Mechanical Engineering Principles 3Rd Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Rotational Motion (The Dynamics of a Rigid Body)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates. -
Solutes and Solution
Solutes and Solution The first rule of solubility is “likes dissolve likes” Polar or ionic substances are soluble in polar solvents Non-polar substances are soluble in non- polar solvents Solutes and Solution There must be a reason why a substance is soluble in a solvent: either the solution process lowers the overall enthalpy of the system (Hrxn < 0) Or the solution process increases the overall entropy of the system (Srxn > 0) Entropy is a measure of the amount of disorder in a system—entropy must increase for any spontaneous change 1 Solutes and Solution The forces that drive the dissolution of a solute usually involve both enthalpy and entropy terms Hsoln < 0 for most species The creation of a solution takes a more ordered system (solid phase or pure liquid phase) and makes more disordered system (solute molecules are more randomly distributed throughout the solution) Saturation and Equilibrium If we have enough solute available, a solution can become saturated—the point when no more solute may be accepted into the solvent Saturation indicates an equilibrium between the pure solute and solvent and the solution solute + solvent solution KC 2 Saturation and Equilibrium solute + solvent solution KC The magnitude of KC indicates how soluble a solute is in that particular solvent If KC is large, the solute is very soluble If KC is small, the solute is only slightly soluble Saturation and Equilibrium Examples: + - NaCl(s) + H2O(l) Na (aq) + Cl (aq) KC = 37.3 A saturated solution of NaCl has a [Na+] = 6.11 M and [Cl-] = -
Torsion Analysis for Cold-Formed Steel Members Using Flexural Analogies
Proceedings of the Cold-Formed Steel Research Consortium Colloquium 20-22 October 2020 (cfsrc.org) Torsion Analysis for Cold-Formed Steel Members Using Flexural Analogies Robert S. Glauz, P.E.1 Abstract The design of cold-formed steel members must consider the impact of torsional loads due to transverse load eccentricity. Open cross-sections are particularly susceptible to significant twisting and high warping stresses. Design requirements for combined bending and torsion were introduced in the American Iron and Steel Institute Specification in 2007, and more recently in the Australian/New Zealand Standard 4600:2018. These provisions require an understanding of the distribution of internal forces and stresses due to torsional warping, which is not commonly taught in engineering curriculums. Furthermore, most structural analysis programs do not properly consider torsional warping stiffness and response. The purpose of this paper is to educate the structural engineer on torsion analysis using analogies to familiar flexural relationships. Useful formulas are provided for determining torsional properties and stresses. 1. Introduction Current editions of design specifications AISI S100 [1] and AS/NZS 4600 [2] have provisions to account for stresses Cold-formed steel members of open cross-section are often produced by torsional loads. These provisions consider the susceptible to twisting and torsional stresses. The shear effect of combined longitudinal stresses resulting from center for many shapes is outside the envelope of the cross- flexure and torsional warping. Future provisions may section so it can be difficult to apply transverse loads without address combined shear stresses from flexure and torsion, producing torsional effects. Open thin-walled members also and may consider the impact of combined longitudinal and have inherently low torsional stiffness, thus even small shear stresses from all types of loading. -
Non-Local Momentum Transport Parameterizations
Non-local Momentum Transport Parameterizations Joe Tribbia NCAR.ESSL.CGD.AMP Outline • Historical view: gravity wave drag (GWD) and convective momentum transport (CMT) • GWD development -semi-linear theory -impact • CMT development -theory -impact Both parameterizations of recent vintage compared to radiation or PBL GWD CMT • 1960’s discussion by Philips, • 1972 cumulus vorticity Blumen and Bretherton damping ‘observed’ Holton • 1970’s quantification Lilly • 1976 Schneider and and momentum budget by Lindzen -Cumulus Friction Swinbank • 1980’s NASA GLAS model- • 1980’s incorporation into Helfand NWP and climate models- • 1990’s pressure term- Miller and Palmer and Gregory McFarlane Atmospheric Gravity Waves Simple gravity wave model Topographic Gravity Waves and Drag • Flow over topography generates gravity (i.e. buoyancy) waves • <u’w’> is positive in example • Power spectrum of Earth’s topography α k-2 so there is a lot of subgrid orography • Subgrid orography generating unresolved gravity waves can transport momentum vertically • Let’s parameterize this mechanism! Begin with linear wave theory Simplest model for gravity waves: with Assume w’ α ei(kx+mz-σt) gives the dispersion relation or Linear theory (cont.) Sinusoidal topography ; set σ=0. Gives linear lower BC Small scale waves k>N/U0 decay Larger scale waves k<N/U0 propagate Semi-linear Parameterization Propagating solution with upward group velocity In the hydrostatic limit The surface drag can be related to the momentum transport δh=isentropic Momentum transport invariant by displacement Eliassen-Palm. Deposited when η=U linear theory is invalid (CL, breaking) z φ=phase Gravity Wave Drag Parameterization Convective or shear instabilty begins to dissipate wave- momentum flux no longer constant Waves propagate vertically, amplitude grows as r-1/2 (energy force cons.). -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
Mechanical Advantage Use the Equation for Mechanical Advantage to See How Machines Multiply Force
Name Date Class WORKSHEET MATH SKILLS USED Division MATH IN SCIENCE: PHYSICAL SCIENCE 53 Decimals Mechanical Advantage Use the equation for mechanical advantage to see how machines multiply force. The mechanical advantage of a machine is the factor by which the machine multiplies force. The mechanical advantage of a machine can be used to determine how well a ma- chine works and whether it can perform a particular job. output force EQUATION: mechanical advantage (MA) ϭ ᎏᎏ input force SAMPLE PROBLEM: What is the mechanical advantage of a lever that requires an input force of 20 N and lifts an object that weighs 60 N? 60 N mechanical advantage (MA) ϭ ᎏ 20 N MA ϭ 3 Practice Your Skills! Use the equation for mechanical advantage to answer the following questions: 1. Amanda uses a wheelbarrow to lift a load of bricks. The bricks weigh 600 N, which is more than Amanda could normally carry. However, with the wheelbarrow, Amanda can lift the bricks with as little as 120 N. What is the mechanical advantage of the wheelbarrow? 2. Marshall wants to remove a tree stump from the ground. To do this, he puts one end of a long beam under the stump and puts all of his weight on the other end. His weight is just enough to lift the stump. The stump weighs 400 N. Marshall weighs 250 N. What is the mechanical advantage of the lever Marshall is using? 3. A system of pulleys allows a mechanic to lift an 1800 N engine. t and Winston. All rights reserved. -
Chapter 14 Work, Power, and Machines
0161_hsps09_GRSW_Ch14.qxd 7/27/07 3:33 PM Page 157 Name ___________________________ Class ___________________ Date _____________ Chapter 14 Work, Power, and Machines Summary 14.1 Work and Power For a force to do work on an object, some of the force must act in the same direction as the object moves. If there is no movement, no work is done. • Work is the product of force and distance. • Work is done when a force moves an object over a distance. Any part of a force that does not act in the direction of motion does no work on an object. • The joule (J) is the SI unit of work. • When a force of 1 newton moves an object 1 meter in the direction of the force, 1 joule of work is done. Doing work at a faster rate requires more power. To increase power, you can increase the amount of work done in a given time, or you can do a given amount of work in less time. • Power is the rate of doing work. • The SI unit of power is the watt (W), which is equal to one joule per second. • One horsepower (hp) is equal to about 746 watts. 14.2 Work and Machines Machines make work easier to do. They change the size of a force needed, the direction of a force, or the distance over which a force acts. •Amachine is a device that changes a force. Because of friction, the work done by a machine is always less than the work done on the machine. -
Curriculum Overview Physics/Pre-AP 2018-2019 1St Nine Weeks
Curriculum Overview Physics/Pre-AP 2018-2019 1st Nine Weeks RESOURCES: Essential Physics (Ergopedia – online book) Physics Classroom http://www.physicsclassroom.com/ PHET Simulations https://phet.colorado.edu/ ONGOING TEKS: 1A, 1B, 2A, 2B, 2C, 2D, 2F, 2G, 2H, 2I, 2J,3E 1) SAFETY TEKS 1A, 1B Vocabulary Fume hood, fire blanket, fire extinguisher, goggle sanitizer, eye wash, safety shower, impact goggles, chemical safety goggles, fire exit, electrical safety cut off, apron, broken glass container, disposal alert, biological hazard, open flame alert, thermal safety, sharp object safety, fume safety, electrical safety, plant safety, animal safety, radioactive safety, clothing protection safety, fire safety, explosion safety, eye safety, poison safety, chemical safety Key Concepts The student will be able to determine if a situation in the physics lab is a safe practice and what appropriate safety equipment and safety warning signs may be needed in a physics lab. The student will be able to determine the proper disposal or recycling of materials in the physics lab. Essential Questions 1. How are safe practices in school, home or job applied? 2. What are the consequences for not using safety equipment or following safe practices? 2) SCIENCE OF PHYSICS: Glossary, Pages 35, 39 TEKS 2B, 2C Vocabulary Matter, energy, hypothesis, theory, objectivity, reproducibility, experiment, qualitative, quantitative, engineering, technology, science, pseudo-science, non-science Key Concepts The student will know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. The student will know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. -
Second Order Moments in Torsion Members
Department of Civil Engineering Sydney NSW 2006 AUSTRALIA http://www.civil.usyd.edu.au/ Centre for Advanced Structural Engineering Second Order Moments in Torsion Members Research Report No R800 N.S.Trahair BSc BE MEngSc PhD DEng Lip H Teh BE PhD April 2000 Copyright Notice Department of Civil Engineering, Research Report R800 Second Order Moments in Torsion Members © 2000 Nicholas S Trahair, Lip H Teh [email protected], [email protected] This publication may be redistributed freely in its entirety and in its original form without the consent of the copyright owner. Use of material contained in this publication in any other published works must be appropriately referenced, and, if necessary, permission sought from the author. Published by: Department of Civil Engineering The University of Sydney Sydney NSW 2006 AUSTRALIA April 2000 http://www.civil.usyd.edu.au SECOND ORDER MOMENTS IN TORSION MEMBERS by N.S.Trahair, BSc, BE, MEngSc, PhD, DEng Emeritus Professor of Civil Engineering and L.H. Teh, BE, PhD Senior Researcher in Civil Engineering at the University of Sydney April, 2000 Abstract This paper is concerned with the elastic flexural buckling of structural members under torsion, and with second-order moments in torsion members. Previous research is reviewed, and the energy method of predicting elastic buckling is presented. This is used to develop the differential equilibrium equations for a buckled member. Approximate solutions based on the energy method are obtained for a range of conservative applied torque distributions and flexural boundary conditions. A comparison with the limited range of independent solutions available and with independent finite element solutions suggests that the errors in the approximate solutions may be as small as 1%. -
Water Heater Formulas and Terminology
More resources http://waterheatertimer.org/9-ways-to-save-with-water-heater.html http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html http://waterheatertimer.org/pdf/Fundamentals-of-water-heating.pdf FORMULAS & FACTS BTU (British Thermal Unit) is the heat required to raise 1 pound of water 1°F 1 BTU = 252 cal = 0.252 kcal 1 cal = 4.187 Joules BTU X 1.055 = Kilo Joules BTU divided by 3,413 = Kilowatt (1 KW) FAHRENHEIT CENTIGRADE 32 0 41 5 To convert from Fahrenheit to Celsius: 60.8 16 (°F – 32) x 5/9 or .556 = °C. 120.2 49 140 60 180 82 212 100 One gallon of 120°F (49°C) water BTU output (Electric) = weighs approximately 8.25 pounds. BTU Input (Not exactly true due Pounds x .45359 = Kilogram to minimal flange heat loss.) Gallons x 3.7854 = Liters Capacity of a % of hot water = cylindrical tank (Mixed Water Temp. – Cold Water – 1⁄ 2 diameter (in inches) Temp.) divided by (Hot Water Temp. x 3.146 x length. (in inches) – Cold Water Temp.) Divide by 231 for gallons. % thermal efficiency = Doubling the diameter (GPH recovery X 8.25 X temp. rise X of a pipe will increase its flow 1.0) divided by BTU/H Input capacity (approximately) 5.3 times. BTU output (Gas) = GPH recovery x 8.25 x temp. rise x 1.0 FORMULAS & FACTS TEMP °F RISE STEEL COPPER Linear expansion of pipe 50° 0.38˝ 0.57˝ – in inches per 100 Ft. 100° .076˝ 1.14˝ 125° .092˝ 1.40˝ 150° 1.15˝ 1.75˝ Grain – 1 grain per gallon = 17.1 Parts Per million (measurement of water hardness) TC-092 FORMULAS & FACTS GPH (Gas) = One gallon of Propane gas contains (BTU/H Input X % Eff.) divided by about 91,250 BTU of heat. -
Systematic Errors in High-Precision Gravity Measurements by Light-Pulse Atom Interferometry on the Ground and in Space
Systematic errors in high-precision gravity measurements by light-pulse atom interferometry on the ground and in space Anna M. Nobili,1, 2 Alberto Anselmi,3 and Raffaello Pegna1 1Dept. of Physics \E. Fermi", University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 2INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 3Thales Alenia Space Italia, Strada Antica di Collegno 253, 10146 Torino, Italy (Dated: February 18, 2020) We focus on the fact that light-pulse atom interferometers measure the atoms' acceleration with only three data points per drop. As a result, the measured effect of the gravity gradient is system- atically larger than the true one, an error linear with the gradient and quadratic in time almost unnoticed so far. We show how this error affects the absolute measurement of the gravitational acceleration g as well as ground and space experiments with gradiometers based on atom inter- ferometry such as those designed for space geodesy, the measurement of the universal constant of gravity and the detection of gravitational waves. When atom interferometers test the universality of free fall and the weak equivalence principle by dropping different isotopes of the same atom one laser interrogates both isotopes and the error reported here cancels out. With atom clouds of different species and two lasers of different frequencies the phase shifts measured by the interferometer differ by a large amount even in absence of violation. Systematic errors, including common mode acceler- ations coupled to the gravity gradient with the reported error, lead to hard concurrent requirements {on the ground and in space{ on several dimensionless parameters all of which must be smaller than the sought-for violation signal.