SONG-DISSERTATION-2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

SONG-DISSERTATION-2019.Pdf i © Copyright by Shaowei Song 2019 All Rights Reserved ii Nanomaterials to Enhance the Performance of Thermoelectric Materials and Catalysts for Water Splitting A Dissertation Presented to the Faculty of the Program of Materials Science and Engineering University of Houston In Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy In Materials Science and Engineering By Shaowei Song May 2019 iii Nanomaterials to Enhance the Performance of Thermoelectric Materials and Catalysts for Water Splitting Shaowei Song Approved Chair of the Committee Zhifeng Ren, Professor, Dept. of Physics and TcSUH Committee members: Alamgir Karim, Professor, Dept. of Materials Science and Engineering Shuo Chen, Assistant Professor, Dept. of Physics and TcSUH Jiming Bao, Associate Professor, Dept. of Electrical and Computer Engineering Paul Ruchhoeft, Associate Professor, Dept. of Electrical and Computer Engineering Suresh Khator, Associate Dean, Alamgir Karim, Program Director, Cullen College of Engineering Materials Science and Engineering iv Acknowledgements I really would like to thank my supervisor Prof. Ren in department of Physics and TcSUH for giving me the opportunity to work in his group and sponsor me for my Ph.D. study. He is not only a mentor for scientific research, and also a guider in my life. He helps me become who I am now. Prof. Ren is always patient, comprehensive and positive to instruct and inspire my study. Whatever the difficulty I encounter in my life or my research, Prof. Ren is always be kind and helpful. My wife Yaxi Li is always supportive to me in past eleven years. I think I am the luckiest person to have her in my life. She brings happiness and luck to me every day. I really appreciate what she has done. I also want to thank my parents and my litter brother for their unconditional support and love. I also want to thank Prof. Qingyong Zhang and Prof. Yingrong Jin in Xihua University, who instructed me to earn my master’s degree. They lead me to the science research field and enlighten my research interests. I feel so fortunate to work with these smart people in this wonderful group. I would like to thank my current group member Dr. Jun Mao, Dr. Zhensong Ren, Dr. Dan Luo, Dr. Fei Tian, Dr. Lili Jiang, Dr. Luo Yu, Qing Zhu, Wuyang Ren, Wenyu Zhang, Fanghao Zhang and former group members Dr. Hantian Zhu, Dr. Ran He, Dr. Jing Shuai, Dr. Udara Saparamadu, Dr. Jianfa Chen, Prof. Yumei Wang, Prof. Haiqing Zhou, Dr. Jingying Sun, Dr. Yizhou Ni, Dr. Qing Jie, Dr. Jing Jiang, Ting Zhou and Li You. I want to express my gratitude to Prof. Shuo Chen for her active discussion and kind help in my life. I would like to thank our research professor Dr. Dezhi Wang and our lab manager Hui Wang. v I would like to thank the committee member: Prof. Zhifeng Ren, Prof. Alamgir Karim, Prof. Shuo Chen, Prof. Jiming Bao, and Prof. Paul Ruchhoeft for their kind help during my graduation. vi Nanomaterials to Enhance the Performance of Thermoelectric Materials and Catalysts for Water Splitting An Abstract of a Dissertation Presented to the Faculty of the Program of Materials Science and Engineering University of Houston In Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy In Materials Science and Engineering By Shaowei Song May 2019 vii Abstract Solutions to the growing energy demand and environment concerns can be increasing the current energy conversion efficiency or seeking alternative energy sources. Thermoelectric materials can directly harvest and convert waste heat from industrial, residential, commercial and transportation to electricity. However, the low conversion efficiency of thermoelectric material severely hinders its mass commercial application in past few decades, because thermoelectric parameters including electrical conductivity, Seebeck coefficient, and electronic thermal conductivity are intimately interdependent on each other by carrier concentration. Nanosized materials exhibit advantages to decouple the thermoelectric parameters. In my work, thermoelectric performances of n-type Mg3Sb1.5Bi0.5-based compounds are enhanced through grain alignment and carrier concentration optimization. Due to its typical layered crystal structure, partial texturing in the (001) plane is achieved by hot forging. Hall mobility is significantly improved to 105 cm2 V-1 s-1 in the (00l) plane, resulting in higher electrical conductivity, and power factor of 18 μW cm-1 K-2 at room temperature. Additionally, all of the Mg vacancies in Mg3Sb1.5Bi0.5-based compounds are almost eliminated by simple Y doping, and n-type conduction was successfully achieved without adding extra Mg in the initial composition. The carrier concentration is optimized through the combination of Y and Mg, leading to a record peak ZT of ~1.8 at 773 K in Mg3.02Y0.02Sb1.5Bi0.5. Electrochemical water splitting is capable of converting electricity to chemical energy storaged as hydrogen, which is considered to be one of the most promising energy alternatives. Oxygen evolution reaction (OER) as one-half reaction of water splitting suffers from multiple steps of proton-coupled electron transfer and displays a sluggish viii kinetic process, it is challenging to develop efficient OER catalysts in order to match well with hydrogen evolution reaction for overall water splitting. We develop a new route to synthesize highly efficient and robust bulk catalyst of Ni1-xFex layered double hydroxide (Ni1-xFex-LDH) for OER by ball milling and sintering. The nano-sheet catalysts achieve 100, 500, and 1000 mA cm-2 at overpotentials of 244, 278, and 300 mV, respectively, as well as a low Tafel slope of 58 mV dec-1 in 1 M KOH. ix Table of Contents Acknowledgements ........................................................................................................ v Abstract ................................................................................................................... viii Table of Contents ........................................................................................................... x List of Figures ............................................................................................................. xiv Chapter 1 Introduction ................................................................................................... 1 1.1 Background .............................................................................................. 1 1.2 Introduction to thermoelectric materials .................................................. 3 1.3 Strategies for thermoelectric performance improvement ......................... 5 1.3.1 Nano engineering on charge carrier transportation ......................... 5 1.3.1.1 Optimization of carrier concentration .......................................... 5 1.3.1.2 Energy filtering ............................................................................ 8 1.3.1.3 Band convergency ...................................................................... 10 1.3.1.4 Resonate states ........................................................................... 13 1.3.2 Nano effect on phonon transport ................................................... 14 1.4 Electrochemical water splitting .............................................................. 17 1.4.1 Introduction of water splitting ....................................................... 17 1.4.2 Strategies to improve efficiency of water electrolysis .................. 21 1.4.2.1 Energy barrier and resistance ..................................................... 21 1.4.2.2 Large electrochemical active surface area (ECSA) .................... 22 x 1.4.2.3 Free energy of adsorption and desorption .................................. 23 Chapter 2 Characterization .......................................................................................... 26 2.1 Thermoelectric materials ........................................................................ 26 2.1.1 Thermoelectric properties characterization ................................... 26 2.1.2 Phase and microstructure characterization .................................... 27 2.2 Water splitting ........................................................................................ 28 2.2.1 Electrochemical activity characterization ..................................... 28 2.2.2 Electrochemical impedance spectroscopy ..................................... 29 2.2.3 iR compensation ............................................................................ 31 2.2.4 X-ray Photoelectron Spectroscopy ................................................ 34 2.2.4 Raman Spectroscopy ..................................................................... 34 Chapter 3 Achieving high thermoelectric performance of Mg3Sb2-based compounds by grain alignment and carrier concentration optimization. ............................ 35 3.1 Background ............................................................................................ 35 3.2 Grain alignment promotes the thermoelectric performance of n-type Mg3Sb1.5Bi0.5 compounds ....................................................................... 36 3.2.2 Introduction ................................................................................... 36 3.2.3 Experiment .................................................................................... 38 3.2.3.1 Synthesis ..................................................................................... 38 3.2.3.2 Rietveld refinement and rocking curve .....................................
Recommended publications
  • Investigation of Magnetism in Transition Metal Chalcogenide Thin Films
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 9-14-2020 Investigation of Magnetism in Transition Metal Chalcogenide Thin Films Michael Adventure Hopkins Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Hopkins, Michael Adventure, "Investigation of Magnetism in Transition Metal Chalcogenide Thin Films" (2020). Dissertations and Theses. Paper 5607. https://doi.org/10.15760/etd.7479 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Investigation of Magnetism in Transition Metal Chalcogenide Thin Films by Michael Adventure Hopkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Raj Solanki, Chair Andrew Rice Shankar Rananavare Dean Atkinson Portland State University 2020 © 2020 Michael Adventure Hopkins ii Abstract Layered two dimensional films have been a topic of interest in the materials science community driven by the intriguing properties demonstrated in graphene. Tunable layer dependent electrical and magnetic properties have been shown in these materials and the ability to grow in the hexagonal phase provides opportunities to grow isostructural stacked heterostructures. In this investigation, cobalt selenide (CoSe) and nickel selenide (NiSe) were grown in the hexagonal phase, which consist of central metal atoms that are natively ferromagnetic in bulk, hence providing the potential for interesting magnetic phases in thin film arrangements as well.
    [Show full text]
  • SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1)
    T 4 SEDERHOLMITE, WILKMANITE, KULLERUDITE, M..AKINENITE and TRUSTEDTITE, FIVE NEW NICKEL SELENIDE MINERALS 1) BY Y. VUORELAINEN, A. HUHMA AND A. H.A.KLI Outokumpu Co., Finland ABSTRACT Five new nickel selenide minerals from Kuusamo, NE-Finland are described. The minerals occur in veinlets in albitites associated with uranium mineralisation. Sederholmite, which is identical with the synthetic hexagonal fJ-NiSe phase, has a o = 3.62 - 3.65 A and eo = 5.29 - 5.34 A depending upon composition. Wilkmanite corresponds to the artificial monoclinic Ni3Se4 phase. Its a o = 6.22 A, b o = 3.63 A, CO = 10.52 A and fJ = 90.55°. Kullerudite NiSe 2 is an ortho-rhombic nickelian analogue of ferroselite with a o = 4.89 A, b o = 5.96 A and Co = 3.76 A. M:ikinenite, which is the same as the artificial y-NiSe phase, has a trigonal symmetry with a o = 10.01 A and Co = 3.28 A. Triistedtite is a cubic spinel type Ni3Se4 having a o = 9.94 A. It forms a solid solution series with polydymite. Members of this series with 40-70 mole per cent polydymite component have also been found. CONTENTS Page INTRODUCTION 114 GEOLOGY OF THE SELENIUM MINERALISATION AREA 115 OCCURRENCE 116 PHYSICAL AND OPTICAL PROPERTIES 117 CHEMICAL COMPOSITION 117 CRYSTALLOGRAPHY 118 NOMENCLATURE 124 ACKNOWLEDGEMENTS 124 REFERENCES 125 1) Received May 6, 1964. 15 10547-64 114 Bulletin de la Commislsion geologique de Finlande N: 0 215. INTRODUCTION SI n The system nickel-selenium has been studied by various authors. Ac­ SI cording to the literature the following selenides of nickel are known.
    [Show full text]
  • (Oxy)Hydroxide Electrocatalysts for Water Oxidation Bryan R
    www.acsami.org Research Article Effect of Selenium Content on Nickel Sulfoselenide-Derived Nickel (Oxy)hydroxide Electrocatalysts for Water Oxidation Bryan R. Wygant, Anna H. Poterek, James N. Burrow, and C. Buddie Mullins* Cite This: ACS Appl. Mater. Interfaces 2020, 12, 20366−20375 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An efficient and inexpensive electrocatalyst for the oxygen evolution reaction (OER) must be found in order to improve the viability of hydrogen fuel production via water electrolysis. Recent work has indicated that nickel chalcogenide materials show promise as electrocatalysts for this reaction and that their performance can be further enhanced with the generation of ternary, bimetallic chalcogenides (i.e., Ni1−aMaX2); however, relatively few studies have investigated ternary chalcogenides created through the addition of a second chalcogen (i.e., NiX2−aYa). To address this, we fi studied a series of Se-modi ed Ni3S2 composites for use as OER electrocatalysts in alkaline solution. We found that the addition of Se results in the creation of Ni3S2/NiSe composites composed of cross-doped metal chalcogenides and show that the addition of 10% Se reduces the overpotential required to reach a current density of 10 mA/cm2 by 40 mV versus a pure nickel sulfide material. Chemical analysis of the composites’ surfaces shows a reduction in the amount of nickel oxide species with Se incorporation, which is supported by transmission electron microscopy; this reduction is correlated with a decrease in the OER overpotentials measured for these samples. Together, our results suggest that the incorporation of Se into Ni3S2 creates a more conductive material with a less-oxidized surface that is more electrocatalytically active and resistant to further oxidation.
    [Show full text]
  • Growthmechanismand Characteristics of Semiconductor Nanowires For
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Research Article Nanoscience & Technology: Open Access Open Access Growth Mechanism and Characteristics of Semiconductor Nanowires for Photonic Devices N. B Singh1, S. R Coriell1, Matthew King2, Brian Wagner2, David Kahler2, David Knuteson2, Andre Berghman2 and Sean McLaughlin2 1University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 2Northrop Grumman Corporation ES, 1212 Winterson Road, Linthicum, MD 21250 Received: March 31, 2014; Accepted: April 27, 2014; Published: April 29, 2014 *Corresponding author: N. B Singh, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 photodiodes (A Abstract photon counting applications. These arecapable of low-light An overview on the growth mechanism of nanowire, fabrication detectionand havePDs) great are potentialvery capable for the detectors variety ofin applications. finding and and performance of selenide nanowires devices is presented. Growth of nano particles and preliminary results on the formation Binary, ternary and quaternary selenides have relatively low optical of nanowires of lead selenide is reported. Results are presented for the zinc selenide nanowire based devices, performance and combination of properties of selenides makes them very important materialsabsorption for coefficient detector andapplications. have wide Lead transparency selenide (PbSe)range. nanoThis particles and nanowires were grown by the physical vapor transport to device arrays. (PVT) method and zinc selenide (ZnSe) nanowire was grown by more specifically the ability to transition from single NW devices chemical vapor transport (CVT) methods. Observations on the growth Experimental Method of PbSe indicate that oriented attachment of nanocrystal building Materials purification blocks produces nanowires. On silicon (111) substrates binding was observed to be on (001) and (111) faces.
    [Show full text]
  • Trends in Performance Limits of the HOT Infrared Photodetectors
    applied sciences Review Trends in Performance Limits of the HOT Infrared Photodetectors Antoni Rogalski 1, Piotr Martyniuk 1,*, Małgorzata Kopytko 1 and Weida Hu 2 1 Faculty of Advanced Technologies and Chemistry, Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; [email protected] (A.R.); [email protected] (M.K.) 2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; [email protected] * Correspondence: [email protected]; Tel.: +48-26-183-92-15 Abstract: The cryogenic cooling of infrared (IR) photon detectors optimized for the mid- (MWIR, 3–5 µm) and long wavelength (LWIR, 8–14 µm) range is required to reach high performance. This is a major obstacle for more extensive use of IR technology. Focal plane arrays (FPAs) based on thermal detectors are presently used in staring thermal imagers operating at room temperature. However, their performance is modest; thermal detectors exhibit slow response, and the multispectral detection is difficult to reach. Initial efforts to develop high operating temperature (HOT) photodetectors were focused on HgCdTe photoconductors and photoelectromagnetic detectors. The technological efforts have been lately directed on advanced heterojunction photovoltaic HgCdTe detectors. This paper presents the several approaches to increase the photon-detectors room-temperature performance. Various kinds of materials are considered: HgCdTe, type-II AIIIBV superlattices, two-dimensional materials and colloidal quantum dots. Keywords: HOT IR detectors; HgCdTe; P-i-N; BLIP condition; 2D material photodetectors; colloidal quantum dot photodetectors Citation: Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W.
    [Show full text]
  • Synthesis of Metal Selenide Semiconductor Nanocrystals Using Selenium Dioxide As Precursor
    SYNTHESIS OF METAL SELENIDE SEMICONDUCTOR NANOCRYSTALS USING SELENIUM DIOXIDE AS PRECURSOR By XIAN CHEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Xian Chen 2 To my parents 3 ACKNOWLEDGMENTS Above all, I would like to thank my parents for what they have done for me through these years. I would not have been able to get to where I am today without their love and support. I would like to thank my advisor, Dr. Charles Cao, for his advice on my research and life and for the valuable help during my difficult times. I also would like to thank Dr. Yongan Yang for his kindness and helpful discussion. I learned experiment techniques, knowledge, how to do research and so on from him. I also appreciate the help and friendship that the whole Cao group gave me. Finally, I would like to express my gratitude to Dr. Ben Smith for his guidance and help. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................9 CHAPTER 1 SEMICONDUCTOR NANOCRYSTALS ............................................................................11 1.1 Introduction..................................................................................................................11
    [Show full text]
  • Functions and Cellular Localization of Cysteine Desulfurase And
    Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei Pavel Poliak1, Douglas Van Hoewyk2, Miroslav Obornı´k1, Alena Zı´kova´ 1,3, Kenneth D. Stuart3, Jan Tachezy4, Marinus Pilon5 and Julius Lukesˇ 1 1 Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇ jovice (Budweis), Czech Republic 2 Department of Biology, Coastal Carolina University, Conway, SC, USA 3 Seattle Biomedical Research Institute, Seattle, WA, USA 4 Department of Parasitology, Charles University, Prague, Czech Republic 5 Biology Department, Colorado State University, Fort Collins, CO, USA Keywords Nfs-like proteins have cysteine desulfurase (CysD) activity, which removes Fe–S cluster; mitochondrion; RNAi; sulfur (S) from cysteine, and provides S for iron–sulfur cluster assembly selenoprotein; Trypanosoma and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental sele- Correspondence J. Lukesˇ, Institute of Parasitology, nium (Se). It was shown previously that the Nfs-like protein called Nfs Branisˇovska´ 31, 37005 Cˇ eske´ Budeˇ jovice, from the parasitic protist Trypanosoma brucei is a genuine CysD. A second Czech Republic Nfs-like protein is encoded in the nuclear genome of T. brucei. We called Fax: + 420 38 531 0388 this protein selenocysteine lyase (SCL) because phylogenetic analysis Tel: + 420 38 777 5416 reveals that it is monophyletic with known eukaryotic selenocysteine lyases. E-mail: [email protected] The Nfs protein is located in the mitochondrion, whereas the SCL protein seems to be present in the nucleus and cytoplasm. Unexpectedly, downre- (Revised 22 July 2009, revised 5 November 2009, accepted 9 November 2009) gulation of either Nfs or SCL protein leads to a dramatic decrease in both CysD and selenocysteine lyase activities concurrently in the mitochondrion doi:10.1111/j.1742-4658.2009.07489.x and the cytosolic fractions.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]
  • PVD Material Listing
    P. O. Box 639 NL - 5550 AP Valkenswaard Tel: +31 (0)40 204 69 31 Fergutec Fax: +31 (0)40 201 39 81 E - mail: [email protected] PVD Material Listing Pure Metals Aluminum, Al Antimony, Sb Beryllium, Be Bismuth, Bi Boron, B Cadmium, Cd Calcium, Ca Carbon, C Cerium, Ce Chromium, Cr Cobalt, Co Copper, Cu Erbium, Er Gadolinium, Gd Gallium, Ga Germanium, Ge Gold, Au Hafnium, Hf Indium, In Iridium, Ir Iron, Fe Lanthanum, La Lead, Pb Magnesium, Mg Manganese, Mn Molybdenum, Mo Neodymium, Nd Nickel, Ni Niobium, Nb Osmium, Os Palladium, Pd Platinum, Pt Praseodymium, Pr Rhenium, Re Rhodium, Rh Ruthenium, Ru Samarium, Sm Selenium, Se Silicon, Si Silver, Ag Tantalum, Ta Fergutec b.v. P.O. Box 639, NL - 5550 AP Valkenswaard Heistraat 64, NL - 5554 ER Valkenswaard Bankaccount 45.80.36.714 ABN - AMRO Valkenswaard C.o.C. Eindhoven no. 17098554 VAT - ID NL8095.60.185.B01 The Standard Terms and Conditions, lodged at the Chamber of Commerce in Eindhoven, are applicable to all transactions. Tellurium, Te Terbium, Tb Tin, Sn Titanium, Ti Tungsten, W Vanadium, V Ytterbium, Yb Yttrium, Y Zinc, Zn Zirconium, Zr Precious Metals Gold Antimony, Au/Sb Gold Arsenic, Au/As Gold Boron, Au/B Gold Copper, Au/Cu Gold Germanium, Au/Ge Gold Nickel, Au/Ni Gold Nickel Indium, Au/Ni/In Gold Palladium, Au/Pd Gold Phosphorus, Au/P Gold Silicon, Au/Si Gold Silver Platinum, Au/Ag/Pt Gold Tantalum, Au/Ta Gold Tin, Au/Sn Gold Zinc, Au/Zn Palladium Lithium, Pd/Li Palladium Manganese, Pd/Mn Palladium Nickel, Pd/Ni Platinum Palladium, Pt/Pd Palladium Rhenium, Pd/Re Platinum Rhodium,
    [Show full text]
  • Growth Orientation and Shape Evolution of Colloidal Lead Selenide Nanocrystals with Different Shapes
    PAPER www.rsc.org/crystengcomm | CrystEngComm Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes Daoli Zhang,*ab Guangmei Zhai,a Jianbing Zhang,ab Lin Yuan,a Xiangshui Miao,ab Siyao Zhua and Ying Wanga Received 4th January 2010, Accepted 16th April 2010 DOI: 10.1039/b927238k Lead selenide (PbSe) nanocrystals with different shapes were synthesized via solution-processing by adjustment of the reaction conditions. The prepared PbSe nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. X-Ray diffraction pattern shows that the synthesized PbSe nanocrystals have cubic rock salt structure. The initial injection of precursors into hot reaction solvent immediately results in the formation of truncated octahedron-shaped nuclei, which are terminated by {100} faces and {111} faces. Acetate in the reaction mixture plays an important role in the formation of star-shaped PbSe nanocrystals. In addition, the reaction solvent also influences the shape of PbSe nanocrystals. Spindle-shaped PbSe nanocrystals are formed by spontaneous alignment and fusion of small quasi-spherical PbSe nanoparticles, namely, oriented attachment. The occurrence of oriented attachment of PbSe nanocrystals is the result of competition between the steric hindrance force and the orientation force. If the orientation force along some axes can overcome the steric hindrance force, the small PbSe nanocrystals with certain size distribution can self-assemble and evolve to spindle-shaped PbSe nanocrystals, vice versa, the small PbSe nanocrystals will grow individually to bigger quasi-spherical PbSe nanocrystals. Introduction changing the reaction conditions, including injection and growth temperature, growth time, precursors, reaction solvent It is well known that the properties of semiconductor nano- and capping agents.
    [Show full text]
  • Measuring Infrared Radiation Using Trinamix Lead Sulfide and Lead Selenide Detectors
    White Paper Measuring infrared radiation using trinamiX lead sulfide and lead selenide detectors Figure 1: trinamiX lead sulfide and lead selenide detectors April 28, 2020 – Ludwigshafen, Germany – What are PbS and PbSe detectors? Accurate detection and classification of Polycrystalline lead sulfide (PbS) and lead selenide substances and materials is critical for today’s (PbSe) detectors are thin film semiconductor ever-growing needs related to both automation devices that have been in use as infrared (IR) and increased safety. Optical sensing detectors for almost a century owing it to their technologies are at the forefront when it comes versatility and wide wavelength coverage. PbS to such applications because of their fast, robust detectors respond to light with wavelengths and contactless measuring abilities between 1 and 3 µm and are applicable for near infrared (NIR) applications. PbSe detectors extend Lead sulfide (PbS) and lead selenide (PbSe) into the mid infrared (MIR), covering applications infrared detectors are especially attractive from 1 to 5 µm. because of their wide useful wavelength range. Both detector types utilize the photoconductive This becomes apparent by looking at Fig. 2, which effect where exposure to infrared radiation causes shows the wavelength coverage of the most a decrease of the resistance of the active area as a common optical detector families, together with function of the radiation intensity. the positions of important spectral features Depending on the application, photoresistors are a regarding humidity, plastic materials, and gases. viable alternative to photodiodes both in terms of Compared to other detector families, in performance and cost. trinamiX GmbH Managing Directors: Registration Court: Bank Details: Industriestraße 35 Dr.
    [Show full text]
  • Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus Faecalis
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis Samantha Nelson University of Central Florida Part of the Biotechnology Commons, and the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Nelson, Samantha, "Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis" (2014). Electronic Theses and Dissertations, 2004-2019. 4807. https://stars.library.ucf.edu/etd/4807 PURIFICATION AND CHARACTERIZATION OF A NOVEL SELENOCYSTEINE LYASE FROM ENTEROCOCCUS FAECALIS by SAMANTHA NELSON B.S. University of Central Florida, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: William T. Self © 2014 Samantha Nelson ii ABSTRACT A previous study identified Enterococcus faecalis as one of two bacteria known to have the selD gene and other selenium related genes without having the genes necessary to make selenocysteine or selenouridine. EF2570, a gene in the cluster, was later shown to be upregulated during biofilm formation and also responsible for a selenite- and molybdate-dependent increase in biofilm formation in vitro.
    [Show full text]