The Fossil Proboscideans of Bulgaria and the Importance of Some Bulgarian Finds – a Brief Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open Thesis Final V2.Pdf
The Pennsylvania State University The Graduate School Department of the Geosciences TAXONOMIC AND ECOLOGIC IMPLICATIONS OF MAMMOTH MOLAR MORPHOLOGY AS MEASURED VIA COMPUTED TOMOGRAPHY A Thesis in Geosciences by Gregory J Smith 2015 Gregory J Smith Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 ii The thesis of Gregory J Smith was reviewed and approved* by the following: Russell W. Graham EMS Museum Director and Professor of the Geosciences Thesis Advisor Mark Patzkowsky Professor of the Geosciences Eric Post Director of the Polar Center and Professor of Biology Timothy Ryan Associate Professor of Anthropology and Information Sciences and Technology Michael Arthur Professor of the Geosciences Interim Associate Head for Graduate Programs and Research *Signatures are on file in the Graduate School iii ABSTRACT Two Late Pleistocene species of Mammuthus, M. columbi and M. primigenius, prove difficult to identify on the basis of their third molar (M3) morphology alone due to the effects of dental wear. A newly-erupted, relatively unworn M3 exhibits drastically different characters than that tooth would after a lifetime of wear. On a highly-worn molar, the lophs that comprise the occlusal surface are more broadly spaced and the enamel ridges thicken in comparison to these respective characters on an unworn molar. Since Mammuthus taxonomy depends on the lamellar frequency (# of lophs/decimeter of occlusal surface) and enamel thickness of the third molar, given the effects of wear it becomes apparent that these taxonomic characters are variable throughout the tooth’s life. Therefore, employing static taxonomic identifications that are based on dynamic attributes is a fundamentally flawed practice. -
1.1 První Chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Jakub Březina Rešerše k bakalářské práci Využití mikrostruktur klů neogenních chobotnatců na příkladu rodu Zygolophodon Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Brno 2012 OBSAH 1. Současný pohled na evoluci chobotnatců 3 1.1 První chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2. Kly chobotnatců a jejich mikrostruktura 9 2.1 Přírůstky v klech chobotnatců 11 2.1.1 Využití přírůstků v klech chobotnatců 11 2.2 Schregerův vzor 12 2.2.1 Stavba Schregerova vzoru 12 2.2.2 Využití Schregerova vzoru 12 2.3 Dentinové kanálky 15 3 Sedimenty s nálezy savců v okolí Mikulova 16 3.1 Baden 17 3.2 Pannon a Pont 18 1. Současný pohled na evoluci chobotnatců Současná systematika chobotnatců není kompletně odvozena od jejich fylogeneze, rekonstruované pomocí kladistických metod. Diskutované skupiny tak mnohdy nepředstavují monofyletické skupiny. Přestože jsou taxonomické kategorie matoucí (např. Laurin 2005), jsem do jisté míry nucen je používat. Některým skupinám úrovně stále přiřazeny nebyly a zde této skutečnosti není přisuzován žádný význam. V této rešerši jsem se zaměřil hlavně na poznatky, které následovaly po vydání knihy; The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, od Shoshaniho a Tassyho (1996). Chobotnatci jsou součástí skupiny Tethytheria společně s anthracobunidy, sirénami a desmostylidy (Shoshani 1998; Shoshani & Tassy 1996; 2005; Gheerbrant & Tassy 2009). Základní klasifikace sestává ze dvou skupin. Ze skupiny Plesielephantiformes, do které patří čeledě Numidotheriidae, Barytheriidae a Deinotheridae a ze skupiny Elephantiformes, do které patří čeledě Palaeomastodontidae, Phiomiidae, Mammutida, Gomphotheriidae, tetralofodontní gomfotéria, Stegodontidae a Elephantidae (Shoshani & Marchant 2001; Shoshani & Tassy 2005; Gheerbrant & Tassy 2009). -
Mammoths and Mastodons
AMERI AN MU E.UM OF ATU R I HI 1 R Mammoths and Mastodons By W. D. MATTHEW . THE. AMERICAN MASTODON Model by Charles R. Knight, based upon The Warren Mastodon skeleton in the American Museum of Natural History No. 43 Of THE GUIDE LEAFLET SERIES.-NOVE.MBER, 1915. Aft, O.~born THE WARREN MASTODON SKELETON IN THE AMERICAN MUSEUM . Mammoths and Mastodons A guide to th collections of fossil proboscideans in the Ameri an Museum of Natural History By W. D. MATTHEW 0 TE.i. T Pag 1. L ~TROD T RY. Di tribulion. Early Di coYerie . .............. ~. THE ExTL -cT ELEPHA_~T . The tru mammoth-~ la kan mamm th - k 1 t n from Indiana- ize of the mammoth-th Columbian 1 - phant- th Imperial lephant-extin t 011 World elephant - Plio n and Plei tocene elephant ' of Inclia-e,·olution f lephant from n1a to don ......................... .. ............... .. ..... ... 3. THE ... :\IERICAX :MA TODOX. Teeth f the ma tod n-habit an 1 en Yironment-the w·arren ma t don-male and femal kull -di tribu- tion of the ... merican ma todon . 1 z ..J.. THE LATER TERTB.RY 11A TODOX . The two-tu ked mat don Dibelodon-the long-jawed ma. t don Tetralophodon-the b aked ma todon Rhyncotherium-the primitiYe four tu k d ma tod n . Trilophod n-the Dinotherium.. 1.5 THE EARLY TERTL\.RY AxcE TOR OF THE 11A TODOX . Palreoma tod n - M reritherium-character. and affinitie . I 6. THE E'.'OL TIOX OF THE PRoBo CIDEA. D ubtful po ition of :i\I rither ium-Palreoma todon a primiti, prob cidean-Dinoth rium an aberrant ide-branch-Tril phodon de.:,cended from Palreoma todon branching into everal phYla in ~Ii cene and Plioc ne- Dib lodon phylum in ~ ~ orth and outh America-~Ia tod n phylum-elephant phylum-origin and di per al of th probo cidea and th ir proo·re ,i,·e exti11ctio11 . -
Teacher's Booklet
Ideas and Evidence at the Sedgwick Museum of Earth Sciences Teacher’s Booklet Acknowledgements Shawn Peart Secondary Consultant Annette Shelford Sedgwick Museum of Earth Sciences Paul Dainty Great Cornard Upper School Sarah Taylor St. James Middle School David Heap Westley Middle School Thanks also to Dudley Simons for photography and processing of the images of objects and exhibits at the Sedgwick Museum, and to Adrienne Mayor for kindly allowing us to use her mammoth and monster images (see picture credits). Picture Credits Page 8 “Bag of bones” activity adapted from an old resource, source unknown. Page 8 Iguanodon images used in the interpretation of the skeleton picture resource from www.dinohunters.com Page 9 Mammoth skeleton images from ‘The First Fossil Hunters’ by Adrienne Mayor, Princeton University Press ISBN: 0-691-05863 with kind permission of the author Page 9 Both paintings of Mary Anning from the collections of the Natural History Museum © Natural History Museum, London 1 Page 12 Palaeontologists Picture from the photographic archive of the Sedgwick Museum © Sedgwick Museum of Earth Sciences Page 14 Images of Iguanodon from www.dinohunters.com Page 15 “Duria Antiquior - a more ancient Dorsetshire” by Henry de la Beche from the collection of the National Museums and Galleries of Wales © National Museum of Wales Page 17 Images of Deinotherium giganteum skull cast © Sedgwick Museum of Earth Sciences Page 19 Image of red sandstone slab © Sedgwick Museum of Earth Sciences 2 Introduction Ideas and evidence was introduced as an aspect of school science after the review of the National Curriculum in 2000. Until the advent of the National Strategy for Science it was an area that was often not planned for explicitly. -
A NEW AMEBELODONT, TORYNOBELODON BARNUMBROWNI, SP. NOV. a PRELIMINARY REPORT Erwin Hinckley Barbour
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 1931 A NEW AMEBELODONT, TORYNOBELODON BARNUMBROWNI, SP. NOV. A PRELIMINARY REPORT Erwin Hinckley Barbour Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, Geology Commons, Geomorphology Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, Paleontology Commons, and the Sedimentology Commons This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1/ 6 . BULLETIN 22 VOLUME I UN 1~l:7Gtrs;:J:~~!1 L'P' i THE NEBRASKA STATE USEUM I tor ERWIN H. BARBOUR, Dir NUl :~,~I r ~;l A NEW AMEBELODONT, TOR :I.,I,lI..LJ.J;I.c.uUJ.J~m.T-~ ___I BARNUMBROWNI, SP. NOV. A PRELIMINARY REPORT By ERWIN HINCKLEY BARBOUR The subfamily of longirostrine mastodonts known as the Amebelodontinae have been so recently discovered and described that as yet theY; are little known by the citizens of this state. They are most briefly and directly described as shovel-tusked mastodons. The first one found, namely Amebelodon fricki, was secured in April 1927, and was pub lished June 1927. In the meantime, many other examples of Amebelodonts have been added to the Morrill Palaeon tological Collections of the Nebraska State Museum. The exact number cannot be stated until the material shipped in from the field during the current season is unpacked, cleaned, and identified. -
Isotopic Dietary Reconstructions of Pliocene Herbivores at Laetoli: Implications for Early Hominin Paleoecology ⁎ John D
Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007) 272–306 www.elsevier.com/locate/palaeo Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology ⁎ John D. Kingston a, , Terry Harrison b a Department of Anthropology, Emory University, 1557 Dickey Dr., Atlanta, GA 30322, United States b Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, United States Received 20 September 2005; received in revised form 1 August 2006; accepted 4 August 2006 Abstract Major morphological and behavioral innovations in early human evolution have traditionally been viewed as responses to conditions associated with increasing aridity and the development of extensive grassland-savanna biomes in Africa during the Plio- Pleistocene. Interpretations of paleoenvironments at the Pliocene locality of Laetoli in northern Tanzania have figured prominently in these discussions, primarily because early hominins recovered from Laetoli are generally inferred to be associated with grassland, savanna or open woodland habitats. As these reconstructions effectively extend the range of habitat preferences inferred for Pliocene hominins, and contrast with interpretations of predominantly woodland and forested ecosystems at other early hominin sites, it is worth reevaluating the paleoecology at Laetoli utilizing a new approach. Isotopic analyses were conducted on the teeth of twenty-one extinct mammalian herbivore species from the Laetolil Beds (∼4.3–3.5 Ma) and Upper Ndolanya Beds (∼2.7–2.6 Ma) to determine their diet, as well as to investigate aspects of plant physiognomy and climate. Enamel samples were obtained from multiple localities at different stratigraphic levels in order to develop a high-resolution spatio-temporal framework for identifying and characterizing dietary and ecological change and variability within the succession. -
Filling a Gap in the Proboscidean Fossil Record: a New Genus from The
Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, Jeremy Martin, Bernard Sambou, Mustapha Thiam, Lionel Hautier To cite this version: Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, et al.. Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal. Journal of Paleontology, Paleontological Society, 2019, pp.1-9. 10.1017/jpa.2019.98. hal-02408861 HAL Id: hal-02408861 https://hal.archives-ouvertes.fr/hal-02408861 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Filling a gap in the proboscidean fossil record: a new genus from 2 the Lutetian of Senegal 3 4 Rodolphe Tabuce1, Raphaël Sarr2, Sylvain Adnet1, Renaud Lebrun1, Fabrice Lihoreau1, Jeremy 5 E. Martin2, Bernard Sambou3, Mustapha Thiam3, and Lionel Hautier1 6 7 1Institut des Sciences de l’Evolution, UMR5554, CNRS, IRD, EPHE, Université de 8 Montpellier, Montpellier, France <[email protected]> 9 <[email protected]> <[email protected]> 10 <[email protected]> <[email protected] > 11 2Univ. -
09 Göhlich.Indd
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2007 Band/Volume: 108A Autor(en)/Author(s): Göhlich Ursula B. Artikel/Article: 9. Gomphotheres (Proboscidea, Mammalia). In: Daxner-Höck, Gudrun ed. Oligocene-Miocene Vertebrates from the Valley of Lakes (Central Mongolia): Morphology, phylogenetic and stratigraphic implications 271-289 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 108 A 271–289 Wien, September 2007 Oligocene-Miocene Vertebrates from the Valley of Lakes (Central Mongolia): Morphology, phylogenetic and stratigraphic implications Editor: Gudrun DAXNER-HÖCK 9. Gomphotheres (Proboscidea, Mammalia) from the Early-Middle Miocene of Central Mongolia by Ursula B. GÖHLICH1 (With 1 text-figure, 3 tables and 1 plate) Manuscript submitted on August 31st 2005, the revised manuscript on January 26th 2006 Abstract Presented here is new fossil proboscidean material from the Miocene Loh Formation of the Valley of Lakes in Central Mongolia. Two, possibly three, different taxa of gomphotheres s. l. are represented in three different localities, but the fragmentary preservation of the couple of cheek teeth and some post- cranial bone remains restricts their systematic determination. Only one molar can be identified as cf. Gomphotherium mongoliense representing the crown morphology of the bunodont type of the "Gompho- therium angustidens group". The residual tooth and remains might belong to more derived, trilophodont gomphotheres of the genus Gomphotherium, or perhaps also to shovel-tusked gomphotheres. Key words: Mongolia, Loh Formation, Miocene, Proboscidea, Gomphotheriidae, Gomphotherium. Zusammenfassung Diese Arbeit stellt neues Material fossiler Proboscidea aus der miozänen Loh Formation aus dem "Tal der Seen" in der Zentral-Mongolei vor. -
The Distribution of Proboscidea (Elephants) Professor Dr
The Distribution of Proboscidea (Elephants) Professor Dr. Erich Thenius [In: Kosmos #5, May, pp. 235-242, 1964, Stuttgart] When I speak here about animals with a trunk, I do not mean the tapirs or pigs, but I refer only to the elephants and their ancestors, like the Mastodons and Dinotheria which we call the Proboscidea (after the Greek: proboscis = trunk). Their main characteristic is their remarkable trunk which has been fashioned to become a “gripping” organ. That organ was not present in the geologically oldest ancestors whose skeletons stem from the deposits of the Eocene (old Tertiary) in Africa. Even though we have no “soft tissues” of those animals, their skeletal features suffice to tell the scientist just what their bodily characteristics would have been. Thus also, we are not really going to discuss much about their distribution in historic times, but rather, we will concentrate on the development of these characteristic mammals, from their inception to their distribution in the past. A history of the Proboscidea is necessarily a history of their distribution in time and space. Information of these animals is available from numerous fossil findings in nearly all continents. But, before we even consider the fossil history, let us take a quick look of the current distribution of elephants which is shown in Figure 1. Nowadays, there are only two species of elephants: the Indian and African elephants. They not only differ geographically but also morphologically. That is to say, they are different in their bodily form and in their anatomy in several characteristics as every attentive zoo visitor who sees them side-by-side easily observes: The small-eared Indian elephant (Elephas maximus) has a markedly bowed upper skull; the African cousin (Loxodonta africana) has longer legs and markedly larger ears. -
The Sedimentology and Palaeoecology of the Westleton Member of the Norwich Crag Formation (Early Pleistocene) at Thorington, Suffolk, England
Geol. Mag. 136 (4), 1999, pp. 453–464. Printed in the United Kingdom © 1999 Cambridge University Press 453 The sedimentology and palaeoecology of the Westleton Member of the Norwich Crag Formation (Early Pleistocene) at Thorington, Suffolk, England A.E. RICHARDS*, P.L. GIBBARD & M. E. PETTIT *School of Geography, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK (Received 28 September 1998; accepted 29 March 1999) Abstract – Extensive sections in the Thorington gravel quarry complex in eastern Suffolk include the most complete record to date of sedimentary environments of the Westleton Beds Member of the Norwich Crag Formation. New palaeoecological and palaeomagnetic evidence is presented, which confirms that the Member was deposited at or near a gravelly shoreline of the Crag Sea as sea level fluctuated during a climatic ameloriation within or at the end of the Baventian/ pre-Pastonian ‘a’ Stage (Tiglian C4c Substage). 1. Introduction 2. Late Pliocene to Early Pleistocene deposits in Suffolk The gravel quarry complex at Thorington (TM 423 728) is situated 8 km west of Southwold in northern A stratigraphical table, comparing British nomencla- Suffolk (Fig. 1). This paper will present details of ture with that of the Netherlands, is given in Table 1. observations in the quarry during the period from The earliest Pleistocene deposits that occur in June 1994 to September 1997, which provide signifi- northern Suffolk are the East Anglian Crags, which cant biostratigraphical and sedimentological evidence were deposited at the margins of the southern North for depositional environments associated with the Sea Basin. -
Paleobiogeography of Trilophodont Gomphotheres (Mammalia: Proboscidea)
Revista Mexicana deTrilophodont Ciencias Geológicas, gomphotheres. v. 28, Anúm. reconstruction 2, 2011, p. applying235-244 DIVA (Dispersion-Vicariance Analysis) 235 Paleobiogeography of trilophodont gomphotheres (Mammalia: Proboscidea). A reconstruction applying DIVA (Dispersion-Vicariance Analysis) María Teresa Alberdi1,*, José Luis Prado2, Edgardo Ortiz-Jaureguizar3, Paula Posadas3, and Mariano Donato1 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, España. 2 INCUAPA, Departamento de Arqueología, Universidad Nacional del Centro, Del Valle 5737, B7400JWI Olavarría, Argentina. 3 LASBE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/Nº, B1900FWA La Plata, Argentina. * [email protected] ABSTRACT The objective of our paper was to analyze the distributional patterns of trilophodont gomphotheres, applying an event-based biogeographic method. We have attempted to interpret the biogeographical history of trilophodont gomphotheres in the context of the geological evolution of the continents they inhabited during the Cenozoic. To reconstruct this biogeographic history we used DIVA 1.1. This application resulted in an exact solution requiring three vicariant events, and 15 dispersal events, most of them (i.e., 14) occurring at terminal taxa. The single dispersal event at an internal node affected the common ancestor to Sinomastodon plus the clade Cuvieronius – Stegomastodon. A vicariant event took place which resulted in two isolated groups: (1) Amebelodontinae (Africa – Europe – Asia) and (2) Gomphotheriinae (North America). The Amebelodontinae clade was split by a second vicariant event into Archaeobelodon (Africa and Europe), and the ancestors of the remaining genera of the clade (Asia). In contrast, the Gomphotheriinae clade evolved mainly in North America. -
Remains of Zygolophodon Turicensis (Proboscidea, Mammutidae) from the Coal Mines Near Bitola, Republic of Macedonia
Remains of Zygolophodon turicensis (Proboscidea, Mammutidae) from the coal mines... 157 Historia naturalis bulgarica, 20: 157-162, 2012 Remains of Zygolophodon turicensis (Proboscidea, Mammutidae) from the coal mines near Bitola, Republic of Macedonia Risto GAREVSKI, Biljana GAREVSKA, Georgi N. MARKOV GAREVSKI R., GAREVSKA B., MARKOV G.N. 2012. Remains of Zygolophodon turicensis (Proboscidea, Mammutidae) from the coal mines near Bitola, Republic of Macedonia. – Historia naturalis bulgarica, 20: 157-162. Abstract. We report Zygolophodon turicensis (Schinz, 1824) from the Miocene deposits in a coal mine near Bitola, Republic of Macedonia, and refer a misidentified molar from Nerezi near Skopje published in the 1930s to the same species. Zygolophodon turicensis is a new taxon to the fossil fauna of Macedonia, and the finds discussed in the paper are among the few fossils of pre-Turolian age from the country. Key words: Proboscidea, Mammutidae, Zygolophodon, Miocene, Macedonia Introduction The specimens described below are an accidental find from the coal mines of the thermal power station near Bitola in the southwest of the Republic of Macedonia. Found in sandy deposits, the molars most probably belong to the same individual. Material and methods Material: Left and right m2-m3, coal mine near Bitola, stored at the Bitola Natural History Museum (BiNHM), coll. no. 13536. Methods: Dental nomenclature follows TASSY (1996). Measurements (in mm) taken by B. Garevska. Systematic palaeontology Order Proboscidea Illiger, 1811 Family Mammutidae Hay, 1922 Genus Zygolophodon Vacek, 1877 Zygolophodon turicensis (Schinz, 1824) All four molars (Fig.1, Fig. 2) are in a rather good condition. The left m2 is preserved very well.