Straightedge and Compass Constructions

Total Page:16

File Type:pdf, Size:1020Kb

Straightedge and Compass Constructions Appendix A Straightedge and Compass Constructions The ancient Greeks solved many beautiful problems about geometric constructions using straightedge and compass, and they raised some questions that became widely known because of numerous unsuccessful attempts to solve them. These problems remained open for many centuries. The ancient Greeks constructed regular n-gons for n D 2k3, 2k4, 2k5,and2k15,wherek is any nonnegative integer. It was unknown how to construct a regular n-gon for any other value of n until Gauss constructed the regular 17-gon and gave a characterization of all numbers n for which such a construction is possible. Gauss obtained this remarkable result before Galois theory had been discovered. His amazing result had a huge impact on the development of several branches of mathematics. Below, we discuss this problem and other problems on constructibility. Problems about constructions using straightedge and compass are the oldest problems on “solvability in finite terms.” We treat them just as we have treated other problems of this type. We distinguish three classes of constructions. In problems of the first, simplest, class, only three operations are allowed: constructing a line through two given points, a circle of given radius with a given center, and points of intersection of given lines and circles. In the third, hardest, class we allow all these constructions, and in addition, we also allow ourselves to choose an arbitrary point, but we require the result to be independent of the choice of arbitrary points. In the second, intermediate, class we do not allow arbitrary choice, but we allow two additional constructions: construction of the center of a given circle and construction of the line orthogonal to a given line passing through a given point not lying on the given line. Logically, constructions in the third class are different from the constructions in other classes and from everything we saw before in problems on solvability in finite terms: intermediate objects that we get in the process can be dependent on arbitrary This appendix was published originally as A. Khovanskii [57]. © Springer-Verlag Berlin Heidelberg 2014 239 A. Khovanskii, Topological Galois Theory, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-38871-2 240 A Straightedge and Compass Constructions choices we have made. In this case, we do not consider them to be constructions made using straightedge and compass. We try to avoid, when possible, the operation of choice of an arbitrary point. We prove that in most problems, this operation does not give anything new (everything that is constructible using this operation can be constructed without it). Some of the classical problems can be rather satisfyingly formulated and proved inside the first class of constructions. The problem of trisection of an angle requires the operation of choice of an arbitrary point: given two lines passing through a given point, nothing new can be constructed using operations of the first class. We show that if we add to these given lines an arbitrary point on one of them, then using operations of the first class only, we can construct everything that can be constructed from two given lines using operations from the third class. Operations of the second class allow us to extend initial data. For example, operations from the first class of constructions do not allow us to construct anything if the initial datum consists of several nonintersecting circles. But if we mark the centers of the circles, then operations of the first class can be used to construct anything constructible from the initial datum using operations from the third class (except when all the given circles are concentric). In the first section, we discuss problems of solvability of algebraic equations using square roots that are later needed for problems of constructibility. We do it in greater generality than we need (we do not assume that the base field is perfect and that it is of characteristic not equal to 2). This problem is interesting in its own right, and additional generality does not cause much trouble. The second section is devoted to problems of constructibility using straightedge and compass. A.1 Solvability of Equations by Square Roots In this section, we discuss the following question about solvability of equations in finite terms: when is an irreducible algebraic equation over a field K solvable using arithmetic operations and the operation of taking the square root? Galois theory answers this question when the field K is perfect and its characteristic is not equal to 2. But some simple additional observations help to get rid of any assumptions on the structure of the field K. The material is structured as follows: In Sect. A.1.1 we give necessary back- ground material. In Sect. A.1.2 we prove necessary and sufficient conditions for an equation to be solvable using square roots if the characteristic of the field K is not equal to 2. In Sect. A.1.3, the same question is solved when the characteristic of the field is equal to 2. In Sects. A.1.4 and A.1.5, Gauss’s results on roots of unity of degree n are presented (we use them in the problem of constructibility of the regular n-gon). A.1 Solvability of Equations by Square Roots 241 A.1.1 Background Material We begin by recalling some elementary facts about fields. If the field K is a subfield of the field F ,thenF is a vector space over K.IfdimK F<1,thenF is said to be a finite extension of the field K.Thedegree of the extension is defined to be dimK F and is denoted by ŒF W K. Theorem A.1 If K F and F M are finite field extensions, then: 1. K M is a finite extension. 2. ŒM W K D ŒM W F ŒF W K. Proof Let u1;:::;un beabasisofF over K and let v1;:::;vm be a basis of M over F . It is easily shown that elements ui vj with 1 Ä i Ä n, 1 Ä j Ä m form a basis of M over K. ut Proposition A.2 1. If ŒF W K D n and a 2 F , then there exists a polynomial Q over the field K of degree not greater than n such that Q.a/ D 0. 2. If Q is an irreducible polynomial over the field K and Q.a/ D 0,thenŒK.a/ W K D deg Q. n Proof 1. Since the dimK F D n elements 1;a;:::;a are linearly dependent, there n n1 exist i 2 K such that na C n1a CC0 D 0 and for some i>0,the coefficient i is nonzero. 2. The field K.a/ is isomorphic to the field KŒx=I,whereI is an ideal generated by the polynomial Q of degree n. ut Proposition A.3 If the degree of an irreducible polynomial over a field of charac- teristic p>0is not divisible by p, then it does not have multiple roots. Proof A multiple root of the polynomial Q is also a root of the derivative Q0.An irreducible polynomial Q cannot have a common root with a nonzero polynomial of smaller degree. Thus if Q has a multiple root, then Q0 Á 0, i.e., Q.x/ D R.xp/ for some polynomial R, in which case, deg Q D p deg R, and so deg Q is divisible by p. ut A.1.2 Extensions by 2-Radicals We now return to the question of solvability of equations by square roots. Definition A.4 An extension K F is said to be an extension by 2-radicals if there exists a tower of fields K D F0 F1 Fn such that F Fn and for 2 1 Ä i Ä n, Fi D Fi1.ai / with ai 2 Fi1 and ai … Fi1. 242 A Straightedge and Compass Constructions Theorem A.5 If K F is a 2-radical extension, then ŒF W K D 2k. Proof For K D F0 F1 Fn,wehaveŒFn W K D ŒFn W Fn1 ŒF1 W n n F0 D 2 .IfK F Fn,thenŒF W K ŒFn W F D 2 . Therefore, ŒF W K is a power of 2. ut Corollary A.6 If a polynomial P is irreducible over the field K and has a root in some extension of K by 2-radicals, then deg P D 2k. Proof If P.a/ D 0,thenŒK.a/ W K D deg P . ut Corollary A.7 Let K be a field of characteristic not equal to 2. A cubic equation P D 0 over the field K is solvable in square roots if and only if one of its roots lies in K. Proof If a 2 K and P.a/ D 0,thenP D .xa/Q for some Q 2 KŒx. A quadratic equation Q D 0 is solvable in square roots, because the characteristic of the field is not equal to 2. If the cubic polynomial does not have a root in K,thenitis irreducible, and we can use Corollary A.6. ut Remark A.8 For K D É, Corollary A.7 has an effective form: the rational roots of a rational polynomial P 2 ÉŒx can be explicitly found (in particular, we can check whether there are none). If a root a is found, then the quadratic equation 0 D Q.x/ D P=.x a/ is explicitly solvable. Let EP denote the splitting field of the polynomial P over the field K. Corollary A.9 If a polynomial P is irreducible over K and has a root in some m extension of the field K by 2-radicals, then ŒEP W K D 2 .
Recommended publications
  • Field Theory Pete L. Clark
    Field Theory Pete L. Clark Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes. Contents About These Notes 7 Some Conventions 9 Chapter 1. Introduction to Fields 11 Chapter 2. Some Examples of Fields 13 1. Examples From Undergraduate Mathematics 13 2. Fields of Fractions 14 3. Fields of Functions 17 4. Completion 18 Chapter 3. Field Extensions 23 1. Introduction 23 2. Some Impossible Constructions 26 3. Subfields of Algebraic Numbers 27 4. Distinguished Classes 29 Chapter 4. Normal Extensions 31 1. Algebraically closed fields 31 2. Existence of algebraic closures 32 3. The Magic Mapping Theorem 35 4. Conjugates 36 5. Splitting Fields 37 6. Normal Extensions 37 7. The Extension Theorem 40 8. Isaacs' Theorem 40 Chapter 5. Separable Algebraic Extensions 41 1. Separable Polynomials 41 2. Separable Algebraic Field Extensions 44 3. Purely Inseparable Extensions 46 4. Structural Results on Algebraic Extensions 47 Chapter 6. Norms, Traces and Discriminants 51 1. Dedekind's Lemma on Linear Independence of Characters 51 2. The Characteristic Polynomial, the Trace and the Norm 51 3. The Trace Form and the Discriminant 54 Chapter 7. The Primitive Element Theorem 57 1. The Alon-Tarsi Lemma 57 2. The Primitive Element Theorem and its Corollary 57 3 4 CONTENTS Chapter 8. Galois Extensions 61 1. Introduction 61 2. Finite Galois Extensions 63 3. An Abstract Galois Correspondence 65 4. The Finite Galois Correspondence 68 5. The Normal Basis Theorem 70 6. Hilbert's Theorem 90 72 7. Infinite Algebraic Galois Theory 74 8. A Characterization of Normal Extensions 75 Chapter 9.
    [Show full text]
  • Installing a Bench Vise Give Your Workbench the Holding Power It Deserves
    Installing a Bench Vise Give your workbench the holding power it deserves. By Craig Bentzley Let’s face it; a workbench This is the best approach for above. Regardless of the type of without vises is basically just an a face vise, because the entire mounting, have your vise(s) in assembly table. Vises provide the length of a board secured for hand before you start so you can muscle for securing workpieces edge work will contact the bench determine the size of the spacers, for planing, sawing, routing, edge for support and additional jaws, and hardware needed for and other tooling operations. clamping, as shown in the photo a trouble-free installation. Of the myriad commercial models, the venerable Record vise is one that has stood the Vise Locati on And Selecti on test of time, because it’s simple A vise’s locati on on the bench determines what it’s called. to install, easy to operate, Face vises are att ached on the front, or face, of the bench; end and designed to survive vises are installed on the end. The best benches have both, generations of use. Although but if you can only aff ord one, I’d go for a face vise initi ally. it’s no longer in production, Right-handers should mount a face vise at the far left of the several clones are available, bench’s front edge and an end vise on the end of the bench including the Eclipse vise, which at the foremost right-hand corner. Southpaws will want to I show in this article.
    [Show full text]
  • Växjö University
    School of Mathematics and System Engineering Reports from MSI - Rapporter från MSI Växjö University Geometrical Constructions Tanveer Sabir Aamir Muneer June MSI Report 09021 2009 Växjö University ISSN 1650-2647 SE-351 95 VÄXJÖ ISRN VXU/MSI/MA/E/--09021/--SE Tanveer Sabir Aamir Muneer Trisecting the Angle, Doubling the Cube, Squaring the Circle and Construction of n-gons Master thesis Mathematics 2009 Växjö University Abstract In this thesis, we are dealing with following four problems (i) Trisecting the angle; (ii) Doubling the cube; (iii) Squaring the circle; (iv) Construction of all regular polygons; With the help of field extensions, a part of the theory of abstract algebra, these problems seems to be impossible by using unmarked ruler and compass. First two problems, trisecting the angle and doubling the cube are solved by using marked ruler and compass, because when we use marked ruler more points are possible to con- struct and with the help of these points more figures are possible to construct. The problems, squaring the circle and Construction of all regular polygons are still im- possible to solve. iii Key-words: iv Acknowledgments We are obliged to our supervisor Per-Anders Svensson for accepting and giving us chance to do our thesis under his kind supervision. We are also thankful to our Programme Man- ager Marcus Nilsson for his work that set up a road map for us. We wish to thank Astrid Hilbert for being in Växjö and teaching us, She is really a cool, calm and knowledgeable, as an educator should. We also want to thank of our head of department and teachers who time to time supported in different subjects.
    [Show full text]
  • Caliper Abuse for Beginners a Guide to Quick and Accurate Layout Using Digital Calipers
    Caliper Abuse for Beginners A Guide to Quick and Accurate Layout Using Digital Calipers charles z guan productions 21 Mar 2010 In your 2.007 kit, you have been provided with a set of 6” (150mm) digital calipers. You should use these not only for measuring and ascertaining dimensions of parts, but for accurate positioning of holes and other features when manually fabricating a part. Marking out feature positions and part dimensions using a standard ruler is often the first choice for students unfamiliar with engineering tools. This method yields marginal results and usually results in parts which need filing, sanding, or other “one-off” fitting. This document is intended to exposit a fairly common but usually unspoken shortcut that balances time spent laying out a part for fabrication with reasonably accurate results. We will be using a 3 x 1” aluminum box extrusion as the example workpiece. Let's say that we wanted to drill a hole that is 0.975” above the bottom edge of this piece and 1.150” from the right edge. Neither dimension is a common fraction, nor a demarcation found on most rulers. How would we drill such a hole on the drill press? Here, I have set the caliper to 0.975”, after making sure it is properly zeroed. Use the knurled knob to physically lock the caliper to a reading. These calipers have a resolution of 0.0005”. However, this last digit is extremely uncertain. Treat your dimensions as if Calipers are magnetic and can they only have 3 digits attract dirt and grit.
    [Show full text]
  • FIELD EXTENSIONS and the CLASSICAL COMPASS and STRAIGHT-EDGE CONSTRUCTIONS 1. Introduction to the Classical Geometric Problems 1
    FIELD EXTENSIONS AND THE CLASSICAL COMPASS AND STRAIGHT-EDGE CONSTRUCTIONS WINSTON GAO Abstract. This paper will introduce the reader to field extensions at a rudi- mentary level and then pursue the subject further by looking to its applications in a discussion of some constructibility issues in the classical straight-edge and compass problems. Field extensions, especially their degrees are explored at an introductory level. Properties of minimal polynomials are discussed to this end. The paper ends with geometric problems and the construction of polygons which have their proofs in the roots of field theory. Contents 1. introduction to the classical geometric problems 1 2. fields, field extensions, and preliminaries 2 3. geometric problems 5 4. constructing regular polygons 8 Acknowledgments 9 References 9 1. Introduction to the Classical Geometric Problems One very important and interesting set of problems within classical Euclidean ge- ometry is the set of compass and straight-edge questions. Basically, these questions deal with what is and is not constructible with only an idealized ruler and compass. The ruler has no markings (hence technically a straight-edge) has infinite length, and zero width. The compass can be extended to infinite distance and is assumed to collapse when lifted from the paper (a restriction that we shall see is irrelevant). Given these, we then study the set of constructible elements. However, while it is interesting to note what kinds objects we can create, it is far less straight forward to show that certain objects are impossible to create with these tools. Three famous problems that we will investigate will be the squaring the circle, doubling the cube, and trisecting an angle.
    [Show full text]
  • The Art of the Intelligible
    JOHN L. BELL Department of Philosophy, University of Western Ontario THE ART OF THE INTELLIGIBLE An Elementary Survey of Mathematics in its Conceptual Development To my dear wife Mimi The purpose of geometry is to draw us away from the sensible and the perishable to the intelligible and eternal. Plutarch TABLE OF CONTENTS FOREWORD page xi ACKNOWLEDGEMENTS xiii CHAPTER 1 NUMERALS AND NOTATION 1 CHAPTER 2 THE MATHEMATICS OF ANCIENT GREECE 9 CHAPTER 3 THE DEVELOPMENT OF THE NUMBER CONCEPT 28 THE THEORY OF NUMBERS Perfect Numbers. Prime Numbers. Sums of Powers. Fermat’s Last Theorem. The Number π . WHAT ARE NUMBERS? CHAPTER 4 THE EVOLUTION OF ALGEBRA, I 53 Greek Algebra Chinese Algebra Hindu Algebra Arabic Algebra Algebra in Europe The Solution of the General Equation of Degrees 3 and 4 The Algebraic Insolubility of the General Equation of Degree Greater than 4 Early Abstract Algebra 70 CHAPTER 5 THE EVOLUTION OF ALGEBRA, II 72 Hamilton and Quaternions. Grassmann’s “Calculus of Extension”. Finite Dimensional Linear Algebras. Matrices. Lie Algebras. CHAPTER 6 THE EVOLUTION OF ALGEBRA, III 89 Algebraic Numbers and Ideals. ABSTRACT ALGEBRA Groups. Rings and Fields. Ordered Sets. Lattices and Boolean Algebras. Category Theory. CHAPTER 7 THE DEVELOPMENT OF GEOMETRY, I 111 COORDINATE/ALGEBRAIC/ANALYTIC GEOMETRY Algebraic Curves. Cubic Curves. Geometric Construction Problems. Higher Dimensional Spaces. NONEUCLIDEAN GEOMETRY CHAPTER 8 THE DEVELOPMENT OF GEOMETRY, II 129 PROJECTIVE GEOMETRY DIFFERENTIAL GEOMETRY The Theory of Surfaces. Riemann’s Conception of Geometry. TOPOLOGY Combinatorial Topology. Point-set topology. CHAPTER 9 THE CALCULUS AND MATHEMATICAL ANALYSIS 151 THE ORIGINS AND BASIC NOTIONS OF THE CALCULUS MATHEMATICAL ANALYSIS Infinite Series.
    [Show full text]
  • 6. Determination of Height and Distance: Theodolite
    Geography (H), UG, 2nd Sem CC-04-TH: Thematic Cartography 6. Determination of Height and Distance: Theodolite What is Theodolite? A Theodolite is a measuring instrument used to measure the horizontal and vertical angles are determined with great precision. Theodolite is more precise than magnetic compass. Magnetic compass measures the angle up to as accuracy of 30’. Anyhow a vernier theodolite measures the angles up to and accuracy of 10’’, 20”. It is of either transit or non- transit type. In Transit theodolites the telescope can rotate in a complete circle in the vertical plane while Non-transit theodolites are those in which the telescope can rotate only in a semicircle in the vertical plane. Types of Theodolite A Transit Theodolite Non transit Theodolite B Vernier Theodolite Micrometer Theodolite A I. Transit Theodolite: a theodolite is called transit theodolite when its telescope can be transited i.e. revolved through a complete revolution about its horizontal axis in the vertical plane. II. Non transit Theodolite: the telescope cannot be transited. They are inferior in utility and have now become obsolete. Kaberi Murmu B I. Vernier Theodolite: For reading the graduated circle if verniers are used, the theodolite is called a vernier theodolit. II. Whereas, if a micrometer is provided to read the graduated circle the same is called as a Micrometer Theodolite. Vernier type theodolites are commonly used. Uses of Theodolite Theodolite uses for many purposes, but mainly it is used for measuring angles, scaling points of constructional works. For example, to determine highway points, huge buildings’ escalating edges theodolites are used.
    [Show full text]
  • Mechanic Auto Body Painting
    Mechanic Auto Body Painting GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING COMPETENCY BASED CURRICULUM MECHANIC AUTO BODY PAINTING (Duration: One Year) CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 4 SECTOR – AUTOMOTIVE Mechanic Auto Body Painting MECHANIC AUTO BODY PAINTING (Engineering Trade) (Revised in 2018) Version: 1.1 CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL - 4 Developed By Ministry of Skill Development and Entrepreneurship Directorate General of Training CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 Mechanic Auto Body Painting ACKNOWLEDGEMENT The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts and all others who contributed in revising the curriculum. Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum. List of Expert members participated for finalizing the course curricula of Mechanic Auto Body Painting trade held on 20.02.18 at Advanced Training Institute-Chennai Name & Designation S No. Organization Remarks Shri/Mr./Ms. P. Thangapazham, AGM-HR, Daimler India Commercial Vehicles Pvt. Ltd., Chairman 1. Training Chennai DET- Chennai Member 2. A. Duraichamy, ATO/ MMV Govt. ITI, Salem 3. W. Nirmal Kumar Israel, TO Gov. ITI, Manikandam, Trichy-12 Member 4. S. Venkata Krishna, Dy. Manager Maruti Suzuki India Ltd., Chennai Member S. Karthikeyan, Regional Training Member 5. MAruti Suzuki India Ltd., Tamilnadu Manager 6. N. Balasubramaniam ASDC Member TVS TS Ltd., Ambattur Industrial Estate, Member 7. P. Murugesan, Chennai-58 Ashok Leyland Driver Training Institute, Member 8. R. Jayaprakash Namakkal 9. Mr. Veerasany, GM, E.
    [Show full text]
  • Advanced Mathematics for Secondary Teachers: a Capstone Experience
    Advanced Mathematics for Secondary Teachers: A Capstone Experience Curtis Bennett David Meel c 2000 January 3, 2001 2 Contents 1 Introduction 5 1.1 A Description of the Course . 5 1.2 What is Mathematics? . 6 1.3 Background . 9 1.3.1 GCDs and the Fundamental Theorem of Arithmetic . 10 1.3.2 Abstract Algebra and polynomials . 11 1.4 Problems . 14 2 Rational and Irrational Numbers 15 2.1 Decimal Representations . 18 2.2 Irrationality Proofs . 23 2.3 Irrationality of e and π ...................... 26 2.4 Problems . 30 3 Constructible Numbers 35 3.1 The Number Line . 37 3.2 Construction of Products and Sums . 39 3.3 Number Fields and Vector Spaces . 44 3.4 Impossibility Theorems . 54 3.5 Regular n-gons . 58 3.6 Problems . 60 4 Solving Equations by Radicals 63 4.1 Solving Simple Cubic Equations . 66 4.2 The General Cubic Equation . 72 4.3 The Complex Plane . 74 4.4 Algebraic Numbers . 78 4.5 Transcendental Numbers . 80 3 4 CONTENTS 5 Dedekind Cuts 87 5.1 Axioms for the Real Numbers . 87 5.2 Dedekind Cuts . 91 6 Classical Numbers 105 6.1 The Logarithmic Function . 105 7 Cardinality Questions 109 8 Finite Difference Methods 111 Chapter 1 Introduction 1.1 A Description of the Course This course is intended as a capstone experience for mathematics students planning on becoming high school teachers. This is not to say that this is a course in material from the high school curriculum. Nor is this a course on how to teach topics from the high school curriculum.
    [Show full text]
  • FROM GEOMETRY to NUMBER the Arithmetic Field Implicit in Geometry
    FROM GEOMETRY TO NUMBER The Arithmetic Field implicit in Geometry Johan Alm Contents Preface v Chapter 1. Kinds of Number in Early Geometry 1 1. Pythagorean natural philosophy 1 2. Plato and Euclid 4 Chapter 2. Fields and Geometric Construction 7 1. Line segment arithmetic 7 2. The Hilbert field 12 3. The constructible field 13 4. The real field 15 Chapter 3. The main theorems 17 1. The Cartesian space over a field 17 2. Faithful models 17 3. Three theorems 18 4. Proof of the first theorem 19 5. Proof of the second theorem 22 6. Proof of the third theorem 26 7. The main theorem 26 Chapter 4. Some applications 29 1. Duplicating the cube 29 2. Trisecting the angle 32 3. Squaring the circle 33 Appendix A. Hilbert’s axioms 35 Appendix B. Axioms and properties of groups and fields 39 Appendix C. Field extensions 41 Appendix. Bibliography 43 iii Preface This is a short monograph on geometry, written by the author as a supplement to David C. Kay’s ”College Geometry” while taking a course based on that book. The presentation in this monograph is very indebted to Robin Hartshorne’s book ”Geometry: Euclid and Beyond.” To be more precise we might say this is a text on classical, synthetic, or ax- iomatic geometry, but we consider this the heart of geometry and prefer to refer to the subject simply as ”geometry.” Most texts on geometry focus on the parallel axiom. Little fuzz is made about the other axioms, and one easily gets the idea that they serve only to provide a sensible foundation.
    [Show full text]
  • Split-Top Roubo Bench Plans
    SPLIT-TOP ROUBO BENCH PLANS Design, Construction Notes and Techniques Copyright Benchcrafted 2009-2014 · No unauthorized reproduction or distribution. You may print copies for your own personal use only. 1 Roubo’s German Cabinetmaker’s Bench from “L’Art Du Menuisier” ~ Design ~ The Benchcrafted Split-Top Roubo Bench is largely based on the workbenches documented by French author André Roubo in his 18th-century monumental work “L’Art Du Menuisier” (“The Art of the Joiner”). The Split-Top bench design primarily grew out of Roubo’s German cabinetmaker’s bench documented in volume three of Roubo’s series. Author and bench historian Christopher Schwarz, who has re-popularized several classic bench designs of late, and most notably the Roubo, was also an influence through his research and writings. We built a version of Roubo’s German bench and it served as a platform from which the Split-Top Roubo was conceived. We were attracted to the massive nature of Roubo’s German design and were interested to see how the sliding leg vise in particular functioned in day-to-day use. From the start we opted to do away with the traditional sliding-block tail vise, with its pen- chant for sagging and subsequent frustration. In the process of the bench’s development the Benchcrafted Tail Vise emerged and it has proven to be an excellent workholding solution, solving all of the problems of traditional tail vises without sacrificing much in terms of function, i.e., the ability to clamp between open-front jaws. For all the aggrava- 2 tion that the Benchcrafted Tail Vise eliminates, that feature isn’t missed all that much.
    [Show full text]
  • Installing a Bench Vise Give Your Workbench the Holding Power It Deserves
    Installing a Bench Vise Give your workbench the holding power it deserves. By Craig Bentzley Let’s face it; a workbench This is the best approach for above. Regardless of the type of without vises is basically just an a face vise, because the entire mounting, have your vise(s) in assembly table. Vises provide the length of a board secured for hand before you start so you can muscle for securing workpieces edge work will contact the bench determine the size of the spacers, for planing, sawing, routing, edge for support and additional jaws, and hardware needed for and other tooling operations. clamping, as shown in the photo a trouble-free installation. Of the myriad commercial models, the venerable Record vise is one that has stood the Vise Locati on And Selecti on test of time, because it’s simple A vise’s locati on on the bench determines what it’s called. to install, easy to operate, Face vises are att ached on the front, or face, of the bench; end and designed to survive vises are installed on the end. The best benches have both, generations of use. Although but if you can only aff ord one, I’d go for a face vise initi ally. it’s no longer in production, Right-handers should mount a face vise at the far left of the several clones are available, bench’s front edge and an end vise on the end of the bench including the Eclipse vise, which at the foremost right-hand corner. Southpaws will want to I show in this article.
    [Show full text]