Functional effects of schizophrenia-linked genetic variants on intrinsic single-neuron excitability: A modeling study. Tuomo M¨aki-Marttunen1, Geir Halnes2, Anna Devor3;4;5, Aree Witoelar1, Francesco Bettella1;6, Srdjan Djurovic7;8, Yunpeng Wang1;6, Gaute T. Einevoll2;9, Ole A. Andreassen1;6, Anders M. Dale3;4 1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway 2Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As,˚ Norway 3Department of Neurosciences, University of California San Diego, La Jolla, CA, USA 4Department of Radiology, University of California, San Diego, La Jolla, CA, USA 5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA 6Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway 7Department of Medical Genetics, Oslo University Hospital, Oslo, Norway 8NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway 9Department of Physics, University of Oslo, Oslo, Norway Corresponding author: Anders M. Dale, 8950 VLJ Dr/C-101 La Jolla, CA, USA (
[email protected]) Abstract Background Recent genome-wide association studies (GWAS) have identified a large number of genetic risk factors for schizophrenia (SCZ) featuring ion channels and calcium transporters. For some of these risk factors, independent prior investigations have examined the effects of genetic alterations on the cellular electrical excitability and calcium homeostasis. In the present proof-of-concept study, we harnessed these experimental results for modeling of computational properties on layer V cortical pyramidal cell and identify possible common alterations in behavior across SCZ-related genes.