Functions and Cellular Localization of Cysteine Desulfurase And

Total Page:16

File Type:pdf, Size:1020Kb

Functions and Cellular Localization of Cysteine Desulfurase And Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei Pavel Poliak1, Douglas Van Hoewyk2, Miroslav Obornı´k1, Alena Zı´kova´ 1,3, Kenneth D. Stuart3, Jan Tachezy4, Marinus Pilon5 and Julius Lukesˇ 1 1 Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇ jovice (Budweis), Czech Republic 2 Department of Biology, Coastal Carolina University, Conway, SC, USA 3 Seattle Biomedical Research Institute, Seattle, WA, USA 4 Department of Parasitology, Charles University, Prague, Czech Republic 5 Biology Department, Colorado State University, Fort Collins, CO, USA Keywords Nfs-like proteins have cysteine desulfurase (CysD) activity, which removes Fe–S cluster; mitochondrion; RNAi; sulfur (S) from cysteine, and provides S for iron–sulfur cluster assembly selenoprotein; Trypanosoma and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental sele- Correspondence J. Lukesˇ, Institute of Parasitology, nium (Se). It was shown previously that the Nfs-like protein called Nfs Branisˇovska´ 31, 37005 Cˇ eske´ Budeˇ jovice, from the parasitic protist Trypanosoma brucei is a genuine CysD. A second Czech Republic Nfs-like protein is encoded in the nuclear genome of T. brucei. We called Fax: + 420 38 531 0388 this protein selenocysteine lyase (SCL) because phylogenetic analysis Tel: + 420 38 777 5416 reveals that it is monophyletic with known eukaryotic selenocysteine lyases. E-mail: [email protected] The Nfs protein is located in the mitochondrion, whereas the SCL protein seems to be present in the nucleus and cytoplasm. Unexpectedly, downre- (Revised 22 July 2009, revised 5 November 2009, accepted 9 November 2009) gulation of either Nfs or SCL protein leads to a dramatic decrease in both CysD and selenocysteine lyase activities concurrently in the mitochondrion doi:10.1111/j.1742-4658.2009.07489.x and the cytosolic fractions. Because loss of Nfs causes a growth phenotype but loss of SCL does not, we propose that Nfs can fully complement SCL, whereas SCL can only partially replace Nfs under our growth conditions. Structured digital abstract l MINT-7298305: NFS (uniprotkb:Q386Y7) and PHB1 (uniprotkb:Q57UX1) colocalize (MI:0403) by cosedimentation through density gradients (MI:0029) l MINT-7298357: SCL (uniprotkb:Q38DC4) and Enolase (uniprotkb:Q38BV6) colocalize (MI:0403) by cosedimentation through density gradients (MI:0029) Introduction Nfs-like proteins have cysteine desulfurase (CysD) (termed NifS, IscS, CsdA or SufS in bacteria, depend- activity, and were first discovered in the nitrogen-fixing ing on the gene clusters in which they are found and microbe Azotobacter vinelandii, where they are dedi- Nfs in mitochondria) that provide the S for Fe–S clus- cated to the assembly of the iron–sulfur (Fe–S) clusters ters. Eukaryotic Nfs proteins have a stably interacting of nitrogenase [1]. These pyridoxal 5-phosphate-depen- partner Isd11, which is required for their function dent proteins catalyze conversion of the amino acid [2–4], and transiently interact with the scaffold protein cysteine into alanine and elemental sulfur (S) [1]. All IscU, upon which the clusters are formed [5]. Thus, organisms studied to date encode homologues of Nfs the Nfs protein has a central and conserved function Abbreviations CysD, cysteine desulfurase; GAP1, guide RNA-binding protein 1; HA, hemagglutinin; SCL, selenocysteine lyase. FEBS Journal 277 (2010) 383–393 ª 2009 The Authors Journal compilation ª 2009 FEBS 383 Trypanosoma brucei selenocystein lyase P. Poliak et al. in the assembly of Fe–S clusters [6,7]. In every pro- Nfs-like proteins [20]. Downregulation of the Nfs pro- karyotic and eukaryotic cell, these ancient and omni- tein, which is confined to the mitochondrion, impaired present cofactors are subsequently incorporated into ATP production, cellular respiration and growth, sug- dozens of Fe–S proteins. These Fe–S proteins are best gesting that this protein is essential for the assembly of known for their vital role in the redox reactions during Fe–S clusters incorporated into the mitochondrial mitochondrial electron transport, but also have a simi- proteins [20]. More recently, it was discovered that in lar function in photosynthesis [8], the formation of trypanosomes ablated for Nfs, tRNA thiolation is biotin and thiamine, gene expression and other cellular disrupted [21]. Moreover, in Saccharomyces cerevisiae processes [6,7]. and T. brucei, the mitochondrially located Nfs1 and Moreover, many organisms contain more than one Nfs proteins, respectively, are responsible for the thio- Nfs-like protein. For example, Escherichia coli contains lation of tRNAs in both the mitochondria and cyto- three distinct Nfs-like proteins (IscS, CsdA and SufS). plasm [21,22]. Because T. brucei contains a set of Although the role of CsdA in E. coli is not fully selenoproteins [23–25], as well as a complete machinery understood, IscS seems to have a general housekeeping for the formation of Sec–tRNASec [26], we undertook role, and SufS is thought to function during oxidative functional characterization of cells with downregulated stress [9]. The model plant Arabidopsis thaliana also Nfs-like protein of the selenocysteine type. encodes three functionally distinct Nfs-like proteins localized to the chloroplast, mitochondria and cytosol Results [10]. Two Nfs-like proteins have been identified in the apicomplexan protist Plasmodium [11], including one Phylogenetic analysis localized to the apicoplast, whereas the yeast and human genomes encode only a single Nfs-like protein. A genome-wide search revealed that T. brucei and all However, the human NFS1 gene contains an alterna- other kinetoplastid flagellates, for which full genome tive start site, which provides dual localization of the sequences are available, contain two Nfs-like proteins protein to the mitochondria or the cytosol and nucleus in their nuclear genome. Recent evidence suggests that [12]. In similar fashion, the yeast Nfs1 protein is pre- one of them, called Nfs (formerly TbIscS2), exhibits dominantly found in the mitochondion, but is also CysD activity and has a function in Fe–S cluster localized to the nucleus in small amounts, and has assembly similar to other well-studied homologues been shown to be indispensable for survival [13,14]. found in eukaryotes [20]. The second gene codes for a Yeast is not dependent on mitochondrial electron 451 amino acid protein with calculated molecular mass transport during anaerobic growth and so it is likely of 48.9 kDa. It contains a highly conserved PLP-bind- that the yeast Nfs1 protein is essential because of the ing lysine 258, the active cysteine 393 responsible for Fe–S cluster assembly for proteins localized in the desulfuration, as well as histidine 125, which initiates cytosol and the nucleus. Moreover, yeast Nfs1 is also the release of sulfur by deprotonation of l-cysteine. In necessary for the thiolation of tRNAs [15]. Indeed, the sequence, however, the conserved serine 255 is mutation of the nuclear localization signal in the replaced by cysteine, and a substantial part of the mature Nfs1 protein is also lethal in yeast, despite hav- active site loop, as well as the C-terminal region ing no effect on mitochondrial Fe–S proteins. These known to mediate interaction with IscU, are lacking. results suggest that the yeast Nfs1 protein has an A predicted nuclear localization signal (PPLKKLR) is essential role in both nuclear and cytosolic Fe–S clus- located in the N-terminal region of the protein ter assembly [15]. sequence. Interestingly, in addition to CysD activity, all Nfs- We have performed an extensive phylogenetic anal- like proteins have selenocysteine lyase (SCL) activity, ysis of Nfs-like genes from T. brucei using maximum which cleaves selenocysteine into alanine and selenium. likelihood, maximum parsimony and neighbor joining [16]. SCL activity is essential for organisms that analyses (see Experimental procedures for details). An require selenium, as first documented in bacteria and unrooted phylogenetic tree obtained from an align- later in mammals, both of which contain selenopro- ment of amino acid sequences of the Nfs ⁄ IscS and teins [17]. Single-celled organisms, such as the green SCL genes from 90 prokaryotes and 60 eukaryotes algae Chlamydomonas reinhardtii and Emiliana huxleyi revealed a very distant position for both T. brucei are also known to contain selenoproteins [18], genes (Fig. 1). The analysis did not recover a single although their set is smaller than in mammals [19]. clade containing solely prokaryotic sequences, but The genome of Trypanosoma brucei, the causative rather several paraphyletic clades. Eukaryotic genes agent of African sleeping sickness, encodes two are split into two large groups of different origin, 384 FEBS Journal 277 (2010) 383–393 ª 2009 The Authors Journal compilation ª 2009 FEBS P. Poliak et al. Trypanosoma brucei selenocystein lyase 84/dt/64 Ricinus communis 90/64/61 Arabidopsis thaliana 98/65/83 Oryza sativa Physcomitrella patens Ostreococcus tauri Ostreococcus lucimarinus 68/67/- Chlamydomonas reinhardtii 83/56/84 Leishmania infantum Leishmania major Leishmania braziliensis Trypanosoma cruzi Trypanosoma brucei NfS 99/79/96 Rattus norvegicus Mus musculus 62/91/- Homo sapiens 65/dt/- Drosophila melanogaster Caenorhabditis elegans Dictyostelium discoideum Cyanidioschyzon merolae Thalassiosira pseudonana 58-/- Phaeodactylum tricornutum
Recommended publications
  • Growthmechanismand Characteristics of Semiconductor Nanowires For
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Research Article Nanoscience & Technology: Open Access Open Access Growth Mechanism and Characteristics of Semiconductor Nanowires for Photonic Devices N. B Singh1, S. R Coriell1, Matthew King2, Brian Wagner2, David Kahler2, David Knuteson2, Andre Berghman2 and Sean McLaughlin2 1University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 2Northrop Grumman Corporation ES, 1212 Winterson Road, Linthicum, MD 21250 Received: March 31, 2014; Accepted: April 27, 2014; Published: April 29, 2014 *Corresponding author: N. B Singh, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 photodiodes (A Abstract photon counting applications. These arecapable of low-light An overview on the growth mechanism of nanowire, fabrication detectionand havePDs) great are potentialvery capable for the detectors variety ofin applications. finding and and performance of selenide nanowires devices is presented. Growth of nano particles and preliminary results on the formation Binary, ternary and quaternary selenides have relatively low optical of nanowires of lead selenide is reported. Results are presented for the zinc selenide nanowire based devices, performance and combination of properties of selenides makes them very important materialsabsorption for coefficient detector andapplications. have wide Lead transparency selenide (PbSe)range. nanoThis particles and nanowires were grown by the physical vapor transport to device arrays. (PVT) method and zinc selenide (ZnSe) nanowire was grown by more specifically the ability to transition from single NW devices chemical vapor transport (CVT) methods. Observations on the growth Experimental Method of PbSe indicate that oriented attachment of nanocrystal building Materials purification blocks produces nanowires. On silicon (111) substrates binding was observed to be on (001) and (111) faces.
    [Show full text]
  • Trends in Performance Limits of the HOT Infrared Photodetectors
    applied sciences Review Trends in Performance Limits of the HOT Infrared Photodetectors Antoni Rogalski 1, Piotr Martyniuk 1,*, Małgorzata Kopytko 1 and Weida Hu 2 1 Faculty of Advanced Technologies and Chemistry, Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; [email protected] (A.R.); [email protected] (M.K.) 2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; [email protected] * Correspondence: [email protected]; Tel.: +48-26-183-92-15 Abstract: The cryogenic cooling of infrared (IR) photon detectors optimized for the mid- (MWIR, 3–5 µm) and long wavelength (LWIR, 8–14 µm) range is required to reach high performance. This is a major obstacle for more extensive use of IR technology. Focal plane arrays (FPAs) based on thermal detectors are presently used in staring thermal imagers operating at room temperature. However, their performance is modest; thermal detectors exhibit slow response, and the multispectral detection is difficult to reach. Initial efforts to develop high operating temperature (HOT) photodetectors were focused on HgCdTe photoconductors and photoelectromagnetic detectors. The technological efforts have been lately directed on advanced heterojunction photovoltaic HgCdTe detectors. This paper presents the several approaches to increase the photon-detectors room-temperature performance. Various kinds of materials are considered: HgCdTe, type-II AIIIBV superlattices, two-dimensional materials and colloidal quantum dots. Keywords: HOT IR detectors; HgCdTe; P-i-N; BLIP condition; 2D material photodetectors; colloidal quantum dot photodetectors Citation: Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]
  • PVD Material Listing
    P. O. Box 639 NL - 5550 AP Valkenswaard Tel: +31 (0)40 204 69 31 Fergutec Fax: +31 (0)40 201 39 81 E - mail: [email protected] PVD Material Listing Pure Metals Aluminum, Al Antimony, Sb Beryllium, Be Bismuth, Bi Boron, B Cadmium, Cd Calcium, Ca Carbon, C Cerium, Ce Chromium, Cr Cobalt, Co Copper, Cu Erbium, Er Gadolinium, Gd Gallium, Ga Germanium, Ge Gold, Au Hafnium, Hf Indium, In Iridium, Ir Iron, Fe Lanthanum, La Lead, Pb Magnesium, Mg Manganese, Mn Molybdenum, Mo Neodymium, Nd Nickel, Ni Niobium, Nb Osmium, Os Palladium, Pd Platinum, Pt Praseodymium, Pr Rhenium, Re Rhodium, Rh Ruthenium, Ru Samarium, Sm Selenium, Se Silicon, Si Silver, Ag Tantalum, Ta Fergutec b.v. P.O. Box 639, NL - 5550 AP Valkenswaard Heistraat 64, NL - 5554 ER Valkenswaard Bankaccount 45.80.36.714 ABN - AMRO Valkenswaard C.o.C. Eindhoven no. 17098554 VAT - ID NL8095.60.185.B01 The Standard Terms and Conditions, lodged at the Chamber of Commerce in Eindhoven, are applicable to all transactions. Tellurium, Te Terbium, Tb Tin, Sn Titanium, Ti Tungsten, W Vanadium, V Ytterbium, Yb Yttrium, Y Zinc, Zn Zirconium, Zr Precious Metals Gold Antimony, Au/Sb Gold Arsenic, Au/As Gold Boron, Au/B Gold Copper, Au/Cu Gold Germanium, Au/Ge Gold Nickel, Au/Ni Gold Nickel Indium, Au/Ni/In Gold Palladium, Au/Pd Gold Phosphorus, Au/P Gold Silicon, Au/Si Gold Silver Platinum, Au/Ag/Pt Gold Tantalum, Au/Ta Gold Tin, Au/Sn Gold Zinc, Au/Zn Palladium Lithium, Pd/Li Palladium Manganese, Pd/Mn Palladium Nickel, Pd/Ni Platinum Palladium, Pt/Pd Palladium Rhenium, Pd/Re Platinum Rhodium,
    [Show full text]
  • Growth Orientation and Shape Evolution of Colloidal Lead Selenide Nanocrystals with Different Shapes
    PAPER www.rsc.org/crystengcomm | CrystEngComm Growth orientation and shape evolution of colloidal lead selenide nanocrystals with different shapes Daoli Zhang,*ab Guangmei Zhai,a Jianbing Zhang,ab Lin Yuan,a Xiangshui Miao,ab Siyao Zhua and Ying Wanga Received 4th January 2010, Accepted 16th April 2010 DOI: 10.1039/b927238k Lead selenide (PbSe) nanocrystals with different shapes were synthesized via solution-processing by adjustment of the reaction conditions. The prepared PbSe nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. X-Ray diffraction pattern shows that the synthesized PbSe nanocrystals have cubic rock salt structure. The initial injection of precursors into hot reaction solvent immediately results in the formation of truncated octahedron-shaped nuclei, which are terminated by {100} faces and {111} faces. Acetate in the reaction mixture plays an important role in the formation of star-shaped PbSe nanocrystals. In addition, the reaction solvent also influences the shape of PbSe nanocrystals. Spindle-shaped PbSe nanocrystals are formed by spontaneous alignment and fusion of small quasi-spherical PbSe nanoparticles, namely, oriented attachment. The occurrence of oriented attachment of PbSe nanocrystals is the result of competition between the steric hindrance force and the orientation force. If the orientation force along some axes can overcome the steric hindrance force, the small PbSe nanocrystals with certain size distribution can self-assemble and evolve to spindle-shaped PbSe nanocrystals, vice versa, the small PbSe nanocrystals will grow individually to bigger quasi-spherical PbSe nanocrystals. Introduction changing the reaction conditions, including injection and growth temperature, growth time, precursors, reaction solvent It is well known that the properties of semiconductor nano- and capping agents.
    [Show full text]
  • Measuring Infrared Radiation Using Trinamix Lead Sulfide and Lead Selenide Detectors
    White Paper Measuring infrared radiation using trinamiX lead sulfide and lead selenide detectors Figure 1: trinamiX lead sulfide and lead selenide detectors April 28, 2020 – Ludwigshafen, Germany – What are PbS and PbSe detectors? Accurate detection and classification of Polycrystalline lead sulfide (PbS) and lead selenide substances and materials is critical for today’s (PbSe) detectors are thin film semiconductor ever-growing needs related to both automation devices that have been in use as infrared (IR) and increased safety. Optical sensing detectors for almost a century owing it to their technologies are at the forefront when it comes versatility and wide wavelength coverage. PbS to such applications because of their fast, robust detectors respond to light with wavelengths and contactless measuring abilities between 1 and 3 µm and are applicable for near infrared (NIR) applications. PbSe detectors extend Lead sulfide (PbS) and lead selenide (PbSe) into the mid infrared (MIR), covering applications infrared detectors are especially attractive from 1 to 5 µm. because of their wide useful wavelength range. Both detector types utilize the photoconductive This becomes apparent by looking at Fig. 2, which effect where exposure to infrared radiation causes shows the wavelength coverage of the most a decrease of the resistance of the active area as a common optical detector families, together with function of the radiation intensity. the positions of important spectral features Depending on the application, photoresistors are a regarding humidity, plastic materials, and gases. viable alternative to photodiodes both in terms of Compared to other detector families, in performance and cost. trinamiX GmbH Managing Directors: Registration Court: Bank Details: Industriestraße 35 Dr.
    [Show full text]
  • Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus Faecalis
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis Samantha Nelson University of Central Florida Part of the Biotechnology Commons, and the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Nelson, Samantha, "Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis" (2014). Electronic Theses and Dissertations, 2004-2019. 4807. https://stars.library.ucf.edu/etd/4807 PURIFICATION AND CHARACTERIZATION OF A NOVEL SELENOCYSTEINE LYASE FROM ENTEROCOCCUS FAECALIS by SAMANTHA NELSON B.S. University of Central Florida, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: William T. Self © 2014 Samantha Nelson ii ABSTRACT A previous study identified Enterococcus faecalis as one of two bacteria known to have the selD gene and other selenium related genes without having the genes necessary to make selenocysteine or selenouridine. EF2570, a gene in the cluster, was later shown to be upregulated during biofilm formation and also responsible for a selenite- and molybdate-dependent increase in biofilm formation in vitro.
    [Show full text]
  • Material Safety Data Sheet
    LTS Research Laboratories, Inc. Safety Data Sheet Lead Selenide ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Lead selenide Chemical Formula: PbSe Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 855-587-2436 / 855-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: Danger Hazard Statements: H300+H330: Fatal if swallowed or if inhaled H360: May damage fertility or the unborn child H373: May cause damage to organs through prolonged or repeated exposure Precautionary Statements: P260: Do not breathe dust/fume/gas/mist/vapours/spray P284: Wear respiratory protection P301+P310: IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician P320: Specific treatment is urgent (see on this label) P405: Store locked up P501: Dispose of contents/container in accordance with local/regional/national/international regulations HMIS Health Ratings (0-4): Health: 2 Flammability: 0 Physical: 1 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
    [Show full text]
  • The Relations Between Van Der Waals and Covalent Forces in Layered Crystals
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. The relations between Van Der Waals and covalent forces in layered crystals Chaturvedi, Apoorva 2017 Chaturvedi, A. (2017). The relations between Van Der Waals and covalent forces in layered crystals. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/69485 https://doi.org/10.32657/10356/69485 Downloaded on 10 Oct 2021 01:39:43 SGT THE RELATIONS BETWEEN VAN DER WAALS AND COVALENT FORCES IN LAYERED CRYSTALS CHATURVEDI APOORVA SCHOOL OF MATERIALS SCIENCE AND ENGINEERING 2016 THE RELATIONS BETWEEN VAN DER WAALS AND COVALENT FORCES IN LAYERED CRYSTALS CHATURVEDI APOORVA SCHOOL OF MATERIALS SCIENCE AND ENGINEERING A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2016 Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution. 5th August 2016 . Date (CHATURVEDI APOORVA) Abstract Abstract With the advent of graphene that propels renewed interest in low-dimensional layered structures, it is only prudent for researchers’ world over to develop a deep insight into such systems with an eye for their unique “game-changing” properties. An absence of energy band gap in pristine graphene makes it unsuited for logic electronics applications. This led academia to turn their attention towards structurally similar semiconducting counterparts of graphene, layered transition metal dichalcogenides (LTMDs). Prominent in them, MoS2, WSe2 shows tuning of physical properties including band gap with reduced thickness and even an indirect to direct band gap transition when reduced to monolayer.
    [Show full text]
  • Advances of Sensitive Infrared Detectors with Hgte Colloidal Quantum Dots
    coatings Review Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots Shuo Zhang, Yao Hu and Qun Hao * Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; [email protected] (S.Z.); [email protected] (Y.H.) * Correspondence: [email protected] Received: 8 July 2020; Accepted: 30 July 2020; Published: 4 August 2020 Abstract: The application of infrared detectors based on epitaxially grown semiconductors such as HgCdTe, InSb and InGaAs is limited by their high cost and difficulty in raising operating temperature. The development of infrared detectors depends on cheaper materials with high carrier mobility, tunable spectral response and compatibility with large-scale semiconductor processes. In recent years, the appearance of mercury telluride colloidal quantum dots (HgTe CQDs) provided a new choice for infrared detection and had attracted wide attention due to their excellent optical properties, solubility processability, mechanical flexibility and size-tunable absorption features. In this review, we summarized the recent progress of HgTe CQDs based infrared detectors, including synthesis, device physics, photodetection mechanism, multi-spectral imaging and focal plane array (FPA). Keywords: HgTe Colloidal quantum dots; infrared; photoconductors; photovoltaic; multispectral imaging 1. Introduction Infrared detectors are widely used in thermal imaging [1,2], material spectroscopy analysis [3–5], autonomous driving assistants [6], surveillance [7] and biological health monitoring [8–10]. Before 1940s, the dominant infrared detectors were thermal detector, such as thermocouple detector [11], bolometer [12] and pyroelectric detector [13], which mainly relied on the detection of incident power rather than the energy of the incoming photons.
    [Show full text]
  • (Snse) Thin Films
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-28-2019 Investigation of Electronic and Optical Properties of 2-Dimensional Semiconductor Tin Selenide (SnSe) Thin Films Shakila Afrin Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Afrin, Shakila, "Investigation of Electronic and Optical Properties of 2-Dimensional Semiconductor Tin Selenide (SnSe) Thin Films" (2019). Dissertations and Theses. Paper 4862. https://doi.org/10.15760/etd.6738 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Investigation of Electronic and Optical Properties of 2-Dimensional Semiconductor Tin Selenide (SnSe) Thin Films by Shakila Afrin A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical & Computer Engineering Thesis Committee: Raj Solanki, Chair Richard Campbell Shankar Rananavare Portland State University 2019 ©2018 Shakila Afrin Abstract Over the last 5 decades, the semiconductor industry has been well served by Si based technology due to its abundant availability, lower manufacturing cost, large wafer sizes and less complexity in fabrication. Over this period, electronic devices and integrated systems have been miniaturized by downscaling of the transistors. The miniaturization has been guided by the Moore's law where the numbers of transistors have doubled over every two years.
    [Show full text]
  • Recent Progress in Thermoelectric Materials
    University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 1-1-2014 Recent progress in thermoelectric materials Chao Han University of Wollongong, [email protected] Zhen Li University of Wollongong, [email protected] S X. Dou University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/aiimpapers Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons Recommended Citation Han, Chao; Li, Zhen; and Dou, S X., "Recent progress in thermoelectric materials" (2014). Australian Institute for Innovative Materials - Papers. 1092. https://ro.uow.edu.au/aiimpapers/1092 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Recent progress in thermoelectric materials Abstract Direct conversion of heat into electricity through advanced thermoelectric (TE) materials has been one of the most attractive solutions to the severe environmental and energy issues facing humanity. In recent years, great progress has been made in improving their dimensionless figure of merit (ZT), which determines the conversion efficiency of TE vices.de ZT is related to three “interlocked” factors—the Seebeck coefficient, electrical conductivity, and thermal conductivity. These three factors are interdependent in bulk TE materials, and altering one changes the other two. The difficulty in simultaneously optimizing them caused TE research to stagnate, until great reductions in thermal conductivity were both theoretically and experimentally proven in nanomaterials in 1993. In this review, we first introduce some TE fundamentals and then review the most recently improvements in ZT in different kinds of inorganic and organic TE materials, which is followed by an investigation of the outlook for new directions in TE technology.
    [Show full text]