Clifford Algebras and Maxwell's Equations in Lipschitz Domains *

Total Page:16

File Type:pdf, Size:1020Kb

Clifford Algebras and Maxwell's Equations in Lipschitz Domains * Cli ord algebras and Maxwell's equations in Lipschitz domains Alan McIntosh and Marius Mitrea April, 1998 Abstract We present a simple, Cli ord algebra based approach to several key results in the theory of Maxwell's equations in non-smo oth sub domains m of R . Among other things, wegive new pro ofs to the b oundary energy estimates of Rellichtyp e for Maxwell's equations in Lipschitz domains from [20] and [10], discuss radiation conditions and the case of variable wavenumb er. 1 Intro duction. It has b een long recognized that there are fundamental connections b etween electromagnetism and Cli ord algebras. Indeed, understanding Maxwell's equations was part of Cli ord's original motivation. A more recent trend concerns the treatmentofsuch PDE's in domains with irregular b oundaries. See [11] for an excellent survey of the state of the art in this eld up to early 1990's and [13], [18] for the role of Cli ord algebras in this context. Following work in the context of smo oth domains ([24], [2], [4], [23]), the three-dimensional Maxwell system 8 3 > curl E ik H =0 inR n ; < 3 curl H + ik E =0 inR n ; (M ) 3 > : 2 n E = f 2 L (@ ); 1991 Mathematics Subject Classi cation. Primary 42B20, 30G35; Secondary 78A25. Key words and phrases. Cli ord algebras, Maxwell's equations, Rellichidentities, radiation conditions, Hardy spaces, Lipschitz domains. 1 (plus appropriate radiation conditions at in nity) in the complementofa b ounded Lipschitz domain R has b een solved in [20], while the higher dimensional version (involving di erential forms) 8 m > dE ik H =0 inR n ; < (M ) H + ik E = 0 in R n ; m > : 2 n ^ E = f 2 L (@ ); m (plus suitable radiation conditions) for arbitrary Lipschitz domains R , has b een solved in [10] (precise de nitions will b e given shortly). See also [19], [16] for related developments. One of the key ingredients of the approachin[20], [10]was establishing estimates to the e ect that the so-called voltage-to-current map, taking n E into n H and n ^ E into n _ H , resp ectively, is an isomorphism b etween appropriate b oundary spaces. Ultimately, this comes down to proving norm equivalences of the following form (1) kn E k 2 + khn; H ik 2 kn H k 2 + khn; E ik 2 L (@ ) L (@ ) L (@ ) L (@ ) 3 in R and, more generally, (2) kn ^ E k + kn ^ H k kn _ E k + kn _ H k 2 2 2 2 L (@ ) L (@ ) L (@ ) L (@ ) m in R . As shown in [20, Theorem 4.1] (for Im k>0) and [10, Theorem 8.5] (for arbitrary k 6= 0), the ab ove estimates lead to the invertibilityof certain magnetostatic (and electrostatic) b oundary integral op erators which, in turn, are used to solve(M ), m 3. m The aim of this pap er is to shed new light on the basic estimates (1), (2) and to present an alternative, natural approachtoproving such b oundary energy estimates, develop ed in the framework of Cli ord algebras. This is an extension of work in [18] where such an approach has rst b een used for certain PDE's in Lipschitz domains. Besides its intrinsic merit, the relevance of this work should b e most apparentforthenumerical treatment of electro-magnetic scattering problems in non-smo oth domains. For the smo oth context and di erenttechniques see [8]. The departure p oint for us (whichinfactgoesbacktoMaxwell himself; it has also b een reinvented by M. Riesz) is to write the Maxwell system as a single equation which, in fact, expresses the Cli ord analyticityofa certain Cli ord algebra-valued function. Sp eci cally,ifE and H are the 2 3 electric and magnetic comp onents of an electro-magnetic waveinR , then the entire Maxwell system is equivalent to the Maxwell-Dirac equation (3) (D + ke )(H + iE e )= 0: 4 4 3 Here E and H are regarded as Cli ord algebra-valued functions in R ,and D + ke is a p erturb ed Dirac op erator. 4 This is b oth mathematically convenient and physically relevant. In fact, the same idea has b een extensively used byphysicists who employ the Lorentz metric in the four dimensional ( at Minkowskian) space-time domains in order to write the 3D Maxwell system for E =(E ) and i i=1;2;3 H =(H ) solely in terms of the electromagnetic eld-strength tensor. i i=1;2;3 Due to its skew symmetry, the latter de nes the exterior di erential form (sometimes referred to as a Faradaybi-vector eld) ! := (E dx + E dx + E dx ) dt 1 1 2 2 3 3 +H dx dx + H dx dx + H dx dx 1 2 3 2 3 1 3 1 2 (typically, electrical forces are vectorial while magnetic ones are 2-tensors). See, e.g., the monographs [5], [31], [9], and [28]. The radiation conditions for E and H can also b e naturally rephrased in terms of ! .Parenthetically, let us note that it is also p ossible to work with the non-homogeneous form E + H and write Maxwell's equations in the form (D + ik )(E + H )= 0 (cf.[23], [10]) but this setup app ears to b e less physically relevant. However, the most attractive asp ect of this algebraic context is that it preserves many of the key features of the classical complex function the- ory.For us, Hardy spaces of monogenic functions in Lipschitz domains and Cauchyvanishing formulas will play a basic role in the sequel. Based on 3 these, if R is the complement of a b ounded Lipschitz domain and if n n e + n e + n e denotes the outward unit normal to @ , we shall 1 1 2 2 3 3 show that for any solution ! = H + iE e of (3) there holds 4 kn! !nk k! k ; 2 2 L (@ ) L (@ ) mo dulo residual terms. The Rellichtyp e estimate (1) follows from this. In fact, a similar argument applies in the higher dimensional case. Before commencing the ma jor developments we shall intro duce here some notation. Call a b ounded domain Lipschitz if its b oundary is lo cally given by graphs of Lipschitz functions in appropriate rectangular co ordinates. We 3 let d denote the surface measure on @ and set n for the outward unit normal to @ . For a (p ossibly algebra-valued) function u de ned in , the nontangential maximal function u is given by u (X ):=supfju(Y )j; Y 2 ; jX Y j 2dist(Y; @ )g. Also, the nontangential boundary trace on @ of a function u de ned in is taken as the p ointwise nontangential limit almost everywhere with resp ect to the surface measure on the b oundary. Acknow ledgments. This researchwas initiated while MM was visiting AM at Macquarie University. It is a pleasure to have the opp ortunity to thank here this institution for its hospitalityaswell as the Australian Research Council for its supp ort. We also wish to thank Rene Grognard for his interesting and helpful comments. 2 Cli ord algebra rudiments. m Recall that the (complex) Cli ord algebra asso ciated with R endowed with m the usual Euclidean metric is the minimal enlargementofR to a unitary complex algebra A ,which is not generated (as an algebra) byany prop er m m m 2 2 subspace of R and such that x = jxj , for any x 2 R . This identity m m readily implies that, if fe g is the standard orthonormal basis in R , j j =1 then 2 = 1 and e e = e e for any j 6= k: e j k k j j m In particular, we identify the canonical basis fe g from R with the algebraic j basis of A .Thus, any element u 2A can b e uniquely representedinthe m m form m X X 0 (4) u = u e ; u 2 C; I I I l=0 jI j=l where e stands for the pro duct e e :::e if I =(i ;i ;:::;i )(wemake I i i i 1 2 l 1 2 l the convention that e := 1). For this multi-index I wecall l the length of I ; P 0 and denote it by jI j.We shall adopt the convention that indicates that the sum is p erformed only over strictly increasing multi-indices I . The Cli ordconjugation on A is de ned as the unique complex-linear m involution on A for whiche e = e e = 1 for anymulti-index I . In m I I I I P P particular, if u = u e 2A , thenu = u e . Note that I I m I I I I l(l+1) 2 u =(1) (5) u; 4 l for any u 2 .For the complex conjugation on A weset m ! c X X c := (6) u e : u = u e I I I I I I P We de ne the scalar part of u = u e 2A as u := u , and endow I I m 0 ; I c 2 c c A with the natural Euclidean metric hu; u i = juj := (uu ) =(u u) . m 0 0 Note that (uv ) =(vu) = hu; vi, for any u; v 2A . Another useful 0 0 m observation is that (7) jauj = juaj = jujjaj m for any u 2A and a 2 R .We also de ne m 1 u := (8) fu ug 2 for each u 2A . m P 0 l With u as in (4), de ne u := u e and denote by the range of l I I jI j=l l : A !A .
Recommended publications
  • Riemann Surfaces, Conformal Fields and Strings I. FIELD THEORY and RIEMANN SURFACES the Space-Time on Which the Particl Physicis
    Riemann Surfaces, Conformal Fields and Strings I he ru k uf Rtc m:rnn s url acc~ in modern pa rticle r h y~ i cs I\ discussed. M<i thc111at- 1r :1!1 \. q11 :1111urn ri cld th eories c:1 11 he tlclinccl 011 the" : mani fo lds if the <1rc co11 - lmm11lll' in ari 11 n1. I hysic•tll y. Ri 1:t11 nnn surl:i tcs provide n 111 od1: I for th • wqrlJ , h~ c l ~ 'vc p t out IJ n prop:1gating rcla1i vistk stri ng. Thuh Ricmu nn surl uccs nrc th e natural se ll ing for confom1al fiel d theory. and. both these co n cc pl ~ together pruvidc .1 1i1r11tul .1 t1 011 of smng theory. I\~\ Words: string theory, conformal symmetry , 11•orld sh eets, Riemann surfaces I. FIELD THEORY AND RIEMANN SURFACES The space- tim e on whi ch th e particl ph ysici st writes a Lagrnngian field theory and deduces equations ol moiion, c b ss i c~ d solutions anJ quantum scaucring amplitud s is usually taken to be a Ri e­ nian111a11 manifold . 1 T he. ii.l ea is cent rn l l ' ge neral relati vi ty and grav1tat1 n.2 and has becom · mor imporlanl in pnrticlc phys ics w11h increasi ng cmphasi on unified th eo ries o f all for es including grav itation . R1cmannian gcomotr is usually incorpo.ratctl as a se ri es of pre­ Knpti ons. starting with the introduction of a i..:c ond -r:rnk ~y m ­ mctril: tcn·or fi ' ld, the metri c g1.,,(x).
    [Show full text]
  • Conformal Field Theories of Stochastic Loewner Evolutions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Conformal Field Theories of Stochastic Loewner Evolutions. [ CFTs of SLEs ] Michel Bauer1 and Denis Bernard2 Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France Abstract Stochastic Loewner evolutions (SLEκ) are random growth pro- cesses of sets, called hulls, embedded in the two dimensional upper half plane. We elaborate and develop a relation between SLEκ evo- lutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to define an in- finite set of SLEκ zero modes, or martingales, whose existence is a consequence of the existence of a null vector in the appropriate Vira- soro modules. This identification leads, for instance, to linear systems for generalized crossing probabilities whose coefficients are multipoint CFT correlation functions. It provides a direct link between confor- mal correlation functions and probabilities of stopping time events in SLEκ evolutions. We point out a relation between SLEκ processes and two dimensional gravity and conjecture a reconstruction proce- dure of conformal field theories from SLEκ data. 1Email: [email protected] 2Member of the CNRS; email: [email protected] 1 1 Introduction. Two dimensional conformal field theories [2] have produced an enormous amount of exact results for multifractal properties of conformally invariant critical clusters. See eg. refs.[15, 5, 9] and references therein.
    [Show full text]
  • Second Kind Integral Equations for the Classical Potential Theory on Open Surfaces I: Analytical Apparatus
    Journal of Computational Physics 191 (2003) 40–74 www.elsevier.com/locate/jcp Second kind integral equations for the classical potential theory on open surfaces I: analytical apparatus Shidong Jiang *,1, Vladimir Rokhlin Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA Received 6 February 2003; accepted 21 May 2003 Abstract A stable second kind integral equation formulation has been developed for the Dirichlet problem for the Laplace equation in two dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained apparatus is illustrated with several numerical examples. Ó 2003 Elsevier Science B.V. All rights reserved. AMS: 65R10; 77C05 Keywords: Open surface problems; Laplace equation; Finite Hilbert transform; Second kind integral equation; Dirichlet problem 1. Introduction Integral equations have been one of principal tools for the numerical solution of scattering problems for more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the equations used have been of the first kind, since numerical instabilities associated with such equations have not been critically important for the relatively small-scale problems that could be handled at the time. The combination of improved hardware with the recent progress in the design of ‘‘fast’’ algorithms has changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting from the discretization of integral equations of potential theory have become critical, and the simplest way to limit such condition numbers is by starting with second kind integral equations. Hence, interest has increased in reducing scattering problems to systems of second kind integral equations on the boundaries of the scatterers.
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Hep-Th/0101032V1 5 Jan 2001 Uhawyta H Eutn Trpoutcntuto Ol No Would Construction Star-Product O Resulting So field) the (Tensor Coordinates
    WICK TYPE DEFORMATION QUANTIZATION OF FEDOSOV MANIFOLDS V. A. DOLGUSHEV, S. L. LYAKHOVICH, AND A. A. SHARAPOV Abstract. A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The main ingredient of this approach is a bilinear symmetric form defined on the complexified tangent bundle of the symplectic manifold and subject to some set of algebraic and differential conditions. It is precisely the structure which describes a deviation of the Wick-type star-product from the Weyl one in the first order in the deformation parameter. The geometry of the symplectic manifolds equipped by such a bilinear form is explored and a cer- tain analogue of the Newlander-Nirenberg theorem is presented. The 2-form is explicitly identified which cohomological class coincides with the Fedosov class of the Wick-type star-product. For the particular case of K¨ahler manifold this class is shown to be proportional to the Chern class of a complex manifold. We also show that the symbol construction admits canonical superexten- sion, which can be thought of as the Wick-type deformation of the exterior algebra of differential forms on the base (even) manifold. Possible applications of the deformed superalgebra to the noncommutative field theory and strings are discussed. 1. Introduction The deformation quantization as it was originally defined in [1], [2] has now been well established for every symplectic manifold through the combined efforts of many authors (for review see [3]). The question of existence of the formal associative deformation for the commutative algebra of smooth functions, so-called star product, has been solved by De Wilde and Lecomte [4].
    [Show full text]
  • Potential Theory of Schr~Dingew Operator
    PROBABILITY. AND MATHEMAT[CAL STATISTICS POTENTIAL THEORY OF SCHR~DINGEWOPERATOR - BASED -ONFRACTIONAL LABLACIAN 5 BY - Abstract. We develop potential theory of Schrdinger operators based on fractional Laplacian on Euclidean spaces of arbitrary dimen- sion. We focus on questions related to gaugeability and existence of q-harmonic functions. Results are obtained by analyzing properties of a symmetric a-stable Gvy process on Rd, including the recurrent case. We provide some relevant techniques and apply them to give explicit examples of gauge functions for a general class of domains. 1W1 Mathematics Subject Claasificadon: Primary 31B25,60J50. Key words and phrases: symmetric a-stable Gvy process, Feyn- man-Kac semigroup, Schrodinger operator, q-harmonic functions, Kel- vin transform, conditional gauge theorem. 1. INTRODUCTION The paper deals with Schrodinger type operators corresponding to sym- metric a-stable Lbvy processes X,on Rd equipped with a multiplicative func- tional e,(t) = exp (lb q (X.)ds), where q is a given function (in a Kato class). We study the existence and properties of q-harmonic functions. In particular, we address ourselves to problems related to gaugeability. - - Many potential-theoretic properties of X, for aE(0, 2) are dramatically different from those of Brownian motion yet they may be regarded as typical for a general class of LCvy processes on Rd. This motivates a thorough study of the Feynman-Kac semigroups related to the symmetric stable Lbvy processes, especially that the explicit calculations are very often feasible in this particular case, which stimulates and enriches the general theory. Results of this paper complement the earlier ones contained in [6].Results of [6] were basically restricted to bounded Lipschitz domains and were based * Institute of Mathematics, Wroclaw University of Technology.
    [Show full text]
  • Introduction to Heat Potential Theory
    Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society http://dx.doi.org/10.1090/surv/182 Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Benjamin Sudakov MichaelA.Singer MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 31-02, 31B05, 31B20, 31B25, 31C05, 31C15, 35-02, 35K05, 31B15. For additional information and updates on this book, visit www.ams.org/bookpages/surv-182 Library of Congress Cataloging-in-Publication Data Watson, N. A., 1948– Introduction to heat potential theory / Neil A. Watson. p. cm. – (Mathematical surveys and monographs ; v. 182) Includes bibliographical references and index. ISBN 978-0-8218-4998-9 (alk. paper) 1. Potential theory (Mathematics) I. Title. QA404.7.W38 2012 515.96–dc23 2012004904 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2012 by the American Mathematical Society.
    [Show full text]
  • Boundary and Defect CFT: Open Problems and Applications
    Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept.
    [Show full text]
  • Combinatorics Meets Potential Theory
    Combinatorics meets potential theory Philippe D'Arco Valentina Lacivita Institut des Sciences de la Terre de Paris Institut du Calcul et de la Simulation Universit´ePierre et Marie Curie Institut des Sciences de la Terre de Paris Paris, France Universit´ePierre et Marie Curie Paris, France Sami Mustapha Centre de Math´ematiquesde Jussieu Universit´ePierre et Marie Curie Paris, France [email protected] Submitted: Jan 18, 2016; Accepted: Apr 23, 2016; Published: May 13, 2016 Mathematics Subject Classifications: 05A16,60G50 Abstract Using potential theoretic techniques, we show how it is possible to determine the dominant asymptotics for the number of walks of length n, restricted to the positive quadrant and taking unit steps in a \balanced" set Γ. The approach is illustrated through an example of inhomogeneous space walk. This walk takes its steps in f ; "; !; #g or f.; ; -; "; %; !; &; #g, depending on the parity of the n coordinatesp of its positions. The exponential growth of our model is (4φ) , where 1+ 5 φ = 2 denotes the Golden ratio, while the subexponential growth is like 1=n. As an application of our approach we prove the non-D-finiteness in two dimensions of the length generating functions corresponding to nonsingular small step sets with an infinite group and zero-drift. Keywords: Lattice path enumeration, analytic combinatorics in several variables, discrete potential theory, discrete harmonic functions. 1 Introduction Counting lattice walks in a fixed region R ⊂ Z2 is one of the most fundamental topics in enumerative combinatorics. In recent years, the case of walks confined to the first quadrant Q = f(x; y) 2 Z2; x > 0; y > 0g has been a subject of several important works (see [3,4,5, 10, 11, 12, 17, 26, 27, 32, 33, 34]).
    [Show full text]
  • 5 Potential Theory
    5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5.1 Problems of Interest. In what follows, we consider Ω an open, bounded subset of Rn with C2 boundary. We let Ωc = Rn ¡ Ω (the open complement of Ω). We are interested in studying the following four problems: (a) Interior Dirichlet Problem. ½ ∆u = 0 x 2 Ω u = g x 2 @Ω: (b) Exterior Dirichlet Problem. ½ ∆u = 0 x 2 Ωc u = g x 2 @Ωc: (c) Interior Neumann Problem. ½ ∆u = 0 x 2 Ω @u @º = g x 2 @Ω: (d) Exterior Neumann Problem. ½ ∆u = 0 x 2 Ωc @u c @º = g x 2 @Ω : Previously, we have used Green’s representation, to show that if u is a C2 solution of the Interior Dirichlet Problem, then u is given by Z @G u(x) = ¡ g(y) (x; y) dS(y); @Ω @ºy where G(x; y) is the Green’s function for Ω. However, in general, it is difficult to calculate an explicit formula for the Green’s function. Here, we use a different approach to look for solutions to the Interior Dirichlet Problem, as well as to the other three problems above. Again, it’s difficult to calculate explicit solutions, but we will discuss existence of solutions and give representations for them. 5.2 Definitions and Preliminary Theorems. As usual, let Φ(x) denote the fundamental solution of Laplace’s equation. That is, let ½ 1 ¡ 2¼ ln jxj n = 2 Φ(x) ´ 1 1 n(n¡2)®(n) ¢ jxjn¡2 n ¸ 3: 1 Let h be a continuous function on @Ω.
    [Show full text]
  • Connection Between Brownian Motion and Potential Theory
    JOIXNAL OF hlATIIEMATICA1. .~N.AI.YSIS AND APPLICATIOh’S 12, 328-349 (1965) Connection between Brownian Motion and Potential Theory Department of Mathematics, Princeton University, Princeton, New Jersey Submitted by John G. Kemeny 1. INTRODUCTION One of the fruitful achievements of probability theory in recent years has been the recognition that two seemingly unrelated theories in physics-- one for Brownian motion and one for potentials-are mathematically equivalent. That is, the results of the two theories are in one-to-one corre- spondence and any proof of a result in one theory can be translated directly into a proof of the corresponding result in the other theory. Although this connection has been known to some mathematicians for a number of years, the details have not been collected in any one source, and an exposition seems in order. Historically the first theorem indicating any connection was discovered by Kakutani in 1944. It was known that if D is a sufficiently nice bounded domain in the plane, then to each point x in D there is a measure pz on the boundary of D such that for any continuous function f on the boundary the unique harmonic function in D with f as boundary values has the value J-f dpz at x. In potential theory it turns out that if K is a nice compact suhsct of M(D), then pZ(K) is the value at x of a potential which is one on K and whose charge has all its mass on K. It was Kakutani’s observation in [I 31 that p&K) is also equal to the probability that a Brownian motion particle started at x reaches K before hitting Bd(D) - K.
    [Show full text]
  • An Introduction to Global Supersymmetry ⊘C
    An Introduction to Global Supersymmetry Philip C. Argyres Cornell University c ⊘ Contents Preface v 1 N=1 d=4 Supersymmetry 1 1.1 WhySupersymmetry? ........................... 1 1.2 Supersymmetric Quantum Mechanics . 5 1.2.1 Supersymmetry algebra in 0+1 dimensions . 5 1.2.2 Quantum mechanics of a particle with spin . 7 1.2.3 Superspaceandsuperfields. 8 1.3 RepresentationsoftheLorentzAlgebra . .... 15 1.3.1 Tensors ............................... 17 1.3.2 Spinors................................ 19 1.4 Supermultiplets ............................... 26 1.4.1 Poincar´ealgebra and particle states . ... 26 1.4.2 Particle representations of the supersymmetry algebra...... 27 1.4.3 Supersymmetrybreaking. 30 1.5 N=1 Superspace and Chiral Superfields . .. 32 1.5.1 Superspace ............................. 32 1.5.2 GeneralSuperfields . 33 1.5.3 Chiralsuperfields .......................... 34 1.5.4 Chiral superfield action: Kahler potential . .... 36 1.5.5 Chiral superfield action: Superpotential . .... 39 1.6 Classical Field Theory of Chiral Multiplets . ...... 42 1.6.1 Renormalizablecouplings. 42 1.6.2 Generic superpotentials and R symmetries . .. 46 1.6.3 Modulispace ............................ 50 1.6.4 Examples .............................. 51 i 1.7 VectorsuperfieldsandsuperQED . 55 1.7.1 Abelianvectorsuperfield . 55 1.7.2 Coupling to left-chiral superfields: superQED . .... 59 1.7.3 General Abelian gauged sigma model . 62 1.7.4 Higgsingandunitarygauge . 63 1.7.5 Supersymmetry breaking and Fayet-Iliopoulos terms . ...... 64 1.7.6 Solving the D equations ...................... 67 1.8 Non-Abeliansupergaugetheory. 75 1.8.1 Reviewofnon-Abeliangaugetheory . 75 1.8.2 Non-Abelian vector superfields . 82 2 Quantum N=1 Supersymmetry 87 2.1 EffectiveActions .............................. 87 2.2 Non-RenormalizationTheorems . 96 2.2.1 Holomorphyofthesuperpotential .
    [Show full text]