Mathematics, Aalto University 2021 Contents 1 SOBOLEV SPACES1 1.1 Weak derivatives .............................. 1 1.2 Sobolev spaces ............................... 4 1.3 Properties of weak derivatives ....................... 8 1.4 Completeness of Sobolev spaces .................... 9 1.5 Hilbert space structure ........................... 11 1.6 Approximation by smooth functions ................... 12 1.7 Local approximation in Sobolev spaces ................. 16 1.8 Global approximation in Sobolev spaces ................ 17 1.9 Sobolev spaces with zero boundary values ............... 18 1.10 Chain rule ................................... 21 1.11 Truncation ................................... 23 1.12 Weak convergence methods for Sobolev spaces ........... 25 1.13 Difference quotients ............................. 33 1.14 Absolute continuity on lines ........................ 36 2 SOBOLEV INEQUALITIES 42 2.1 Gagliardo-Nirenberg-Sobolev inequality ................ 43 2.2 Sobolev-Poincaré inequalities ....................... 49 2.3 Morrey’s inequality ............................. 55 1, 2.4 Lipschitz functions and W 1 ........................ 59 2.5 Summary of the Sobolev embeddings .................. 62 2.6 Direct methods in the calculus of variations .............. 62 3 MAXIMAL FUNCTION APPROACH TO SOBOLEV SPACES 70 3.1 Representation formulas and Riesz potentials ............. 71 3.2 Sobolev-Poincaré inequalities ....................... 78 3.3 Sobolev inequalities on domains ....................
    [Show full text]