Navier Stokes Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch. -
Glossary: Definitions
Appendix B Glossary: Definitions The definitions given here apply to the terminology used throughout this book. Some of the terms may be defined differently by other authors; when this is the case, alternative terminology is noted. When two or more terms with identical or similar meaning are in general acceptance, they are given in the order of preference of the current writers. Allowable stress (working stress): If a member is so designed that the maximum stress as calculated for the expected conditions of service is less than some limiting value, the member will have a proper margin of security against damage or failure. This limiting value is the allowable stress subject to the material and condition of service in question. The allowable stress is made less than the damaging stress because of uncertainty as to the conditions of service, nonuniformity of material, and inaccuracy of the stress analysis (see Ref. 1). The margin between the allowable stress and the damaging stress may be reduced in proportion to the certainty with which the conditions of the service are known, the intrinsic reliability of the material, the accuracy with which the stress produced by the loading can be calculated, and the degree to which failure is unattended by danger or loss. (Compare with Damaging stress; Factor of safety; Factor of utilization; Margin of safety. See Refs. l–3.) Apparent elastic limit (useful limit point): The stress at which the rate of change of strain with respect to stress is 50% greater than at zero stress. It is more definitely determinable from the stress–strain diagram than is the proportional limit, and is useful for comparing materials of the same general class. -
Derivation of Fluid Flow Equations
TPG4150 Reservoir Recovery Techniques 2017 1 Fluid Flow Equations DERIVATION OF FLUID FLOW EQUATIONS Review of basic steps Generally speaking, flow equations for flow in porous materials are based on a set of mass, momentum and energy conservation equations, and constitutive equations for the fluids and the porous material involved. For simplicity, we will in the following assume isothermal conditions, so that we not have to involve an energy conservation equation. However, in cases of changing reservoir temperature, such as in the case of cold water injection into a warmer reservoir, this may be of importance. Below, equations are initially described for single phase flow in linear, one- dimensional, horizontal systems, but are later on extended to multi-phase flow in two and three dimensions, and to other coordinate systems. Conservation of mass Consider the following one dimensional rod of porous material: Mass conservation may be formulated across a control element of the slab, with one fluid of density ρ is flowing through it at a velocity u: u ρ Δx The mass balance for the control element is then written as: ⎧Mass into the⎫ ⎧Mass out of the ⎫ ⎧ Rate of change of mass⎫ ⎨ ⎬ − ⎨ ⎬ = ⎨ ⎬ , ⎩element at x ⎭ ⎩element at x + Δx⎭ ⎩ inside the element ⎭ or ∂ {uρA} − {uρA} = {φAΔxρ}. x x+ Δx ∂t Dividing by Δx, and taking the limit as Δx approaches zero, we get the conservation of mass, or continuity equation: ∂ ∂ − (Aρu) = (Aφρ). ∂x ∂t For constant cross sectional area, the continuity equation simplifies to: ∂ ∂ − (ρu) = (φρ) . ∂x ∂t Next, we need to replace the velocity term by an equation relating it to pressure gradient and fluid and rock properties, and the density and porosity terms by appropriate pressure dependent functions. -
Chapter 5 Constitutive Modelling
Chapter 5 Constitutive Modelling 5.1 Introduction Lecture 14 Thus far we have established four conservation (or balance) equations, an entropy inequality and a number of kinematic relationships. The overall set of governing equations are collected in Table 5.1. The Eulerian form has a one more independent equation because the density must be determined, 1 whereas in the Lagrangian form it is directly related to the prescribed initial densityρ 0. Physical Law Eulerian FormN Lagrangian Formn DR ∂r Kinematics: Dt =V , 3, ∂t =v, 3; Dρ ∇ · Mass: Dt +ρ R V=0, 1,ρ 0 =ρJ, 0; DV ∇ · ∂v ∇ · Linear momentum:ρ Dt = R T+ρF , 3,ρ 0 ∂t = r p+ρ 0f, 3; Angular momentum:T=T T , 3,s=s T , 3; DΦ ∂φ Energy:ρ =T:D+ρB ∇ ·Q, 1,ρ =s: e˙+ρ b ∇ r ·q, 1; Dt − R 0 ∂t 0 − Dη ∂η0 Entropy inequality:ρ ∇ ·(Q/Θ)+ρB/Θ, 0,ρ ∇r (q/θ)+ρ b/θ, 0. Dt ≥ − R 0 ∂t ≥ − 0 Independent Equations: 11 10 Table 5.1: The governing equations for continuum mechanics in Eulerian and Lagrangian form. N is the number of independent equations in Eulerian form andn is the number of independent equations in Lagrangian form. Examining the equations reveals that they involve more unknown variables than equations, listed in Table 5.2. Once again the fact that the density in the Lagrangian formulation is prescribed means that there is one fewer unknown compared to the Eulerian formulation. Thus, in either formulation and additional eleven equations are required to close the system. -
Correct Expression of Material Derivative and Application to the Navier-Stokes Equation —– the Solution Existence Condition of Navier-Stokes Equation
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2020 doi:10.20944/preprints202003.0030.v4 Correct Expression of Material Derivative and Application to the Navier-Stokes Equation |{ The solution existence condition of Navier-Stokes equation Bo-Hua Sun1 1 School of Civil Engineering & Institute of Mechanics and Technology Xi'an University of Architecture and Technology, Xi'an 710055, China http://imt.xauat.edu.cn email: [email protected] (Dated: June 15, 2020) The material derivative is important in continuum physics. This paper shows that the expression d @ dt = @t + (v · r), used in most literature and textbooks, is incorrect. This article presents correct d(:) @ expression of the material derivative, namely dt = @t (:) + v · [r(:)]. As an application, the form- solution of the Navier-Stokes equation is proposed. The form-solution reveals that the solution existence condition of the Navier-Stokes equation is that "The Navier-Stokes equation has a solution if and only if the determinant of flow velocity gradient is not zero, namely det(rv) 6= 0." Keywords: material derivative, velocity gradient, tensor calculus, tensor determinant, Navier-Stokes equa- tions, solution existence condition In continuum physics, there are two ways of describ- derivative as in Ref. 1. Therefore, to revive the great ing continuous media or flows, the Lagrangian descrip- influence of Landau in physics and fluid mechanics, we at- tion and the Eulerian description. In the Eulerian de- tempt to address this issue in this dedicated paper, where scription, the material derivative with respect to time we revisit the material derivative to show why the oper- d @ dv @v must be defined. -
Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
Navier-Stokes-Equation
Math 613 * Fall 2018 * Victor Matveev Derivation of the Navier-Stokes Equation 1. Relationship between force (stress), stress tensor, and strain: Consider any sub-volume inside the fluid, with variable unit normal n to the surface of this sub-volume. Definition: Force per area at each point along the surface of this sub-volume is called the stress vector T. When fluid is not in motion, T is pointing parallel to the outward normal n, and its magnitude equals pressure p: T = p n. However, if there is shear flow, the two are not parallel to each other, so we need a marix (a tensor), called the stress-tensor , to express the force direction relative to the normal direction, defined as follows: T Tn or Tnkjjk As we will see below, σ is a symmetric matrix, so we can also write Tn or Tnkkjj The difference in directions of T and n is due to the non-diagonal “deviatoric” part of the stress tensor, jk, which makes the force deviate from the normal: jkp jk jk where p is the usual (scalar) pressure From general considerations, it is clear that the only source of such “skew” / ”deviatoric” force in fluid is the shear component of the flow, described by the shear (non-diagonal) part of the “strain rate” tensor e kj: 2 1 jk2ee jk mm jk where euujk j k k j (strain rate tensro) 3 2 Note: the funny construct 2/3 guarantees that the part of proportional to has a zero trace. The two terms above represent the most general (and the only possible) mathematical expression that depends on first-order velocity derivatives and is invariant under coordinate transformations like rotations. -
Continuum Fluid Mechanics
CONTINUUM FLUID MECHANICS Motion A body is a collection of material particles. The point X is a material point and it is the position of the material particles at time zero. x3 Definition: A one-to-one one-parameter mapping X3 x(X, t ) x = x(X, t) X x X 2 x 2 is called motion. The inverse t =0 x1 X1 X = X(x, t) Figure 1. Schematic of motion. is the inverse motion. X k are referred to as the material coordinates of particle x , and x is the spatial point occupied by X at time t. Theorem: The inverse motion exists if the Jacobian, J of the transformation is nonzero. That is ∂x ∂x J = det = det k ≠ 0 . ∂X ∂X K This is the statement of the fundamental theorem of calculus. Definition: Streamlines are the family of curves tangent to the velocity vector field at time t . Given a velocity vector field v, streamlines are governed by the following equations: dx1 dx 2 dx 3 = = for a given t. v1 v 2 v3 Definition: The streak line of point x 0 at time t is a line, which is made up of material points, which have passed through point x 0 at different times τ ≤ t . Given a motion x i = x i (X, t) and its inverse X K = X K (x, t), it follows that the 0 0 material particle X k will pass through the spatial point x at time τ . i.e., ME639 1 G. Ahmadi 0 0 0 X k = X k (x ,τ). -
Using Lenterra Shear Stress Sensors to Measure Viscosity
Application Note: Using Lenterra Shear Stress Sensors to Measure Viscosity Guidelines for using Lenterra’s shear stress sensors for in-line, real-time measurement of viscosity in pipes, thin channels, and high-shear mixers. Shear Stress and Viscosity Shear stress is a force that acts on an object that is directed parallel to its surface. Lenterra’s RealShear™ sensors directly measure the wall shear stress caused by flowing or mixing fluids. As an example, when fluids pass between a rotor and a stator in a high-shear mixer, shear stress is experienced by the fluid and the surfaces that it is in contact with. A RealShear™ sensor can be mounted on the stator to measure this shear stress, as a means to monitor mixing processes or facilitate scale-up. Shear stress and viscosity are interrelated through the shear rate (velocity gradient) of a fluid: ∂u τ = µ = γµ & . ∂y Here τ is the shear stress, γ˙ is the shear rate, µ is the dynamic viscosity, u is the velocity component of the fluid tangential to the wall, and y is the distance from the wall. When the viscosity of a fluid is not a function of shear rate or shear stress, that fluid is described as “Newtonian.” In non-Newtonian fluids the viscosity of a fluid depends on the shear rate or stress (or in some cases the duration of stress). Certain non-Newtonian fluids behave as Newtonian fluids at high shear rates and can be described by the equation above. For others, the viscosity can be expressed with certain models. -
Continuity Equation in Pressure Coordinates
Continuity Equation in Pressure Coordinates Here we will derive the continuity equation from the principle that mass is conserved for a parcel following the fluid motion (i.e., there is no flow across the boundaries of the parcel). This implies that δxδyδp δM = ρ δV = ρ δxδyδz = − g is conserved following the fluid motion: 1 d(δM ) = 0 δM dt 1 d()δM = 0 δM dt g d ⎛ δxδyδp ⎞ ⎜ ⎟ = 0 δxδyδp dt ⎝ g ⎠ 1 ⎛ d(δp) d(δy) d(δx)⎞ ⎜δxδy +δxδp +δyδp ⎟ = 0 δxδyδp ⎝ dt dt dt ⎠ 1 ⎛ dp ⎞ 1 ⎛ dy ⎞ 1 ⎛ dx ⎞ δ ⎜ ⎟ + δ ⎜ ⎟ + δ ⎜ ⎟ = 0 δp ⎝ dt ⎠ δy ⎝ dt ⎠ δx ⎝ dt ⎠ Taking the limit as δx, δy, δp → 0, ∂u ∂v ∂ω Continuity equation + + = 0 in pressure ∂x ∂y ∂p coordinates 1 Determining Vertical Velocities • Typical large-scale vertical motions in the atmosphere are of the order of 0. 01-01m/s0.1 m/s. • Such motions are very difficult, if not impossible, to measure directly. Typical observational errors for wind measurements are ~1 m/s. • Quantitative estimates of vertical velocity must be inferred from quantities that can be directly measured with sufficient accuracy. Vertical Velocity in P-Coordinates The equivalent of the vertical velocity in p-coordinates is: dp ∂p r ∂p ω = = +V ⋅∇p + w dt ∂t ∂z Based on a scaling of the three terms on the r.h.s., the last term is at least an order of magnitude larger than the other two. Making the hydrostatic approximation yields ∂p ω ≈ w = −ρgw ∂z Typical large-scale values: for w, 0.01 m/s = 1 cm/s for ω, 0.1 Pa/s = 1 μbar/s 2 The Kinematic Method By integrating the continuity equation in (x,y,p) coordinates, ω can be obtained from the mean divergence in a layer: ⎛ ∂u ∂v ⎞ ∂ω ⎜ + ⎟ + = 0 continuity equation in (x,y,p) coordinates ⎝ ∂x ∂y ⎠ p ∂p p2 p2 ⎛ ∂u ∂v ⎞ ∂ω = − ⎜ + ⎟ ∂p rearrange and integrate over the layer ∫p ∫ ⎜ ⎟ 1 ∂x ∂y p1⎝ ⎠ p ⎛ ∂u ∂v ⎞ ω(p )−ω(p ) = (p − p )⎜ + ⎟ overbar denotes pressure- 2 1 1 2 ⎜ ⎟ weighted vertical average ⎝ ∂x ∂y ⎠ p To determine vertical motion at a pressure level p2, assume that p1 = surface pressure and there is no vertical motion at the surface. -
Chapter 3 Newtonian Fluids
CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Chapter 3: Newtonian Fluids CM4650 Polymer Rheology Michigan Tech Navier-Stokes Equation v vv p 2 v g t 1 © Faith A. Morrison, Michigan Tech U. Chapter 3: Newtonian Fluid Mechanics TWO GOALS •Derive governing equations (mass and momentum balances •Solve governing equations for velocity and stress fields QUICK START V W x First, before we get deep into 2 v (x ) H derivation, let’s do a Navier-Stokes 1 2 x1 problem to get you started in the x3 mechanics of this type of problem solving. 2 © Faith A. Morrison, Michigan Tech U. 1 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics EXAMPLE: Drag flow between infinite parallel plates •Newtonian •steady state •incompressible fluid •very wide, long V •uniform pressure W x2 v1(x2) H x1 x3 3 EXAMPLE: Poiseuille flow between infinite parallel plates •Newtonian •steady state •Incompressible fluid •infinitely wide, long W x2 2H x1 x3 v (x ) x1=0 1 2 x1=L p=Po p=PL 4 2 CM4650 Chapter 3 Newtonian Fluid 2/5/2018 Mechanics Engineering Quantities of In more complex flows, we can use Interest general expressions that work in all cases. (any flow) volumetric ⋅ flow rate ∬ ⋅ | average 〈 〉 velocity ∬ Using the general formulas will Here, is the outwardly pointing unit normal help prevent errors. of ; it points in the direction “through” 5 © Faith A. Morrison, Michigan Tech U. The stress tensor was Total stress tensor, Π: invented to make the calculation of fluid stress easier. Π ≡ b (any flow, small surface) dS nˆ Force on the S ⋅ Π surface V (using the stress convention of Understanding Rheology) Here, is the outwardly pointing unit normal of ; it points in the direction “through” 6 © Faith A. -
Ch.1. Description of Motion
CH.1. DESCRIPTION OF MOTION Multimedia Course on Continuum Mechanics Overview 1.1. Definition of the Continuous Medium 1.1.1. Concept of Continuum Lecture 1 1.1.2. Continuous Medium or Continuum 1.2. Equations of Motion 1.2.1 Configurations of the Continuous Medium 1.2.2. Material and Spatial Coordinates Lecture 2 1.2.3. Equation of Motion and Inverse Equation of Motion 1.2.4. Mathematical Restrictions 1.2.5. Example Lecture 3 1.3. Descriptions of Motion 1.3.1. Material or Lagrangian Description Lecture 4 1.3.2. Spatial or Eulerian Description 1.3.3. Example Lecture 5 2 Overview (cont’d) 1.4. Time Derivatives Lecture 6 1.4.1. Material and Local Derivatives 1.4.2. Convective Rate of Change Lecture 7 1.4.3. Example Lecture 8 1.5. Velocity and Acceleration 1.5.1. Velocity Lecture 9 1.5.2. Acceleration 1.5.3. Example 1.6. Stationarity and Uniformity 1.6.1. Stationary Properties Lecture 10 1.6.2. Uniform Properties 3 Overview (cont’d) 1.7. Trajectory or Pathline 1.7.1. Equation of the Trajectories 1.7.2. Example 1.8. Streamlines Lecture 11 1.8.1. Equation of the Streamlines 1.8.2. Trajectories and Streamlines 1.8.3. Example 1.8.4. Streamtubes 1.9. Control and Material Surfaces 1.9.1. Control Surface 1.9.2. Material Surface Lecture 12 1.9.3. Control Volume 1.9.4. Material Volume 4 1.1 Definition of the Continuous Medium Ch.1. Description of Motion 5 The Concept of Continuum Microscopic scale: Matter is made of atoms which may be grouped in molecules.