2005 Proceedings

Total Page:16

File Type:pdf, Size:1020Kb

2005 Proceedings Western Forest Insect Work Conference Victoria, BC March 29 - April 1, 2005 1 Western Forest Insect Work Conference Executive: Chair Darrell Ross Past Chair José Negron Secretary Lia Spiegel Treasurer Ladd Livingston Councilor Jennifer Burleigh Councilor Tim McConnell Councilor Danny Cluck Victoria Conference: Program Committee Peter Hall Local Arrangements Lorraine Maclauchlan 2 DISCLAIMER The contents of these proceedings are not available for citation or publication without the consent of the author. Articles may have been reformatted but were printed approximately as submitted. Authors are solely responsible for content. Table of Contents Western Forest Insect Work Conference Executive: .................................................................. 2 Victoria Conference:.................................................................................................................... 2 Conference Program ....................................................................................................................... 5 General Meetings ............................................................................................................................ 6 Executive Committee Meeting .................................................................................................... 6 Initial Business Meeting .............................................................................................................. 9 Final Business Meeting ............................................................................................................. 20 Scholarship Presentation............................................................................................................... 22 Award to Ladd Livingston .............................................................................................................. 25 Founders’ Award Address ............................................................................................................. 26 Panel Discussions ......................................................................................................................... 39 Panel 1. Going…going…gone: Supply and Demand for Future Entomologists ...................... 39 Panel 2. Damaged Wood .......................................................................................................... 43 Panel 3. What’s in the Future?................................................................................................. 48 Special Workshop: Analysing Climate Change ............................................................................. 50 Workshops..................................................................................................................................... 63 Regeneration Issues/Seed and Cone Insects........................................................................... 63 Impact of Treatments on Non-targets ....................................................................................... 66 Beetle Outbreaks – How did we get here? ............................................................................... 68 Forest Health Monitoring- No borders in western North America ............................................. 70 Gypsy Moth Status and Eradication.......................................................................................... 76 New Management Directions – Wood vs. View ........................................................................ 80 Preventing the Next “Big” Outbreak .......................................................................................... 81 Detection/Aerial Survey – Methods and Standards .................................................................. 84 Are Insect Outbreaks Increasing?............................................................................................. 86 Environmental impact studies: how do we analyze the effects of our actions, and how do we present them to the public?....................................................................................................... 87 Verbenone/MCH/Mass-trapping/Non-host................................................................................ 91 Urban Forest Pest Issues.......................................................................................................... 96 Emerging Technologies in Forest Entomology ......................................................................... 98 Future Role of Silviculture in IPM............................................................................................ 100 Decision Support Systems – Development............................................................................. 102 Decision Support Systems – Applications............................................................................... 104 Regional Trends...................................................................................................................... 107 Exotic Introductions................................................................................................................. 115 Defoliator Impacts, Management and Control ........................................................................ 121 Impacts and Assessments of Management ............................................................................ 125 High Elevation Forests/Extreme Environments ...................................................................... 127 Graduate Student Presentations ................................................................................................. 132 Abstracts of Poster Presentations ............................................................................................... 139 Group Photographs from WFIWC 2005, Victoria BC .................................................................. 151 List of Participants ....................................................................................................................... 159 Conference Program Date Time Title Moderator March 28 13:30 – 19:00 Registration 19:00 – 21:00 Reception 19:00 – 20:00 Executive Committee Meeting Darrell Ross March 29 08:30 – 10:00 General Meeting Darrell Ross 10:30 – 11:00 Opening Address Dr. Paul Addison 11:00 – 12:00 Scholarship Presentation Kathy Bleiker 13:30 – 15:00 Workshops: Regeneration Issues/Seed & Cone Robb Bennett Impact of Treatments on Non-targets Ken White Beetle Outbreaks – How did we get here? Alan Carroll Forest Health Monitoring Tim McConnell 15:30 – 17:00 Workshops: Gypsy Moth Status and Eradication Dave Bridgewater New Management Directions – Wood vs. View Mike Wagner Preventing the Next “big” Outbreak Ken Gibson Detection/Aerial Survey – methods and standards. Tim Ebata 19:00 – 21:00 Poster Reception March 30 08:30 – 10:00 Workshops: Are Insect Outbreaks Increasing? Vince Nealis Environmental Impact Studies Connie Mehmel Verbenone/MCH/Mass trapping/Non-host Leo Rankin Urban Forest Pest Issues Jerry Carlson 10:30 – 12:00 Graduate Student Presentations Kimberly Wallin 13:30 – 15:00 Panel: Going…Going…Gone – Supply and demand of Peter Hall entomologists 15:30 – 17:00 Tours 19:00 – 21:00 Banquet and Founders’ Award Gary Daterman March 31 08:30 – 10:00 Workshops: Emerging Technologies in Forest Entomology Dezene Huber Future Role of Silviculture in IPM Peter DeGroot Decision Support Systems – Development Terry Shore Climate Change – Special Workshop David Gray 10:30 – 12:00 Panel: Damaged Wood Daniel Lousier Climate Change – Special Workshop David Gray 13:30 – 15:00 Workshops: Insect Status Reports from each Region Don Grosman Decision Support Systems – Applications Marvin Eng Exotic Introductions and Exotic Insects Dave Holden Climate Change – Special Workshop David Gray 15:30 – 17:00 Workshops: Defoliator Impacts, Management and Control Karen Ripley Impacts and Assessments of Management Art Stock High Elevation Forests/Extreme Environments Lorraine Maclauchlan Climate Change – Special Workshop David Gray April 1 08:30 – 10:00 Panel: John Borden What’s in the Future? 10:30 – 12:00 Final Business Meeting Darrell Ross Adjourn 5 General Meetings Executive Committee Meeting 28 March 2005 Darrell Ross called the meeting to order at 5:05 pm. Present: Darrell Ross: WFIWC Chair and Chair, Memorial Scholarship Committee Tim McConnell: Councilor Ladd Livingston: Treasurer Ken Gibson: Chair, Founders’ Award Committee Peter Hall: 2005 meeting arrangements Karen Ripley: Chair, Memorial Scholarship Fundraising Committee Jennifer Burleigh: Councilor Brytten Steed, Chair; Common Names Committee Lia Spiegel: Secretary Peter Hall gave updates on program changes and conference registration and income. The talk at Pacific Forestry Centre has been moved to the hotel due to the large number of participants, but the field trips remain unchanged. The Initial Business Meeting will break at 9 am for the keynote speaker and continue after the keynote. There are 167 registrants to date, 79 Canadian, 88 US. Costs to date: catering, miscellaneous, posters: $28,000 CD. Income & Donations: The Canadian Forest Service and BC Ministry of Forests combined have donated approximately $20,000 CD. These contributions combined with registration income total approximately $50,000 and put the current meeting firmly in the black. Bob Coulson announced that NAFIWC would take place in Asheville, NC May 22-26, 2006. He would like us to postpone WFIWC for one year to accommodate the North American meeting. Lia Spiegel read the minutes of the 2004 Final Business Meeting. Old Business: There
Recommended publications
  • Newsletter Alaska Entomological Society
    Newsletter of the Alaska Entomological Society Volume 12, Issue 1, March 2019 In this issue: Some food items of introduced Alaska blackfish (Dallia pectoralis T. H. Bean, 1880) in Kenai, Alaska8 Announcements . .1 Two new records of mayflies (Ephemeroptera) Arthropods potentially associated with spruce from Alaska . 11 (Picea spp.) in Interior Alaska . .2 Changes in soil fungal communities in response to A second Alaska record for Polix coloradella (Wals- invasion by Lumbricus terrestris Linnaeus, 1758 ingham, 1888) (Lepidoptera: Gelechioidea: Oe- at Stormy Lake, Nikiski, Alaska . 12 cophoridae), the “Skunk Moth” . .5 Review of the twelfth annual meeting . 19 Announcements New research to assess the risk of ticks tat suitability and probabilistic establishment model to dis- cover the climatic limits and probability of tick survival and tick-borne pathogens in Alaska in Alaska. For more information on ticks in Alaska and to learn how you can Submit-A-Tick, please visit: https: The geographic range of many tick species has expanded //dec.alaska.gov/eh/vet/ticks (website is in develop- substantially due to changes in climate, land use, and an- ment) or contact Dr. Micah Hahn ([email protected]). imal and human movement. With Alaska trending to- wards longer summers and milder winters, there is grow- ing concern about ticks surviving further north. Recent th passive surveillance efforts in Alaska have revealed that 69 Western Forest Insect Work Confer- non-native ticks—some with significant medical and vet- ence erinary importance—are present in the state. There is a new collaborative effort between the University of Alaska, The 69th Western Forest Insect Work Conference will the Alaska Department of Fish and Game, and the Of- be held April 22–25 2019 in Anchorage, Alaska at fice of the State Veterinarian to understand the risk of the Anchorage Marriott Downtown.
    [Show full text]
  • Ethanol and (–)-A-Pinene: Attractant Kairomones for Some Large Wood-Boring Beetles in Southeastern USA
    J Chem Ecol (2006) DOI 10.1007/s10886-006-9037-8 Ethanol and (–)-a-Pinene: Attractant Kairomones for Some Large Wood-Boring Beetles in Southeastern USA Daniel R. Miller Received: 12 September 2005 /Revised: 12 December 2005 /Accepted: 2 January 2006 # Springer Science + Business Media, Inc. 2006 Abstract Ethanol and a-pinene were tested as attractants for large wood-boring pine beetles in Alabama, Florida, Georgia, North Carolina, and South Carolina in 2002–2004. Multiple-funnel traps baited with (j)-a-pinene (released at about 2 g/d at 25–28-C) were attractive to the following Cerambycidae: Acanthocinus nodosus, A. obsoletus, Arhopalus rusticus nubilus, Asemum striatum, Monochamus titillator, Prionus pocularis, Xylotrechus integer, and X. sagittatus sagittatus. Buprestis lineata (Buprestidae), Alaus myops (Elateridae), and Hylobius pales and Pachylobius picivorus (Curculionidae) were also attracted to traps baited with (j)-a-pinene. In many locations, ethanol synergized attraction of the cerambycids Acanthocinus nodosus, A. obsoletus, Arhopalus r. nubilus, Monochamus titillator, and Xylotrechus s. sagittatus (but not Asemum striatum, Prionus pocularis,orXylotrechus integer)to traps baited with (j)-a-pinene. Similarly, attraction of Alaus myops, Hylobius pales, and Pachylobius picivorus (but not Buprestis lineata) to traps baited with (j)-a- pinene was synergized by ethanol. These results provide support for the use of traps baited with ethanol and (j)-a-pinene to detect and monitor common large wood- boring beetles from the southeastern region of the USA at ports-of-entry in other countries, as well as forested areas in the USA. Keywords Cerambycidae . Xylotrechus . Monochamus . Acanthocinus Curculionidae . Hylobius . Pachylobius . Elateridae . Alaus . Ethanol a-Pinene .
    [Show full text]
  • Effects Of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1
    Effects of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1 2 Joshua W. Campbell , James L. Hanula and Thomas A. Waldrop 3 USDA Forest Service, Southern Research Station, 320 Green St., Athens, Georgia 30602-2044 USA J. Entomol. Sci. 43(1): 57-75 (January 2008) Abstract We examined the effects of forest management practices (prescribed burning, me­ chanical, and prescribed burn plus mechanical) on saproxylic forest Coleoptera in the southern Appalachian Mountains of North Carolina. During the 2-yr study, we captured 37,191 Coleoptera with baited multiple-funnel traps and pipe traps, comprising 20 families and 122 species that were used for our analysis. Saproxylic beetle numbers increased greatly from the first year to the second year on all treatments. Species richness and total abundance of Coleoptera were not significantly affected by the treatments, but several families (e.g., Elateridae, Cleridae, Trogositi­ dae, Scolytidae) were significantly more abundant on treated plots. Abundances of many spe­ cies, including various species of Scolytidae were significantly affected by the treatments. How­ ever, these scolytids (Hylastes salebrosus Eichoff, Ips grandicollis Eichoff, Xyloborinus saxeseni Ratzburg, Xyleborus sp., Xyleborus atratus Eichoff) did not respond in the same way to the treatments. Likewise, other Coleoptera such as Pityophagus sp. (Nitidulidae), Hylobius pales Herbst (Curculionidae), and Xylotrechus sagittatus Germar (Cerambycidae) also varied in their responses to the treatments. Species richness was not significantly different for the spring 2003 trapping seasons, but the fall 2003 sample had a higher number of species on mechanical shrub removal only and mechanical shrub removal plus prescribed burning plots compared with con­ trols.
    [Show full text]
  • Pheromone-Based Disruption of Eucosma Sonomana and Rhyacionia Zozana (Lepidoptera: Tortricidae) Using Aerially Applied Microencapsulated Pheromone1
    361 Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone1 Nancy E. Gillette, John D. Stein, Donald R. Owen, Jeffrey N. Webster, and Sylvia R. Mori Abstract: Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zozana (Kearfott); Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004. The first application was made at 29.6 g active ingredient (AI)/ha, and the second at 59.3 g AI/ha. Baited sentinel traps were used to assess disruption of orientation by both moth species toward pheromones, and E. sonomana infes- tation levels were tallied from 2001 to 2004. Treatments disrupted orientation by both species for several weeks, with the first lasting 35 days and the second for 75 days. Both applications reduced infestation by E. sonomana,but the lower application rate provided greater absolute reduction, perhaps because prior infestation levels were higher in 2002 than in 2004. Infestations in treated plots were reduced by two-thirds in both years, suggesting that while increas- ing the application rate may prolong disruption, it may not provide greater proportional efficacy in terms of tree pro- tection. The incidence of infestations even in plots with complete disruption suggests that treatments missed some early emerging females or that mated females immigrated into treated plots; thus operational testing should be timed earlier in the season and should comprise much larger plots. In both years, moths emerged earlier than reported pre- viously, indicating that disruption programs should account for warmer climates in timing of applications.
    [Show full text]
  • Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
    United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites.
    [Show full text]
  • Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri
    COMMUNITY AND ECOSYSTEM ECOLOGY Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri 1,2 3 1 4 SHARON E. REED, JENNIFER JUZWIK, JAMES T. ENGLISH, AND MATTHEW D. GINZEL Environ. Entomol. 44(6): 1455–1464 (2015); DOI: 10.1093/ee/nvv126 ABSTRACT Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X.
    [Show full text]
  • Forest Tortricids Trapped Using Eucosma and Rhyacionia Synthetic Sex Attractants
    Journal of the Lepidopterists' Society 39(1), 1985, 26-32 FOREST TORTRICIDS TRAPPED USING EUCOSMA AND RHYACIONIA SYNTHETIC SEX ATTRACTANTS R. E. STEVENS,I C. SARTWELL,2 T. W. KOERBER,3 J. A. POWELL,4 G. E. DATERMAN,2 AND L. L. SOWER2 ABSTRACT. Moths of 31 non-target species of Tortricidae (30 Olethreutinae, 1 Tor­ tricinae) were lured to synthetic Eucosma and Rhyacionia sex attractants deployed in pine forests throughout 12 states in the western U.S. Genera represented include Petrova, Barbara, Phaneta, Eucosma, Epiblema, Epinotia, Ancylis, Dichrorampha, Sereda, Grapholita, Cydia, and Decodes, as well as a new genus near Rhyacionia. In 1977 and 1978 we conducted an extensive trapping survey in pine forests in the western United States, using synthetic sex attractants. The primary objective was to learn more about geographical distribution and host relationships of Eucosma sonomana Kearfott and species of Rhyacionia. While the major results have been published (Sartwell et aI., 1980; Stevens et aI., 1980), a variety of other moths, largely ole­ threutines, also responded to the lures. These were saved and identified when their numbers indicated more than chance captures. Generally, a minimum of 4-6 similar moths at a trapping location was considered sufficient to indicate attraction was not incidental, although in some instances we recovered fewer. The catches reported here provide clues regarding pheromone chemistry of and possible taxonomic relation­ ships among certain species. The information may be useful for future studies on these and related species. It also provides range extensions for some of the species captured. METHODS Details of the methods, including trapping periods and precise trap locations for most collections, are presented in the previously cited works (Sartwell et aI., 1980; Stevens et aI., 1980).
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]
  • Table of Contents
    Table of Contents Table of Contents ............................................................................................................ 1 Authors, Reviewers, Draft Log ........................................................................................ 3 Introduction to Reference ................................................................................................ 5 Introduction to Stone Fruit ............................................................................................. 10 Arthropods ................................................................................................................... 16 Primary Pests of Stone Fruit (Full Pest Datasheet) ....................................................... 16 Adoxophyes orana ................................................................................................. 16 Bactrocera zonata .................................................................................................. 27 Enarmonia formosana ............................................................................................ 39 Epiphyas postvittana .............................................................................................. 47 Grapholita funebrana ............................................................................................. 62 Leucoptera malifoliella ........................................................................................... 72 Lobesia botrana ....................................................................................................
    [Show full text]
  • Ophiostomoid Fungi Associated with Bark Beetle Species Colonizing White Spruc in the Great Lakes Region
    Invited Paper Beetle - Fungal Interactions Workshop Proceedings of Western International Forest Disease Work Conference September, 1999, Breckenridge, CO Ophiostomoid Fungi Associated with Bark Beetle species Colonizing White Spruc in the Great Lakes Region K.E. Haberkern, K.F. Raffa, Entomology, University of Wisconsin, Madison, and B.L. Illman, USDA Forest Service, Forest Products Laboratory, Madison, WI White spruce plantations in various State and National forests in Northern Minnesota, Northern Wisconsin and the Upper -Peninsula of Michigan were used to collect bark beetles and identify their fungal associates. Trees were felled twice during the summer flight season and left on the forest floor for 6 weeks, in order, to be colonized by beetles (May and July). In the Fall insects were reared from the felled trees and a microbial dilution plating technique was used to isolate Ophiostomiod fungi from live bark beetles (Klepzig 1991). Fungi were also isolated from colonized and uncolonized host tissue. The felled trees were predominantly colonized by nonaggressive, secondary bark beetle species: Crypturgus borealis, Dryocetes affaber, Dryocetes autographus, Ips pini, and Polygraphus rufipennis., Only one aggressive species was found, Dendroctonus rufipennis. There were over 14,500 secondary beetles and only 30 Dendroctonus rufipennis that emerged from the 55 felled white spruce trees. The dispersal time varied among insect species. Dryocetes affaber heavily colonized trees felled in July and only sparsely colonized the trees felled in May (7 to 1). Polygraphus rufipennis was found in greater abundance in the early set oftrees (6 to 1). Overall, halfthe beetle species colonized the early set of felled trees (May) and half colonized the trees felled in July (3 to 3).
    [Show full text]
  • In Interior Alaska Doi:10.7299/X7RR1ZJT “Populas, Picca” Changed to “Populus, Picea,” Abbrevia- Tions Like “Bl
    Volume 12, Issue 1, March 2019 2 Arthropods potentially associated with spruce (Picea spp.) in Interior Alaska doi:10.7299/X7RR1ZJT “Populas, Picca” changed to “Populus, Picea,” abbrevia- tions like “bl. spr.” were expanded to “black spruce,” etc. 1 by Derek S. Sikes I limited searches to interior Alaska which I defined by drawing a rectangle using the Google Map search tool Introduction in Arctos with the western edge on and including Kaltag, the southern edge just north of the northern boundary of While curating an enormous volume of specimens derived Denali National Park, the eastern edge on and including from an Alaska Department of Fish and Game (ADF&G) Eagle Village, and the northern edge on and including Al- study on the breeding habitat of Olive-sided flycatchers lakaket. This search only finds records that have been geo- (Contopus cooperi) I began to notice a number of insect referenced with the center of their error radii inside this species that appeared new to the University of Alaska Mu- rectangle. Fortunately, most (90%) of UAM:Ento Arctos seum insect collection. This bird species breeds in spruce- records are georeferenced. This rectangle corresponds to rich habitats so I formed the a priori hypothesis that these the following coordinates (NE lat: 66.59602240341611, NE insect species likely preferred habitats with spruce. Per- long: -141.0853271484375, SW lat: 64.07155766950311, SW haps it was my upbringing in the primarily deciduous long: -158.7425537109375). forests of New England, and my association of tropical di- Searches were also limited to UAM:Ento specimens that versity with deciduous forests, that caused me to be bi- had been identified to species with ID formula = A (this un- ased against coniferous forests as a source of invertebrate fortunately eliminates ID formula A string records, which species richness, and thus led me to under-sample these includes all new / undescribed species, but was done to 2 habitats prior to this ADF&G study.
    [Show full text]
  • Zootaxa,Resurrection of Crypturgus Subcribrosus Eggers 1933 Stat. N
    TERM OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website site is prohibited. Zootaxa 1606: 41–50 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Resurrection of Crypturgus subcribrosus Eggers 1933 stat. n., and its close phylogenetic relationship to Nearctic Crypturgus (Coleoptera, Scolytinae) BJARTE H. JORDAL1,3 & MILOŠ KNÍðEK2 1Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim, Norway. 2Forestry and Game Management Research Institute, Jíloviště - Strnady, Prague, Czech Republic. E-mail: [email protected] 3Corresponding author. Department of Biology, University of Bergen, Bergen, Norway. E-mail: [email protected] Abstract Crypturgus subcribrosus Eggers is removed from synonymy under C. cinereus (Herbst) and reinstated as a valid species based on evidence from DNA sequence data and morphological features. Phylogenetic analyses of Elongation Factor 1α and Cytochrome Oxidase I sequences in conjunction with morphological characters revealed a sister relationship between C. subcribrosus and two Nearctic species of Crypturgus, with C. cinereus unrelated to any of these taxa. Type material of C. cinereus has been located and lectotype with paralectotypes are designated. Amended diagnoses that include DNA barcodes are presented for C. subcribrosus and C. cinereus together with an identification key to the Fen- noscandian species of Crypturgus. Key words: Cytochrome Oxidase I, Coleoptera, Crypturgus, Curculionidae, DNA barcodes, Elongation Factor 1α, phy- logeny, Scolytinae Introduction Species of the bark beetle genus Crypturgus Erichson breed in conifers throughout the Holarctic region.
    [Show full text]