A Genetic Investigation of the Muscle and Neuronal Channelopathies: from Sanger to Next – Generation Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

A Genetic Investigation of the Muscle and Neuronal Channelopathies: from Sanger to Next – Generation Sequencing A Genetic Investigation of the Muscle and Neuronal Channelopathies: From Sanger to Next – Generation Sequencing Alice Gardiner MRC Centre for Neuromuscular Diseases and UCL Institute of Neurology Supervised by Professor Henry Houlden and Professor Mike Hanna 1 Declaration I, Alice Gardiner, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signature A~~~ . Date ~.'t..J.q~ l.?,.q.l.~ . 2 Abstract The neurological channelopathies are a group of hereditary, episodic and frequently debilitating diseases often caused by dysfunction of voltage-gated ion channels. This thesis reports genetic studies of carefully clinically characterised patient cohorts with different episodic neurological and neuromuscular disorders including paroxysmal dyskinesias, episodic ataxia, periodic paralysis and episodic rhabdomyolysis. Genetic and clinical heterogeneity has in the past, using traditional Sanger sequencing methods, made genetic diagnosis difficult and time consuming. This has led to many patients and families being undiagnosed. Here, different sequencing technologies were employed to define the genetic architecture in the paroxysmal disorders. Initially, Sanger sequencing was employed to screen the three known paroxysmal dyskinesia genes in a large cohort of paroxysmal movement disorder patients and smaller mixed episodic phenotype cohort. A genetic diagnosis was achieved in 39% and 13% of the cohorts respectively, and the genetic and phenotypic overlap was highlighted. Subsequently, next-generation sequencing panels were developed, for the first time in our laboratory. Small custom-designed amplicon-based panels were used for the skeletal muscle and neuronal channelopathies. They offered considerable clinical and practical benefit over traditional Sanger sequencing and revealed further phenotypic overlap, however there were still problems to overcome with incomplete coverage. Large custom and non-custom pull-down panels were used to investigate patients with recurrent rhabdomyolysis patients. The contribution of genetic abnormalities was determined, and it was concluded that while the contribution of the RYR1 was substantial, it was minimal for the classic voltage-gated ion channels SCN4A and CACNA1S Lastly, whole-exome sequencing was applied to two large undiagnosed possible channelopathy families. One family was found to indeed harbour a channelopathy mutation, whilst the other did not. Overall, next-generation sequencing proved to be a more thorough and efficient method for channelopathy genetic diagnosis and several novel findings throughout the thesis expanded the current knowledge within the field. 3 Acknowledgements I would first like to thank my supervisors Professor Henry Houlden and Professor Mike Hanna for their support, encouragement and scientific guidance of me and my project throughout the last four years. I am deeply grateful for the opportunity, time and supervision that they have given me, and without which I could not have succeeded. I am also hugely grateful to my friends and family; in particular to my parents for their unwavering belief in me, their constant assistance in all things, for providing a lovely place for me to write when I needed to escape London, and to my mum for taking the time to read through this thesis. I thank my sister, Jenny, for her encouragement, wisdom, and the benefit of her scientific experience and my twin, Robert, for his constant non-scientific support. I also thank all of my friends for keeping me sane and for making the move to London one that I have not for a second regretted. I am especially indebted to Andy and Elaine for opening their house to me, first, when I needed somewhere to live three years ago and more recently when I needed somewhere to write, away from the builders. This PhD would have not been possible without unending help and insight from everyone within Molecular Neurosciences, the MRC centre for Neuromuscular Diseases and the Neurogenetics team, in particular Renata, Amelie, Fatima, Josh, Mark, Klaus, Cath, Ros, Rob, Roope, Alan, Debbie and Karen, to whom I express my sincerest gratitude. Special thanks go to Ellen, Siobhan and Qiang, with whom sharing an office has been a pleasure, for their entertainment, advice and friendship. Lastly, I would like extend my thanks to the Muscular Dystrophy Campaign, who funded this project, and to all of the patients and their families who have taken part in this research. 4 Table of Contents Declaration ................................................................................................................... 2 Abstract ........................................................................................................................ 3 Acknowledgements ....................................................................................................... 4 Table of Contents ......................................................................................................... 5 List of Figures ............................................................................................................. 13 List of Tables .............................................................................................................. 16 List of Abbreviations ................................................................................................... 19 Publications Arising from this Thesis........................................................................... 23 Chapter 1: Introduction ............................................................................................... 26 1. Voltage-Gated Ion Channels ................................................................................ 26 1.1. Action Potentials ........................................................................................... 27 1.2. Structure of Voltage-Gated Ion Channels ..................................................... 27 1.3. Families of Voltage-Gated Ion Channels....................................................... 30 1.3.1. Voltage-Gated Sodium Channels (VGSCs) ........................................... 31 1.3.2. Voltage-Gated Calcium Channels (VGCCs) .......................................... 31 1.3.3. Voltage-Gated Chloride Channels ......................................................... 31 1.3.4. Voltage-Gated Potassium Channels (VGKCs) ....................................... 31 1.4. Ryanodine Receptors (RyRs) ....................................................................... 39 2. Channelopathies .................................................................................................. 39 2.1. The Skeletal Muscle Channelopathies .............................................................. 40 2.1.1. The Non-Dystrophic Myotonias .............................................................. 43 2.1.2. The Periodic Paralyses .......................................................................... 45 2.2. The Neuronal Channelopathies .................................................................... 48 2.2.1. Episodic Ataxia ...................................................................................... 50 2.2.2. Familial Hemiplegic Migraine ................................................................. 53 2.2.3. The Paroxysmal Dyskinesias ................................................................. 55 2.3. Non-Channel Channelopathies ..................................................................... 63 3. Rhabdomyolysis .................................................................................................. 64 5 3.1. Channelopathies ........................................................................................... 66 3.1.1. MHS1 – RYR1 ....................................................................................... 66 3.1.2. MHS5 – CACNA1S ................................................................................ 67 3.1.3. SCN4A .................................................................................................. 67 3.2. Metabolic Muscle Disorders .......................................................................... 67 3.2.1. Glycogen Storage Diseases .................................................................. 68 3.2.2. Fatty Acid Metabolism Disorders ........................................................... 75 3.3. Muscular Dystrophy Genes........................................................................... 78 3.3.1. ANO5 .................................................................................................... 78 3.3.2. FKRP ..................................................................................................... 78 3.3.3. DMD ...................................................................................................... 78 3.3.4. SGCA and SGCB .................................................................................. 79 3.3.5. DYSF ..................................................................................................... 79 3.4. Miscellaneous Genes ................................................................................... 79 3.5. Common Polymorphisms .............................................................................. 81 4. Mutation Detection ............................................................................................... 84 4.1. Methods of Mutation Detection ....................................................................
Recommended publications
  • Spectrum of CLCN1 Mutations in Patients with Myotonia Congenita in Northern Scandinavia
    European Journal of Human Genetics (2001) 9, 903 ± 909 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia Chen Sun*,1, Lisbeth Tranebjñrg*,1, Torberg Torbergsen2,GoÈsta Holmgren3 and Marijke Van Ghelue1,4 1Department of Medical Genetics, University Hospital of Tromsù, Tromsù, Norway; 2Department of Neurology, University Hospital of Tromsù, Tromsù, Norway; 3Department of Clinical Genetics, University Hospital of UmeaÊ, UmeaÊ,Sweden;4Department of Biochemistry, Section Molecular Biology, University of Tromsù, Tromsù, Norway Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C4T) were novel while the others (IVS1+3A4T, 979G4A, F413C, A531V, and R894X) have been reported previously.
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Centronuclear Myopathies Under Attack: a Plethora of Therapeutic Targets Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication Centronuclear myopathies under attack: A plethora of therapeutic targets Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte To cite this version: Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte. Centronuclear myopathies under attack: A plethora of therapeutic targets. Journal of Neuromuscular Diseases, IOS Press, 2018, 5, pp.387 - 406. 10.3233/JND-180309. hal-02438924 HAL Id: hal-02438924 https://hal.archives-ouvertes.fr/hal-02438924 Submitted on 14 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Neuromuscular Diseases 5 (2018) 387–406 387 DOI 10.3233/JND-180309 IOS Press Review Centronuclear myopathies under attack: A plethora of therapeutic targets Hichem Tasfaouta,b,c,d, Belinda S. Cowlinga,b,c,d,1 and Jocelyn Laportea,b,c,d,1,∗ aDepartment of Translational Medicine and Neurogenetics, Institut de G´en´etique et de Biologie Mol´eculaire et Cellulaire (IGBMC), Illkirch, France bInstitut National de la Sant´eetdelaRechercheM´edicale (INSERM), U1258, Illkirch, France cCentre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France dUniversit´e de Strasbourg, Illkirch, France Abstract.
    [Show full text]
  • Genetic Associations Between Voltage-Gated Calcium Channels (Vgccs) and Autism Spectrum Disorder (ASD)
    Liao and Li Molecular Brain (2020) 13:96 https://doi.org/10.1186/s13041-020-00634-0 REVIEW Open Access Genetic associations between voltage- gated calcium channels and autism spectrum disorder: a systematic review Xiaoli Liao1,2 and Yamin Li2* Abstract Objectives: The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). Methods: A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. Results: From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACN A1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. Conclusions: Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype. Keywords: Autism spectrum disorder, Voltage-gated calcium
    [Show full text]
  • 3.2 Brain White Matter Oedema Due to Clc-2 Chloride Channel Deficiency
    3.2 Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study M Bugiani*, C Depienne*, C Dupuits, D Galanaud, V Touitou, N Postma, C van Berkel, E Polder, E Tollard, F Darios, A Brice, CE de Die-Smulders, JS Vles, A Vanderver, G Uziel, C Yalcinkaya, SG Frints, VM Kalscheuer, J Klooster, M Kamermans, TEM Abbink, NI Wolf, F Sedel** and MS van der Knaap** (*shared first authors; **shared last authors) Lancet Neurol 2013;12:659-668 Summary Background. Mutant mouse models suggest that the chloride channel ClC-2 has functions in ion and water homoeostasis, but this has not been confirmed in human beings. We aimed to define novel disorders characterised by distinct patterns of MRI abnormalities in patients with leukoencephalopathies of unknown origin, and to identify the genes mutated in these disorders. We were specifically interested in leukoencephalopathies characterised by white matter oedema, suggesting a defect in ion and water homoeostasis. Methods. In this observational analytical study, we recruited patients with leukoencephalopathies characterised by MRI signal abnormalities in the posterior limbs of the internal capsules, midbrain cerebral peduncles, and middle cerebellar peduncles from our databases of patients with leukoencephalopathies of unknown origin. We used exome sequencing to identify the gene involved. We screened the candidate gene in additional patients by Sanger sequencing and mRNA analysis, and investigated the functional effects of the mutations. We assessed the localisation of ClC-2 with immunohistochemistry and electron microscopy in post- mortem human brains of individuals without neurological disorders. Findings. Seven patients met our inclusion criteria, three with adult-onset disease and four with childhood-onset disease.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Tomo-Seq Identifies SOX9 As a Key Regulator of Cardiac Fibrosis During Ischemic Injury
    myocardial myocardial Eva van ◼ osis fibr SOX9 transcription ◼ PhD* PhD PhD PhD MSc, PhD naarden, MSc, PhD naarden, PhD* ventricular remodeling Correspondence to: Correspondence Rooij, MSc, PhD, Hubrecht Department of Institute, KNAW University Medical Cardiology, Uppsalalaan 8, Center Utrecht, The Netherlands. 3584CT Utrecht, E-mail [email protected] of Funding, see page 1408 Sources Key Words: ischemia ◼ © 2017 American Heart Association, Inc. *Drs. Lacraz and Junker contributed equally. Grégory P.A. Lacraz, MSc, P.A. Grégory MSc, Jan Philipp Junker, Monika M. Gladka, MSc, MSc Bas Molenaar, Scholman, MSc Koen T. MSc Marta Vigil-Garcia, BS Danielle Versteeg, BS Hesther de Ruiter, MSc, Vermunt, Marit W. MSc, Creyghton, Menno P. Manon M.H. Huibers, Nicolaas de Jonge, MD Alexander van Oude- Eva van Rooij, MSc, PhD 2017;136:1396–1409. DOI: 10.1161/CIRCULATIONAHA.117.027832 DOI: 2017;136:1396–1409. Circulation. blunted the cardiac fibrotic fibrotic blunted the cardiac Sox9 ). Subsequent correlation analysis allowed). Subsequent correlation Serca2 Editorial, see p 1410 , and Nppa Based on the exact local expression cues, tomo-seq can Based on the exact local expression Cardiac ischemic injury induces a pathological remodeling ischemic injury induces a pathological remodeling Cardiac , Although genome-wide transcriptome analysis on diseased tissues Tracing transcriptional differences with a high spatial resolution with a high spatial resolution transcriptional differences Tracing Col1a2 October 10, 2017 October 10, 1396 CONCLUSIONS: novel genes and key transcription factors involved in specific serve to reveal able to unveil the Using tomo-seq, we were remodeling. aspects of cardiac pointing fibrosis, of cardiac of SOX9 as a key regulator unknown relevance fibrosis.
    [Show full text]
  • Affected Female Carriers of MTM1 Mutations Display a Wide Spectrum
    Acta Neuropathol DOI 10.1007/s00401-017-1748-0 ORIGINAL PAPER Afected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues Valérie Biancalana1,2,3,4,5 · Sophie Scheidecker1 · Marguerite Miguet1 · Annie Laquerrière6 · Norma B. Romero7,8 · Tanya Stojkovic8 · Osorio Abath Neto9 · Sandra Mercier10,11,12 · Nicol Voermans13 · Laura Tanner14 · Curtis Rogers15 · Elisabeth Ollagnon‑Roman16 · Helen Roper17 · Célia Boutte18 · Shay Ben‑Shachar19 · Xavière Lornage2,3,4,5 · Nasim Vasli2,3,4,5 · Elise Schaefer20 · Pascal Laforet21 · Jean Pouget22 · Alexandre Moerman23 · Laurent Pasquier24 · Pascale Marcorelle25,26 · Armelle Magot12 · Benno Küsters27 · Nathalie Streichenberger28 · Christine Tranchant29 · Nicolas Dondaine1 · Raphael Schneider2,3,4,5,30 · Claire Gasnier1 · Nadège Calmels1 · Valérie Kremer31 · Karine Nguyen32 · Julie Perrier12 · Erik Jan Kamsteeg33 · Pierre Carlier34 · Robert‑Yves Carlier35 · Julie Thompson30 · Anne Boland36 · Jean‑François Deleuze36 · Michel Fardeau7,8 · Edmar Zanoteli9 · Bruno Eymard21 · Jocelyn Laporte2,3,4,5 Received: 9 May 2017 / Revised: 24 June 2017 / Accepted: 2 July 2017 © Springer-Verlag GmbH Germany 2017 Abstract X-linked myotubular myopathy (XLMTM), a females and to delineate diagnostic clues, we character- severe congenital myopathy, is caused by mutations in the ized 17 new unrelated afected females and performed a MTM1 gene located on the X chromosome. A majority of detailed comparison with previously reported cases at the afected males die in the early postnatal period, whereas clinical, muscle imaging, histological, ultrastructural and female carriers are believed to be usually asymptomatic. molecular levels. Taken together, the analysis of this large Nevertheless, several afected females have been reported. cohort of 43 cases highlights a wide spectrum of clini- To assess the phenotypic and pathological spectra of carrier cal severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms.
    [Show full text]
  • Congenital Chloride Diarrhea in a Bartter Syndrome Misdiagnosed
    Case Report iMedPub Journals Journal of Rare Disorders: Diagnosis & Therapy 2019 www.imedpub.com ISSN 2380-7245 Vol.5 No.2:4 DOI: 10.36648/2380-7245.5.2.196 Congenital Chloride Diarrhea in a Bartter Maria Helena Vaisbich*, Juliana Caires de Oliveira Syndrome Misdiagnosed Brazilian Patient Achili Ferreira, Ana Carola Hebbia Lobo Messa and Abstract Fernando Kok The differential diagnosis in children with hypokalemic hypochloremic alkalosis Department of Pediatric Nephrology, include a group of an inherited tubulopathies, such as Bartter Syndrome (BS) Instituto da Criança, University of São Paulo, and Gitelman Syndrome (GS). However, some of the clinically diagnosed São Paulo, Brasil patients present no pathogenic mutation in BS/GS known genes. Therefore, one can conclude that a similar clinical picture may be caused by PseudoBartter Syndrome (PBS) conditions. PBS include acquired renal problems (ex.: use of diuretics) as well as genetic or acquired extrarenal problems such as cystic *Corresponding author: fibrosis or cyclic vomiting, respectively. The accurate diagnosis of BS/GS needs Maria Helena Vaisbich a rational investigation. First step is to rule out PBS and confirm the primary renal tubular defect. However, it is not easy in some situations. In this sense, Department of Pediatric Nephrology, we reported a patient that was referred to our service with the diagnosis Instituto da Criança, University of São Paulo, of BS, but presented no mutation in BS/GS known genes. The whole-exome São Paulo, Brasil. sequencing detected a SCL26A3 likely pathogenic mutation leading to the final diagnosis of Congenital Chloride Diarrhea (CCD). Reviewing the records, the [email protected] authors noticed that liquid stools were mistaken for urine.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Pseudo-Bartter Syndrome As the Initial Presentation of Cystic Fibrosis in Infants: a Paediatrics Section Paediatrics Series of Three Cases and Review of Literature
    DOI: 10.7860/JCDR/2018/36189.11965 Case Series Pseudo-bartter Syndrome as the Initial Presentation of Cystic Fibrosis in Infants: A Paediatrics Section Paediatrics Series of Three cases and Review of Literature PRAWIN KUMAR1, NEERAJ GUPTA2, DAISY KHERA3, KULDEEP SINGH4 ABSTRACT Cystic Fibrosis (CF) is predominantly a disease of Caucasians, but it is increasingly being recognised in India. The typical presentations of CF are recurrent pneumonia and malabsorption. Atypical presentations are also increasingly being reported from India due to the differences in genotype and environmental factors. Pseudo-Bartter syndrome (PBS) is one of these atypical presentations which can present at any time after the diagnosis of CF but its presentation as an initial manifestation is rare. We hereby report three infants who presented with dehydration without obvious external losses. The investigations revealed metabolic alkalosis with hypochloraemia. A stepwise approach towards metabolic alkalosis revealed possibility of cystic fibrosis which was confirmed by sweat chloride test. All infants completely recovered with initial fluid and electrolyte therapy, following which supportive therapy for CF was started and subsequently they were discharged from the hospital. Keywords: Hypochloraemia, Metabolic alkalosis, Pseudo-Bartter Syndrome CASE SERIES sweat chloride test was not available at our centre so they were sent In this case series, we have described three infants in the age group to paediatric pulmonology division, AIIMS, New Delhi where sweat of 5-10 months from western Rajasthan, India, who presented with chloride test was performed (pilocarpine iontophoresis method), features of dehydration, without any evidence of obvious external which turned out to be positive (sweat chloride >60 mEq/L) in all fluid loss.
    [Show full text]
  • Hypokalemic Periodic Paralysis - an Owner's Manual
    Hypokalemic periodic paralysis - an owner's manual Michael M. Segal MD PhD1, Karin Jurkat-Rott MD PhD2, Jacob Levitt MD3, Frank Lehmann-Horn MD PhD2 1 SimulConsult Inc., USA 2 University of Ulm, Germany 3 Mt. Sinai Medical Center, New York, USA 5 June 2009 This article focuses on questions that arise about diagnosis and treatment for people with hypokalemic periodic paralysis. We will focus on the familial form of hypokalemic periodic paralysis that is due to mutations in one of various genes for ion channels. We will only briefly mention other �secondary� forms such as those due to hormone abnormalities or due to kidney disorders that result in chronically low potassium levels in the blood. One can be the only one in a family known to have familial hypokalemic periodic paralysis if there has been a new mutation or if others in the family are not aware of their illness. For more general background about hypokalemic periodic paralysis, a variety of descriptions of the disease are available, aimed at physicians or patients. Diagnosis What tests are used to diagnose hypokalemic periodic paralysis? The best tests to diagnose hypokalemic periodic paralysis are measuring the blood potassium level during an attack of paralysis and checking for known gene mutations. Other tests sometimes used in diagnosing periodic paralysis patients are the Compound Muscle Action Potential (CMAP) and Exercise EMG; further details are here. The most definitive way to make the diagnosis is to identify one of the calcium channel gene mutations or sodium channel gene mutations known to cause the disease. However, known mutations are found in only 70% of people with hypokalemic periodic paralysis (60% have known calcium channel mutations and 10% have known sodium channel mutations).
    [Show full text]