Liste Der Nächsten Sterne – Wikipedia

Total Page:16

File Type:pdf, Size:1020Kb

Liste Der Nächsten Sterne – Wikipedia Navigationsmenü Liste der nächsten Sterne – Wikipedia ● Benutzerkonto anlegen ● Anmelden Liste der nächsten Sterne ● Hauptseite Diese Liste umfasst die sonnen- bzw. erdnächsten Sterne bis zu einer Entfernung von 5 Parsec (etwa 16 Lichtjahre). ● Themenportale ● Von A bis Z Inhaltsverzeichnis ● Zufälliger Artikel [Verbergen] Mitmachen ● 1 Farbcodierung ● 2 Liste Drucken/exportieren ● 3 Siehe auch ● 4 Einzelnachweise Werkzeuge Farbcodierung [Bearbeiten] In anderen Sprachen Sterne mit einer scheinbaren Größe von mehr als 6,5 Magnituden können nicht mit bloßem Auge beobachtet werden und sind deshalb grau hinterlegt. Die Farben gelb bis rot in der Spalte Spektralklasse repräsentieren den jeweiligen Spektraltyp des Sterns. Rote Schrift für Parallaxe und Entfernung kennzeichnen vorläufige, noch unsichere Bestimmungen. Liste [Bearbeiten] Parallaxe Scheinbare Absolute Entfernung zur System Stern Spektralklasse Rektaszension Deklination Quelle (Bogensek.) Helligkeit Helligkeit Erde (LJ) Sonne Sonne G2V -26,7 4,85 — — — 0,000016 Alpha Centauri Proxima Centauri M5.5Ve 11,01 15,53 14h 29m 43s -62° 40′ 46″ 0,772″ 4,22 H, Y (?) (V645 Centauri) Alpha Centauri A http://de.wikipedia.org/wiki/Liste_der_nächsten_Sterne (1 von 8) [02.01.2013 17:51:01] Liste der nächsten Sterne – Wikipedia Alpha Centauri (Rigil Kentaurus; G2V -0,01 4,38 14h 39m 37s -60° 50′ 2″ 0,747″ 4,36 S, Y Toliman) Alpha Centauri B Alpha Centauri K0V 1,35 5,71 14h 39m 35s -60° 50′ 14″ 0,747″ 4,36 S, Y (HD 128621) Barnards Barnards Pfeilstern Pfeilstern (BD M4.0Ve 9,53 13,22 17h 55m 23s +04° 33′ 18″ 0,547″ 5,96 H, Y (BD+04°3561a) +04°3561a) Wolf 359 (CN Wolf 359 (CN M6.0V 13,54 16,55 10h 56m 28s +07° 00′ 42″ 0,419″ 7,78 Y Leonis) Leonis) Lalande 21185 Lalande 21185 (BD M5.5e 7,47 10,44 11h 00m 37s +36° 18′ 20″ 0,393″ 8,29 H, Y (BD+36°2147) +36°2147) Sirius A (Alpha Sirius A1V -1,43 1,47 06h 45m 09s -16° 42′ 58″ 0,380″ 8,58 H, Y Canis Majoris) Sirius Sirius B DA2 8,44 11,34 06h 45m 09s -16° 42′ 58″ 0,380″ 8,58 H, Y Luyten 726-8 UV Ceti (L 726-8 B) M5.5e 12,54 15,40 01h 39m 01s +17° 57′ 00″ 0,374″ 8,72 Y Luyten 726-8 BL Ceti (L 726-8 A) M6.0e 12,99 15,85 01h 39m 01s +17° 57′ 00″ 0,374″ 8,72 Y Ross 154 (V1216 Ross 154 (V1216 M3.5Ve 10,43 13,07 18h 49m 49s +23° 50′ 11″ 0,337″ 9,68 H, Y Sagittarii) Sagittarii) Ross 248 (HH Ross 248 (HH M5.5Ve 12,29 14,79 23h 41m 54s +44° 09′ 32″ 0,316″ 10,32 Y Andromedae) Andromedae) Epsilon Eridani Epsilon Eridani (BD- K2V 3,73 6,19 03h 32m 56s -09° 27′ 30″ 0,310″ 10,52 H, Y (BD-09°697) 09°697) Lacaille 9352 Lacaille 9352 (CD- M1.5Ve 7,34 9,75 23h 05m 42s -35° 51′ 11″ 0,304″ 10,74 H, Y (CD-36°15693) 36°15693) Ross 128 (FI Ross 128 (FI M4.0Vn 11,13 13,51 11h 47m 45s +00° 48′ 17″ 0,299″ 10,91 H, Y Virginis) Virginis) EZ Aquarii EZ Aquarii M5.0Ve 13,33 15,64 22h 38m 34s -15° 18′ 02″ 0,290″ 11,26 Y (Luyten 789-6) EZ Aquarii Gl 866 B M? 13,27 15,58 22h 38m 34s -15° 18′ 02″ 0,290″ 11,26 Y http://de.wikipedia.org/wiki/Liste_der_nächsten_Sterne (2 von 8) [02.01.2013 17:51:01] Liste der nächsten Sterne – Wikipedia (Luyten 789-6) EZ Aquarii Gl 866 C M? 14,03 16,34 22h 38m 34s -15° 18′ 02″ 0,290″ 11,26 Y (Luyten 789-6) Prokyon (Alpha Prokyon A F5V-IV 0,38 2,66 07h 39m 18s +05° 13′ 30″ 0,286″ 11,40 H, Y Canis Minoris) Prokyon (Alpha Prokyon B DA 10,7 12,98 07h 39m 18s +05° 13′ 30″ 0,286″ 11,40 H, Y Canis Minoris) 61 Cygni A (BD 61 Cygni K3.5Ve 5,21 7,49 21h 08m 52s +38° 56′ 51″ 0,286″ 11,40 H, Y +38°4343) 61 Cygni B (BD 61 Cygni K4.7Ve 6,03 8,31 21h 08m 52s +38° 56′ 51″ 0,286″ 11,40 H, Y +38°4344) Struve 2398 A (Gl Struve 2398 M3.0V 8,90 11,16 18h 42m 47s +59° 37′ 50″ 0,283″ 11,52 H, Y 725, BD+59°1915) Struve 2398 B (HD Struve 2398 M3.5V 11,06 13,30 18h 42m 47s +59° 37′ 50″ 0,283″ 11,52 H, Y 173740) Groombridge 34 Groombridge 34 A M1.5V 8,08 10,32 00h 18min 22.9s +44° 01′ 23″ 0,281″ 11,624 H,Y (GJ 15) (GX Andromedae) Groombridge 34 Groombridge 34 B M3.5V[1] 11,06 13,30 00h 18min 22.9s +44° 01′ 23″ 0,281″ 11,624 H,Y (GJ 15) (GQ Andromedae) SIPS 1259-4336 SIPS 1259-4336 M8V ? ? 12h 59m 04s -43° 36′ 22″ 0,276″ ± 0,041″ 11,81 ± 1,76 Epsilon Indi (CP- Epsilon Indi (CP- K5Ve 4,69 6,89 22h 03m 22s -56° 47′ 10″ 0,276″ 11,82 H, Y 57°10015) 57°10015) DX Cancri (G051- DX Cancri (G051- M6.5Ve 14,78 16,98 08h 29m 50s +26° 46′ 37″ 0,276″ 11,82 Y 015) 015) Tau Ceti (BD−16° Tau Ceti G8Vp 3,49 5,68 01h 44m 04.0829s −15° 56′ 14.928″ 0,274″ 11,89 H, Y 295) GJ 1061 (LHS GJ 1061 (LHS 1565) M5.5V 13,03 15,19 03h 35m 57s -44° 30′ 46″ 0,271″ 11,92 1565) YZ Ceti (LHS 138) YZ Ceti (LHS 138) M4.5V 12,02 14,17 01h 12m 31s -16° 59′ 57″ 0,269″ 12,13 H, Y http://de.wikipedia.org/wiki/Liste_der_nächsten_Sterne (3 von 8) [02.01.2013 17:51:01] Liste der nächsten Sterne – Wikipedia Luytens Stern Luytens Stern (BD M3.5Vn 9,86 11,97 07h 27m 25s +05° 13′ 33″ 0,264″ 12,36 H, Y (BD+05°1668) +05°1668) Teegardens Teegardens Stern Stern (SO025300.5 M6.5V 15,1 17,2 02h 53m 01s +16° 52′ 53″ 0,261″ 12,51 ± 0,13 1 (SO025300.5 +165258) +165258) SCR 1845-6357 SCR 1845-6357 M8.5V 17,39 19,41 18h 45m 03s -45° 01′ 06″ 0,259″ 12,6 ± 0,1 Kapteyns Stern Kapteyns Stern sdM0VI 8,84 10,87 05h 11m 41s -45° 01′ 06″ 0,255″ 12,77 H, Y (CD-45°1841) (CD-45°1841) Lacaille 8760 (AX Lacaille 8760 (AX M2Ve 6,67 8,69 21h 17m 15s -38° 52′ 03″ 0,253″ 12,86 H, Y Microscopium) Microscopium) SSPM J1549-3544 SSPM J1549-3544 D? ? ? 15h 48m 40s -35° 44′ 25″ ? 13 ± 3 Kruger 60 A (BD Kruger 60 M3.0V 9,79 11,76 22h 28m 00s +57° 41′ 45″ 0,248″ 13,14 S, Y +56°2783) Kruger 60 B (DO Kruger 60 M4.0V 11,41 13,38 22h 28m 00s +57° 41′ 45″ 0,248″ 13,14 S, Y Cephei) Ross 614 (LHS Ross 614 M4.5V 11,15 13,09 06h 29m 23s -02° 48′ 50″ 0,244″ 13,34 S, Y 1849) Gl 234 B (V577 Ross 614 M5.5V 14,23 16,17 06h 29m 23s -02° 48′ 50″ 0,244″ 13,34 S, Y Monocerotis) Gl 628 (Wolf Gl 628 (Wolf 1061, 1061, BD-12° M3.0V 10,07 11,93 16h 30m 18s -12° 39′ 45″ 0,236″ 13,81 H, Y BD-12°4523) 4523) Van Maanens Van Maanens Stern Stern (Gl 35, DZ7 12,38 14,21 00h 49m 10s +05° 23′ 19″ 0,232″ 14,06 H, Y (Gl 35, LHS 7) LHS 7) Gl 1 (CD-37° Gl 1 (CD-37°15492) M3.0V 8,55 10,35 00h 05m 24s -37° 21′ 27″ 0,229″ 14,22 H, Y 15492) Wolf 424 A (LHS Wolf 424 M5.5Ve 13,18 14,97 17h 33m 17s +09° 01′ 15″ 0,228″ 14,30 Y 333) http://de.wikipedia.org/wiki/Liste_der_nächsten_Sterne (4 von 8) [02.01.2013 17:51:01] Liste der nächsten Sterne – Wikipedia Gl 473 B (FL Wolf 424 M7Ve 13,17 14,96 17h 33m 17s +09° 01′ 15″ 0,228″ 14,30 Y Virginis) TZ Arietis (GJ TZ Arietis (GJ 83.1, 83.1, Luyten M4.5V 12,27 14,03 02h 00m 13s +13° 03′ 08″ 0,225″ 14,51 Y Luyten 1159-16) 1159-16) Gl 687 (LHS 450, Gl 687 (LHS 450, M3.0V 9,17 10,89 17h 36m 26s +68° 20′ 21″ 0,220″ 14,79 H, Y BD+68°946) BD+68°946) LHS 292 (LP 731- LHS 292 (LP 731- M6.5V 15,60 17,32 17h 28m 40s -46° 53′ 43″ 0,220″ 14,81 Y 58) 58) Gl 674 (LHS 449) Gl 674 (LHS 449) M3.0V 9,38 11,09 17h 28m 40s -46° 53′ 43″ 0,220″ 14,81 H, Y GJ 1245 GJ 1245 A M5.5V 13,46 15,17 19h 53m 54s -44° 24′ 55″ 0,220″ 14,81 Y (V1581 Cygni) GJ 1245 GJ 1245 B M6.0V 14,01 15,72 19h 53m 55s -44° 24′ 56″ 0,220″ 14,81 Y (V1581 Cygni) GJ 1245 GJ 1245 C M? 16,75 18,46 19h 53m 54s -44° 24′ 55″ 0,220″ 14,81 Y (V1581 Cygni) GJ 440 (WD GJ 440 (WD 1142- DQ6 11,50 13,18 11h 45m 43s -64° 50′ 29″ 0,217″ 15,06 H, Y 1142-645) 645) GJ 1002 GJ 1002 M5.5V 13,76 15,40 00h 06m 44s -07° 32′ 22″ 0,213″ 15,31 Y Gliese 876 Gliese 876 M3.5V 10,17 11,81 22h 53m 17s -14° 15′ 49″ 0,213″ 15,34 H, Y GJ 412 GJ 412 A M1.0V 8,77 10,34 11h 05m 29s +43° 31′ 36″ 0,206″ 15,83 H, Y GJ 412 WX Ursae Majoris M5.5V 14,48 16,05 11h 05m 30s +43° 31′ 18″ 0,206″ 15,83 H, Y GJ 380 GJ 380 K7.0V 6,59 8,16 10h 11m 22s +49° 27′ 15″ 0,206″ 15,85 H, Y GJ 388 GJ 388 M3.0V 9,32 10,87 10h 19m 36s +19° 52′ 10″ 0,206″ 15,94 Y LHS 288 (Luyten LHS 288 (Luyten M5.5V 13,92 15,66 10h 44m 32s -61° 11′ 38″ 0,206″ 15,94 143-23) 143-23) GJ 832 GJ 832 M3.0V 8,66 10,20 21h 33m 34s -49° 00′ 32″ 0,205″ 16,08 H, Y LP 944-20 LP 944-20 M9.0V 18,50 20,02 03h 39m 35s -35° 25′ 41″ 0,201″ 16,19 T http://de.wikipedia.org/wiki/Liste_der_nächsten_Sterne (5 von 8) [02.01.2013 17:51:01] Liste der nächsten Sterne – Wikipedia Legende zur Quellenangabe: H – Hipparcos-Katalog.
Recommended publications
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Detecting Differential Rotation and Starspot Evolution on the M Dwarf GJ 1243 with Kepler James R
    Western Washington University Masthead Logo Western CEDAR Physics & Astronomy College of Science and Engineering 6-20-2015 Detecting Differential Rotation and Starspot Evolution on the M Dwarf GJ 1243 with Kepler James R. A. Davenport Western Washington University, [email protected] Leslie Hebb Suzanne L. Hawley Follow this and additional works at: https://cedar.wwu.edu/physicsastronomy_facpubs Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Davenport, James R. A.; Hebb, Leslie; and Hawley, Suzanne L., "Detecting Differential Rotation and Starspot Evolution on the M Dwarf GJ 1243 with Kepler" (2015). Physics & Astronomy. 16. https://cedar.wwu.edu/physicsastronomy_facpubs/16 This Article is brought to you for free and open access by the College of Science and Engineering at Western CEDAR. It has been accepted for inclusion in Physics & Astronomy by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. The Astrophysical Journal, 806:212 (11pp), 2015 June 20 doi:10.1088/0004-637X/806/2/212 © 2015. The American Astronomical Society. All rights reserved. DETECTING DIFFERENTIAL ROTATION AND STARSPOT EVOLUTION ON THE M DWARF GJ 1243 WITH KEPLER James R. A. Davenport1, Leslie Hebb2, and Suzanne L. Hawley1 1 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA; [email protected] 2 Department of Physics, Hobart and William Smith Colleges, Geneva, NY 14456, USA Received 2015 March 9; accepted 2015 May 6; published 2015 June 18 ABSTRACT We present an analysis of the starspots on the active M4 dwarf GJ 1243, using 4 years of time series photometry from Kepler.
    [Show full text]
  • Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
    Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year.
    [Show full text]
  • HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
    The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory.
    [Show full text]
  • The Solar Neighborhood XXXVII: the Mass-Luminosity Relation for Main Sequence M Dwarfs 1
    The Solar Neighborhood XXXVII: The Mass-Luminosity Relation for Main Sequence M Dwarfs 1 G. F. Benedict2, T. J. Henry3;11, O. G. Franz4, B. E. McArthur2, L. H. Wasserman4, Wei-Chun Jao5;11, P. A. Cargile6, S. B. Dieterich 7;11, A. J. Bradley8, E. P. Nelan9, and A. L. Whipple10 ABSTRACT We present a Mass-Luminosity Relation (MLR) for red dwarfs spanning a range of masses from 0.62 M to the end of the stellar main sequence at 0.08 M . The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries, component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V -band MLR for the lower main sequence with 47 stars, and a K-band MLR with 45 stars with fit residuals half of those of the V -band. We use GJ 831 AB as an example, obtaining an absolute trigonometric par- allax, πabs = 125:3 ± 0:3 milliseconds of arc, with orbital elements yielding MA = 0:270 ± 0:004M and MB = 0:145 ± 0:002M . The mass precision rivals that derived for eclipsing binaries. 2McDonald Observatory, University of Texas, Austin, TX 78712 3RECONS Institute, Chambersburg, PA 17201 4Lowell Observatory, 1400 West Mars Hill Rd., Flagstaff, AZ 86001 5Dept.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Physics of Transcendental Numbers Meets Gravitation
    Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021) Physics of Transcendental Numbers Meets Gravitation Hartmut Muller¨ E-mail: [email protected] Transcendental ratios of physical quantities can provide stability in complex dynamic systems because they inhibit the occurrence of destabilizing resonance. This approach leads to a fractal scalar field that affects any type of physical interaction and allows re- formulating and resolving some unsolved tasks in celestial mechanics and astrophysics. We verify the model claims on the gravitational constants and the periods of orbital and rotational motion of the planets, planetoids and large moons of the solar system as well as the orbital periods of exoplanets and the gravitational constants of their stars. Introduction many pairs of orbital periods and distances that fulfill Ke- pler’s laws. Einstein’s field equations do not reduce the theo- Despite the abundance of theoretical approaches engaged to retical variety of possible orbits, but increases it even more. explain the origin of gravitational interaction dealing with But now, after the discovery of thousands of exoplanetary superstrings, chameleons or entropic forces [1], the commu- systems, we can recognize that the current distribution of the nity of physicists still expects compatibility for centuries: any planetary and lunar orbits in our solar system is not acciden- modern theory must allow deriving Newton’s law of univer- tal. Many planets in the extrasolar systems like Trappist 1 or sal gravitation as classic approximation. In the normal case Kepler 20 have nearly the same orbital periods as the large of weak gravity and low velocities, also Einstein’s field equa- moons of Jupiter, Saturn, Uranus and Neptune [4].
    [Show full text]
  • Erosion of an Exoplanetary Atmosphere Caused by Stellar Winds J
    A&A 630, A52 (2019) https://doi.org/10.1051/0004-6361/201935543 Astronomy & © ESO 2019 Astrophysics Erosion of an exoplanetary atmosphere caused by stellar winds J. M. Rodríguez-Mozos1 and A. Moya2,3 1 University of Granada (UGR), Department of Theoretical Physics and Cosmology, 18071 Granada, Spain 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK e-mail: [email protected]; [email protected] 3 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark Received 26 March 2019 / Accepted 8 August 2019 ABSTRACT Aims. We present a formalism for a first-order estimation of the magnetosphere radius of exoplanets orbiting stars in the range from 0.08 to 1.3 M . With this radius, we estimate the atmospheric surface that is not protected from stellar winds. We have analyzed this unprotected surface for the most extreme environment for exoplanets: GKM-type and very low-mass stars at the two limits of the habitable zone. The estimated unprotected surface makes it possible to define a likelihood for an exoplanet to retain its atmosphere. This function can be incorporated into the new habitability index SEPHI. Methods. Using different formulations in the literature in addition to stellar and exoplanet physical characteristics, we estimated the stellar magnetic induction, the main characteristics of the stellar wind, and the different star-planet interaction regions (sub- and super- Alfvénic, sub- and supersonic). With this information, we can estimate the radius of the exoplanet magnetopause and thus the exoplanet unprotected surface.
    [Show full text]
  • A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs
    Draft version June 24, 2019 Typeset using LATEX twocolumn style in AASTeX61 THREE RED SUNS IN THE SKY: A TRANSITING, TERRESTRIAL PLANET IN A TRIPLE M DWARF SYSTEM AT 6.9 PARSECS Jennifer G. Winters,1 Amber A. Medina,1 Jonathan M. Irwin,1 David Charbonneau,1 Nicola Astudillo-Defru,2 Elliott P. Horch,3 Jason D. Eastman,1 Eliot Halley Vrijmoet,4 Todd J. Henry,5 Hannah Diamond-Lowe,1 Elaine Winston,1 Xavier Bonfils,6 George R. Ricker,7 Roland Vanderspek,7 David W. Latham,1 Sara Seager,8, 9, 10 Joshua N. Winn,11 Jon M. Jenkins,12 Stephane´ Udry,13 Joseph D. Twicken,14, 12 Johanna K. Teske,15, 16 Peter Tenenbaum,14, 12 Francesco Pepe,13 Felipe Murgas,17, 18 Philip S. Muirhead,19 Jessica Mink,1 Christophe Lovis,13 Alan M. Levine,7 Sebastien´ Lepine´ ,4 Wei-Chun Jao,4 Christopher E. Henze,12 Gabor´ Furesz,´ 7 Thierry Forveille,6 Pedro Figueira,20, 21 Gilbert A. Esquerdo,1 Courtney D. Dressing,22 Rodrigo F. D´ıaz,23, 24 Xavier Delfosse,6 Chris J. Burke,7 Franc¸ois Bouchy,13 Perry Berlind,1 and Jose-Manuel Almenara6 1Center for Astrophysics j Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA 2Departamento de Matem´atica y F´ısica Aplicadas, Universidad Cat´olica de la Sant´ısimaConcepci´on,Alonso de Rivera 2850, Concepci´on, Chile 3Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515, USA 4Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106, USA 5RECONS Institute, Chambersburg, Pennsylvania, 17201, USA 6Universit´eGrenoble Alpes, CNRS, IPAG, F-38000
    [Show full text]
  • The 10 Parsec Sample in the Gaia Era?,?? C
    A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets.
    [Show full text]
  • The Official Publication of the Hamilton Centre, Royal Astronomical Society of Canada Volume 47, Issue 8: June, 2015
    Orbit The Official Publication of The Hamilton Centre, Royal Astronomical Society of Canada Volume 47, Issue 8: June, 2015 Issue Number 8, June, 2015 Roger Hill, Editor Here we go...AstroCATS 2015! If you haven’t been to one before, then here’s what you should know: AstroCATS is a great place to check out equip- ment. It’s a great place to hear some great talks by some great speakers; do some solar observing; meet with some old friends and make some new ones. Unfortunately for me, it’s increasingly looking like I will indeed have to work that weekend. I may be able to make the final couple of hours, so I’m hoping there are still some bargains left. If, unlike me, you have some time to attend AstroCATS this year, the organizers sure could use your help. Go to http://www.astrocats.ca/volunteer.html and let them know your availability. It’s always fun, and while it may be my imagination, I think volunteers may just get a little extra discount from the vendors. Of course, with the venue being the Ontario Science Centre, there’s always lots more to go for than just astronomy! Head on over to the website—www.astrocats.ca—and check everything out. One final thing...NEAF, in the US, is renowned for vendors using it to announce new products. I’m hearing that a Cana- dian company is going to use AstroCATS to do the same thing...and not just one product, but 3! I had the opportunity after the May long weekend to do some driving into the US with my son.
    [Show full text]
  • September 2017 BRAS Newsletter
    September 2017 Issue September 2017 Next Meeting: Monday, September 11th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) September Program: GAE (Great American. Eclipse) Membership Reports. Club members are invited to “approach the mike. ” and share their experiences travelling hither and thither to observe the August total eclipse. What's In This Issue? HRPO’s Great American Eclipse Event Summary (Page 2) President’s Message Secretary's Summary Outreach Report - FAE Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Spooky Spectrum Observe The Moon Night Observing Notes – Draco The Dragon, & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society September 2017 The Great American Eclipse is now a fond memory for our Baton Rouge community. No ornery clouds or“washout”; virtually the entire three-hour duration had an unobstructed view of the Sun. Over an hour before the start of the event, we sold 196 solar viewers in thirty-five minutes. Several families and children used cereal box viewers; many, many people were here for the first time. We utilized the Coronado Solar Max II solar telescope and several nighttime telescopes, each outfitted with either a standard eyepiece or a “sun funnel”—a modified oil funnel that projects light sent through the scope tube to fabric stretched across the front of the funnel. We provided live feeds on the main floor from NASA and then, ABC News. The official count at 1089 patrons makes this the best- attended event in HRPO’s twenty years save for the historic Mars Opposition of 2003.
    [Show full text]