Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages

Total Page:16

File Type:pdf, Size:1020Kb

Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages by SABBA MEHMOOD Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad, Pakistan 2018 Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages A dissertation submitted in the partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In BIOCHEMISTRY by SABBA MEHMOOD Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad 2018 Contents Contents i-ii Acknowledgements iii-iv List of Figures v-vi List of Tables vii-ix List of Abbreviations x-xii Abstract Chapter no.1: Introduction 1 Skin 3 Embryonic origin of skin appendages Hair morphogenesis 3-4 Nail morphogenesis 4-5 Tooth morphogenesis 5 Exocrine/ sweat gland morphogenesis 5-6 8 Ectodermal signal transduction LPA/ LIPH/ LPAR6 signaling 8-9 Wnt/ β-catenin signaling 9-10 HR/ U2HR signaling 10 EDA/ EDAR/ EDARADD signaling 10-11 11 Genodermatoses of the hair Isolated Hereditary Hypotrichosis 11 Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents Hypotrichosis Associated with other anomalies 15 15 Genodermatoses of the nail Isolated nail dysplasia 15-17 Associated nail dysplasia 17 Pure hair and Nail Ectodermal Dysplasia 17-18 18 Genodermatoses of the skin Isolated Ichthyosis 18-19 Associated Ichthyosis 20 Aims and objectives of the studies presented in the dissertation 20-21 Chapter no.2: Materials and Methods Study authorization 22 Recruitment of families with written consents 22 Pedigree construction and clinical inspection 22 23 Extraction of Genomic DNA Genomic DNA Extraction and Purification 23 23 Polymerase chain reaction (PCR) Standard protocol 23-24 24 PCR program PCR optimization 24 24 Linkage Analysis to Known Loci 24 Gel Electrophoresis Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents 24-25 Agarose Gel Electrophoresis Polyacrylamide gel electrophoresis (PAGE) 25 26 Genome scan via SNP DNA microarray 26 Exome sequencing and data interpretation 27 RNA Extraction and cDNA synthesis Protein modeling and molecular docking 27 Chapter no: 3 Isolated Hereditary Hypotrichosis 34-35 35 Family A Family recruitment and clinical investigation 35 Family B Family recruitment and clinical investigation 35-36 36 Genetic characterization of families A and B Linkage analysis to known genes 36 Sequencing LIPH gene 36 36 Family C Family recruitment and clinical investigation 36-37 37 Genetic characterization of families C Linkage analysis to known genes and loci 37 Whole genome sequencing 37 Whole exome sequencing 37-38 Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents 38 Family D Family recruitment and clinical investigation 38 39 Family E Family recruitment and clinical investigation 39 39 Family F Family recruitment and clinical investigation 39 39-40 Genetic characterization of families D, E and F 40 Family G Family recruitment and clinical investigation 40 40 Genetic characterization of family G Linkage analysis to known genes and loci 40 Whole genome sequencing 40 Exome sequencing 41 41-45 Discussion Chapter no: 4 59-60 Atrichia with Papular Lesions 60 Family H 60 Family recruitment and clinical investigation 60 Family I Family recruitment and clinical investigation 60 60 Family J Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents Family recruitment and clinical investigation 60-61 61 Genetic characterization of families H, I and J Linkage analysis to known genes 61 Sequencing HR gene and its upstream open reading frames 61-62 62-65 Discussion Chapter no: 5 75-76 Ectodermal Dysplasia of Nail phenotype Family with isolated nail dysplasia 77 77 Family K Family recruitment and clinical investigation 77 77 Genetic characterization of family K Linkage analysis to known genes 77 Sequencing PLCD1 gene 77 Whole exome sequencing 78 Families with Pure Hair and Nail Ectodermal Dysplasia 78 (PHNED) 78 Family L Family recruitment and clinical investigation 78 78 Genetic characterization of family L Linkage analysis to known genes 78-79 79 Sequencing HOXC13 gene for family L 79 Family M Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents Family recruitment and clinical investigation 79 80 Genetic characterization of family M Linkage analysis to known genes 80 Whole exome sequencing 80 Sequencing GJB6 gene 80 Discussion 80-84 Chapter no: 6 93 Genetics of Ichthyosis and Kindler syndrome 94 Family N Family recruitment and clinical investigation 94 94 Genetic characterization of family N Screening STS gene and its flanking region 94 94 Families O and P Family recruitment and clinical investigation 94-95 95 Genetic characterization of families O and P Whole genome Scan 95 Whole Exome Sequencing in Family O 95-96 96 Sequencing FERMT1 gene for family P 96 Family Q Family recruitment and clinical investigation 96 96 A family with congenital ichthyosis and hairloss syndrome Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Contents 96 Family R Family recruitment and clinical investigation 96-97 97 Genetic characterization of families Q and R Linkage analysis to known genes 97 97-98 Whole exome sequencing in Families Q and R 98-100 Discussion 113-115 Conclusion 116-144 References Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages Acknowledgements Acknowledgements All glories are to “ALLAH Almighty” the most Beneficent, the most merciful, who bestowed me with potential and ability to complete the present work. All respects and Darud and Salam to Hazrat Mohammad (SAW) who enables us to recognize our creator and whose knowledge flourished my thoughts to live here and hereafter. I take this opportunity to express my deepest gratitude and honest thanks to Dr. Muhammad Ansar Chairperson Department of Biochemistry for his kind guidance and sincere advises. I feel proud to pay my deep feelings of gratitude for my worthy and honorable supervisor, Dr. Wasim Ahmad, whose dynamic supervision, keen interest, literally skills, polite and co-operative attitude, expert advice and valuable suggestions make me able to carry out this research work. His devoted personality is a role model not only for me but for all the researchers and seekers of knowledge across the world. I wish to express my honest thanks to my foreign supervisor, colleagues and friends Prof. Hans Van Bokhoven, Prof. Hans Brunner, Prof. France Kremer, Prof. Hanie Cremer, Mr. Micheal, Mr. Daniel, Mr. Imran Khan, Mrs. Shazia Micheal, Miss. Leisian and Miss. Carmen, which were not only the source of learning for me in the field of research but also supported me to learn socially and morally. I am obliged to all members of the families for participating in the study. The work, presented here was funded by research grant to Wasim Ahmad by Higher Education Commission (HEC) Islamabad, Pakistan. I am grateful to HEC, Pakistan for providing me an opportunity to pursue my research work in Radboud University Netherlands under the ‘International Research Support Initiative Programme’ (IRSIP), which facilitated me to validate my expertise and standards of research up to international levels, not only improved my scientific vision but also flourished my social and communication skills. Clinical and Molecular Characterization of Human Hereditary Disorders of Ectodermal Appendages i Acknowledgements I offer my cordial appreciations and gratitude for my seniors Miss Gul Naz, Miss Bushra Khan, Miss Kalsoom Ibrahim, Mr. Kamran Ali, and Mr. Zahid Azeem, Mr. Aziz, Mr. Abid Jan, Mr. Sayed Irfan Shah, Mr. Raja Hussain Ali especially to Mr. Salman Basit for their immense endurance, inspiring guidance and encouragements during my research work. I would like to say special thanks to my lab fellows Irfanullah, Farooq Ahmad, Khadim Shah, Asmat Marwat, Khurram Liaqat and Shabir Hussain for their friendly company, co-operation and Peace of mind during research work. I wish to express my sincere thanks to my juniors Fouzia, Hira, Abdul Nasir, Sidra Basharat, Nazish, Rubab Raza, Anila, Naila for the respect they gave to me. I convey my heartiest thanks to my worthy friends Irum Naqvi, Irum Iqrar, Noshaba Hassan, Tehreem Ijaz and Rida for their love, care, and superb company during my university life. I owe my sincerest acknowledgements to my pertinacious friends and students Hammad Ismail, Ayesha, Mona, Sara, Sana, Abdullah, Haseeb, Hassan, Omer, Ibrahim, Noor and Aleena for encouragement and moral support. My deep feelings to express my indebtedness to my family especially my dearest and loving mother (late) and father for their loving advise, kind and continuous prayers, unending strength, support, encouragement, which provided me an excellent basis for my life. I can’t return what they have done for me (may Allah bless them Ameen). I would like to extend my heartiest thanks to my sisters Shazia, Fouzia, Shagufta, nosheen, Kainat and to my dearest brother and friend Imran Mehmood for their endless love, understanding attitude, great affections and confidence on me, which has been essential for the completion of this work. In the end I want to present my unbending thanks to all those hands
Recommended publications
  • Revertant Mosaicism in a Human Skin Fragility Disorder Results from Slipped Mispairing and Mitotic Recombination
    Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination Dimitra Kiritsi, … , Leena Bruckner-Tuderman, Cristina Has J Clin Invest. 2012;122(5):1742-1746. https://doi.org/10.1172/JCI61976. Brief Report Dermatology Spontaneous gene repair, also called revertant mosaicism, has been documented in several genetic disorders involving organs that undergo self-regeneration, including the skin. Genetic reversion may occur through different mechanisms, and in a single individual, the mutation can be repaired in various ways. Here we describe a disseminated pattern of revertant mosaicism observed in 6 patients with Kindler syndrome (KS), a genodermatosis caused by loss of kindlin-1 (encoded by FERMT1) and clinically characterized by patchy skin pigmentation and atrophy. All patients presented duplication mutations (c.456dupA and c.676dupC) in FERMT1, and slipped mispairing in direct nucleotide repeats was identified as the reversion mechanism in all investigated revertant skin spots. The sequence around the mutations demonstrated high propensity to mutations, favoring both microinsertions and microdeletions. Additionally, in some revertant patches, mitotic recombination generated areas with homozygous normal keratinocytes. Restoration of kindlin-1 expression led to clinically and structurally normal skin. Since loss of kindlin-1 severely impairs keratinocyte proliferation, we predict that revertant cells have a selective advantage that allows their clonal expansion and, consequently, the improvement of the skin condition. Find the latest version: https://jci.me/61976/pdf Brief report Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination Dimitra Kiritsi,1 Yinghong He,1 Anna M.G. Pasmooij,2 Meltem Onder,3 Rudolf Happle,1 Marcel F.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Microduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: a Case Report
    IJMS Vol 44, No 4, July 2019 Case Report Microduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report Estephania Candelo1, MD, MSc; Abstract Diana Ramirez-Montaño1, MD, MSc; Harry Pachajoa1,2, MD, PhD Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the 1Center for Research on Congenital MECP2 gene, which is located on the X chromosome. However, Anomalies and Rare Diseases (CIACER), Health Sciences Faculty, this syndrome has also been associated with microdeletions, gene L Building, Universidad Icesi, Cali, translocations, and other gene mutations. A 12-year-old female Colombia; Colombian patient was presented with refractory epilepsy and 2Department of Genetics, Fundación Valle del Lili, Cali, Colombia regression in skill acquisition (especially language with motor and verbal stereotypies, hyperactivity, and autistic spectrum Correspondence: Harry Pachajoa, MD, PhD; disorder criteria). The patient was born to non-consanguineous Center for Research on Congenital parents and had an early normal development until the age of 36 Anomalies and Rare Diseases months. Comparative genomic hybridization array-CGH (750K) (CIACER), Health Sciences Faculty, L Building, ZIP: 760031, Universidad Icesi, was performed and Xp22.31 duplication was detected (6866889- Cali, Colombia 8115153) with a size of 1.248 Mb associated with developmental Tel: +57 2 5552334, Ext: 8075 delay, epilepsy, and autistic traits. Given the clinical criteria of Fax: +57 2 5551441 Email: [email protected] RS, MECP2 sequencing was performed which showed a de novo Received: 03 June 2018 pathogenic variant c.338C>G (p.Pro113Arg).
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • S1 Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune Phenotype of Mcd19 Targeted CAR T and Dose Titratio
    Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune phenotype of mCD19 targeted CAR T and dose titration of in vivo efficacy. Supplemental Figure 2. Gene expression of fluorescent-protein tagged CAR T cells. Supplemental Figure 3. Fluorescent protein tagged CAR T cells function similarly to non-tagged counterparts. Supplemental Figure 4. Transduction efficiency and immune phenotype of mCD19 targeted CAR T cells for survival study (Figure 2D). Supplemental Figure 5. Transduction efficiency and immune phenotype of CAR T cells used in irradiated CAR T study (Fig. 3B-C). Supplemental Figure 6. Differential gene expression of CD4+ m19-humBBz CAR T cells. Supplemental Figure 7. CAR expression and CD4/CD8 subsets of human CD19 targeted CAR T cells for Figure 5E-G. Supplemental Figure 8. Transduction efficiency and immune phenotype of mCD19 targeted wild type (WT) and TRAF1-/- CAR T cells used for in vivo study (Figure 6D). Supplemental Figure 9. Mutated m19-musBBz CAR T cells have increased NF-κB signaling, improved cytokine production, anti-apoptosis, and in vivo function. Supplemental Figure 10. TRAF and CAR co-expression in human CD19-targeted CAR T cells. Supplemental Figure 11. TRAF2 over-expressed h19BBz CAR T cells show similar in vivo efficacy to h19BBz CAR T cells in an aggressive leukemia model. S1 Supplemental Table 1. Probesets increased in m19z and m1928z vs m19-musBBz CAR T cells. Supplemental Table 2. Probesets increased in m19-musBBz vs m19z and m1928z CAR T cells. Supplemental Table 3. Probesets differentially expressed in m19z vs m19-musBBz CAR T cells. Supplemental Table 4. Probesets differentially expressed in m1928z vs m19-musBBz CAR T cells.
    [Show full text]
  • VU Research Portal
    VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Genetic architecture and behavioral analysis of attention and impulsivity Maarten Loos 1 About the thesis The work described in this thesis was performed at the Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. This work was in part funded by the Dutch Neuro-Bsik Mouse Phenomics consortium. The Neuro-Bsik Mouse Phenomics consortium was supported by grant BSIK 03053 from SenterNovem (The Netherlands).
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Identification of Ovarian Cancer Gene Expression Patterns Associated
    ORIG I NAL AR TI CLE JOURNALSECTION IdentifiCATION OF Ovarian Cancer Gene Expression PATTERNS Associated WITH Disease Progression AND Mortality Md. Ali Hossain1,2 | Sheikh Muhammad Saiful Islam3 | Julian Quinn4 | Fazlul Huq5 | Mohammad Ali Moni4,5 1Dept OF CSE, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh Ovarian CANCER (OC) IS A COMMON CAUSE OF DEATH FROM can- 2Dept OF CSE, Jahangirnagar UnivERSITY, CER AMONG WOMEN worldwide, SO THERE IS A PRESSING NEED SaVAR, Dhaka, Bangladesh TO IDENTIFY FACTORS INflUENCING MORTALITY. Much OC PATIENT 3Dept. OF Pharmacy, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh CLINICAL DATA IS NOW PUBLICALLY ACCESSIBLE (including PATIENT 4Bone BIOLOGY divisions, Garvan Institute OF age, CANCER SITE STAGE AND SUBTYPE), AS ARE LARGE DATASETS OF Medical Research, SyDNEY, NSW 2010, OC GENE TRANSCRIPTION PROfiles. These HAVE ENABLED STUDIES AustrALIA CORRELATING OC PATIENT SURVIVAL WITH CLINICAL VARIABLES AND 5The UnivERSITY OF SyDNEY, SyDNEY Medical School, School OF Medical Science, WITH GENE EXPRESSION BUT IT IS NOT WELL UNDERSTOOD HOW THESE Discipline OF Biomedical Sciences, NSW TWO ASPECTS INTERACT TO INflUENCE MORTALITY. TO STUDY THIS 1825, AustrALIA WE INTEGRATED CLINICAL AND TISSUE TRANSCRIPTOME DATA FROM Correspondence THE SAME PATIENTS AVAILABLE FROM THE Broad Institute Cancer Dept OF CSE, Jahangirnagar UnivERSITY, Dhaka, Bangladesh Genome Atlas (TCGA) portal. WE INVESTIGATED OC mRNA The UnivERSITY OF SyDNEY, SyDNEY Medical EXPRESSION LEVELS (relativE TO NORMAL PATIENT TISSUE) OF 26 School, School OF Medical Science, Discipline OF Biomedical Sciences, NSW GENES ALREADY STRONGLY IMPLICATED IN OC, ASSESSED HOW THEIR 1825, AustrALIA EXPRESSION IN OC TISSUE PREDICTS PATIENT SURVIVAL THEN em- Email: al i :hossai n@manarat :ac:bd , mohammad :moni @sydney :eduau PLOYED CoX Proportional Hazard REGRESSION MODELS TO anal- YSE BOTH CLINICAL FACTORS AND TRANSCRIPTOMIC INFORMATION TO FUNDING INFORMATION DETERMINE RELATIVE RISK OF DEATH ASSOCIATED WITH EACH FACTOR.
    [Show full text]
  • Développement D'une Signature Moléculaire Dans La Maladie
    Développement d’une signature moléculaire dans la maladie osseuse de Paget Thèse Sabrina Guay-Bélanger Doctorat en médecine moléculaire Philosophiæ doctor (Ph.D.) Québec, Canada © Sabrina Guay-Bélanger, 2015 Résumé La maladie osseuse de Paget (MOP) a changé de visage au cours des dernières années, augmentant le nombre d’individus atteints qui demeurent asymptomatiques. Étant donné le risque élevé de développer un ostéosarcome associé avec la MOP, cette maladie est une contre-indication à la prescription d’agents ostéoformateurs. Avec l’apparition prochaine de nouveaux agents ostéoformateurs pour le traitement de l’ostéoporose, il devient crucial de pouvoir dépister de façon fiable la présence de la MOP. Les objectifs de ce projet étaient (1) de mettre au point un test plus sensible permettant de détecter et d’évaluer la fréquence des mutations post-zygotiques SQSTM1/P392L chez les patients pagétiques, (2) de développer un test génétique de dépistage de la MOP incluant les mutations germinales et post-zygotiques dans SQSTM1, (3) et d’évaluer les performances diagnostiques de ce test intégré avec des marqueurs biochimiques dans une signature moléculaire spécifique à la maladie. Une technique de PCR sensible utilisant un acide nucléique bloqué (LNA) spécifique à la mutation SQSTM1/P392L a été développée, puis la présence de cette mutation a été recherchée dans les cohortes disponibles au laboratoire et dans différents tissus. Ensuite, le développement de la signature moléculaire a utilisé les données génotypiques et biochimiques disponibles dans les cohortes du laboratoire, puis des régressions logistiques ont été effectuées afin de déterminer la combinaison de marqueurs ayant la meilleure capacité à identifier correctement les patients avec la MOP.
    [Show full text]
  • OTX2 Homeoprotein Functions in Adult Choroid Plexus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441734; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. OTX2 homeoprotein functions in adult choroid plexus Anabelle Planques1†, Vanessa Oliveira Moreira1†, David Benacom1, Clémence Bernard1, Laurent Jourdren2, Corinne Blugeon2, Florent Dingli3, Vanessa Masson3, Damarys Loew3, Alain Prochiantz1,4, Ariel A. Di Nardo1* 1. Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, Paris, France 2. Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France 3. Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France 4. Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China †contributed equally *corresponding author: [email protected] Abstract Choroid plexus secretes cerebrospinal fluid important for brain development and homeostasis. The OTX2 homeoprotein is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative roles for OTX2 in choroid plexus function, including cell signaling and adhesion, and show that it regulates the expression of factors secreted into cerebrospinal fluid, notably transthyretin. We show that Otx2 expression impacts choroid plexus immune and stress responses, and also affects splicing which leads to changes in mRNA isoforms of proteins implicated in oxidative stress response and DNA repair.
    [Show full text]
  • Identification of Novel Genes for X-Linked Mental Retardation
    20.\o. ldent¡f¡cat¡on of Novel Genes for X-linked Mental Retardation Adelaide A thesis submitted for the degree of Dootor of Philosophy to the University of by Marie Mangelsdorf BSc (Hons) School ofMedicine Department of Paediatrics, Women's and Children's Hospital May 2003 Corrections The following references should be referred to in the text as: Page 2,line 2: (Birch et al., 1970) Page 2,line 2: (Moser et al., 1983) Page 3, line 15: (Martin and Bell, 1943) Page 3, line 4 and line 9: (Stevenson et a1.,2000) Page 77,line 5: (Monaco et a|.,1986) And in the reference list as: Birch H. G., Richardson S. ,{., Baird D., Horobin, G. and Ilsley, R. (1970) Mental Subnormality in the Community: A Clinical and Epidemiological Study. Williams and Wilkins, Baltimore. Martin J. P. and Bell J. (1943). A pedigree of mental defect showing sex-linkage . J. Neurol. Psychiatry 6: 154. Monaco 4.P., Nerve R.L., Colletti-Feener C., Bertelson C.J., Kurnit D.M. and Kunkel L.M. (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 3232 646-650. Moser H.W., Ramey C.T. and Leonard C.O. (1933) In Principles and Practice of Medical Genetics (Emery A.E.H. and Rimoin D.L., Eds). Churchill Livingstone, Edinburgh UK Penrose L. (1938) A clinical and genetic study of 1280 cases of mental defect. (The Colchester survey). Medical Research Council, London, UK. Stevenson R.E., Schwartz C.E. and Schroer R.J. (2000) X-linked Mental Retardation. Oxford University Press.
    [Show full text]
  • Region Based Gene Expression Via Reanalysis of Publicly Available Microarray Data Sets
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2018 Region based gene expression via reanalysis of publicly available microarray data sets. Ernur Saka University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Bioinformatics Commons, Computational Biology Commons, and the Other Computer Sciences Commons Recommended Citation Saka, Ernur, "Region based gene expression via reanalysis of publicly available microarray data sets." (2018). Electronic Theses and Dissertations. Paper 2902. https://doi.org/10.18297/etd/2902 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Submitted To the J. B. Speed School of Engineering in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science and Engineering Department of Computer Engineering and Computer Science University of Louisville Louisville, Kentucky May 2018 Copyright 2018 by Ernur Saka All rights reserved REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Approved On April 20, 2018 by the following Committee __________________________________ Dissertation Director Dr.
    [Show full text]