Investigation on the Role of Plant Defensin Proteins in Regulating Plant-Verticillium Longisporum Interactions in Arabidopsis Thaliana

Total Page:16

File Type:pdf, Size:1020Kb

Investigation on the Role of Plant Defensin Proteins in Regulating Plant-Verticillium Longisporum Interactions in Arabidopsis Thaliana Aus dem Institut für Phytopathologie der Christian-Albrechts-Universität zu Kiel Investigation on the role of plant defensin proteins in regulating plant-Verticillium longisporum interactions in Arabidopsis thaliana Dissertation zur Erlangung des Doktorgrades der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von M.Sc. Shailja Singh aus Lucknow, India Kiel, 2020 Dekan/in: Professor Dr. Dr. Christian Henning 1. Berichterstatter: Prof. Dr. Daguang Cai 2. Berichterstatter: Prof. Dr. Professor Joseph-Alexander Verreet Tag der mündlichen Prüfung: 17.06.2020 Schriftenreihe des Instituts für Phytopathologie der Christian-Albrechts-Universität zu Kiel; Heft 7, 2020 ISSN: 2197-554X Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Table of Contents Table of Contents Table of Contents ........................................................................................................... I List of Figures ................................................................................................................ V List of Tables ............................................................................................................... VII List of Abbreviations .................................................................................................. VIII Chapter I: General Introduction .................................................................................... 1 1 Induced plant defense responses .......................................................................... 2 1.1 Phytohormones - general role in plants and special role in plant defense .... 4 1.2 JA/ET-mediated defense against pathogens and signaling pathways .......... 5 1.3 Crosstalk between the phytohormones ET, JA, and SA ............................... 9 2 Role of plant defensins in immunity ...................................................................... 11 2.2 Structure of plant defensins ........................................................................ 12 2.3 Modes of action of plant defensins ............................................................. 14 2.4 Role of defensins in plant defense .............................................................. 17 2.5 Biotechnological applications ..................................................................... 18 3 The plant pathogen Verticillium longisporum ....................................................... 19 3.1 Taxonomy and morphology of Verticillium longisporum ............................. 19 3.2 Symptom development and life cycle of Verticillium longisporum ............... 20 3.3 Plant response to V. longisporum infection ................................................ 22 3.4 Disease Management ................................................................................. 24 4 The model plant Arabidopsis thaliana .................................................................. 26 5 Aim of the thesis................................................................................................... 27 Chapter II: The fungus Verticillium longisporum suppresses plant-defensin AtPDF2.2 to achieve its colonization on its host Arabidopsis ................................ 29 1 Abstract ................................................................................................................ 30 2 Introduction .......................................................................................................... 31 3 Materials and methods ......................................................................................... 36 3.1 Plant material and growth conditions ................................................................ 36 4 Results ................................................................................................................. 43 4.1 Trancript analysis indicates suppression of AtPDF2.2 in Arabidopsis roots at the early infection stage .................................................................................... 43 I Table of Contents 4.2 AtPDF2.2 is constitutively expressed in plants and suppressed by the V. longisporum infection at the early infection stage ............................................. 45 4.3 Knockdown and overexpression of AtPDF2.2 alter the plant phenotype and flowering time ................................................................................................... 47 4.4 Knockdown and overexpression of AtPDF2.2 in transgenic Arabidopsis differentially affects the expressions of JA, SA and ET-associated genes ....... 49 4.5 AtPDF2.2 is involved in plant-Verticillium interactions ................................ 51 4.6 AtPDF2.2 is involved in plant-bacterial interactions .................................... 54 4.7 AtPDF2.2 is involved in plant-S. sclerotiorum interactions ......................... 55 5 Discussion ........................................................................................................... 57 6 Acknowledgments ................................................................................................ 70 7 Supporting Information ......................................................................................... 71 Chapter III: Overexpression of AtPDF1.2a confers resistance to fungal pathogens in Arabidopsis thaliana ............................................................................................... 77 1 Abstract ................................................................................................................ 78 2 Introduction .......................................................................................................... 79 3 Materials and methods ......................................................................................... 82 4 Results ................................................................................................................. 89 4.1 Upregulation of AtPDF1.2a gene in Arabidopsis roots at the early infection stage ................................................................................................................. 89 4.2 In-silico analysis of expression of Class- I AtPDF genes ............................ 91 4.3 Knockdown and overexpression of the AtPDF1.2 gene alters the phenotype and rosette size ................................................................................................ 94 4.4 Knockout of AtPDF1.2a prompts differential expressions of defense related genes ................................................................................................................ 95 4.5 SA-signaling pathway defecient mutants show impeded AtPDF1.2a expression ........................................................................................................ 96 4.6 V. longisporum (Vl43) infection inhibits the primary root length of KO-pdf1.2a ......................................................................................................................... 97 4.7 Overexpression of AtPDF1.2a enhanced plant resistance to V. longisporum infection ............................................................................................................ 98 II Table of Contents 4.8 Pseudomonas syringae (Pst DC3000) induces the expression of AtPDF1.2a ....................................................................................................................... 100 4.9 OE-PDF1.2a plants displayed improved resistance to S. sclerotiorum infection .......................................................................................................... 101 5 Discussion .......................................................................................................... 103 6 Acknowledgments .............................................................................................. 116 7 Supporting Information ....................................................................................... 117 Chapter IV: General discussion ............................................................................... 119 2 V. longisporum suppresses the expression of AtPDF2.2 and induces the expression of AtPDF1.2a in the early phase of infection ....................................... 121 3 In-silico promoter analysis of AtPDF2.2 and AtPDF1.2 indicates complex regulatory mechanisms of AtPDFs ........................................................................ 123 4 Promoter analysis revealed a gradual suppression of AtPDF2.2 from roots to leaves .................................................................................................................... 124 5 Plant defensins are functionally involved in plant growth and development ....... 125 6 Knockdown and overexpression of AtPDF2.2 and AtPDF1.2a lead to altered phenotype in transgenic plants ............................................................................. 127 7 Digital transcript profiles of AtPDF2.2 and AtPDF1.2a under biotic and abiotic stresses ................................................................................................................. 128 8 Knockdown/out of AtPDF2.2 and AtPDF1.2a prompt the differential expressions of AtPDF genes and JA, SA or ET-associated genes in transgenic plants ............... 130 9 Translational regulation of AtPDF2.2 and AtPDF1.2a ........................................ 132 10 Overexpression of AtPDF2.2 and AtPDF1.2a enhances plant resistance to V. longisporum infection in transgenic plants ...........................................................
Recommended publications
  • Colletotrichum Gloeosporioides
    ผลของการใชส้ ารสกดั จากพืชสมุนไพรและน้า มนั หอมระเหยบริสุทธ์ิร่วมกบั ยสี ตป์ ฏิปักษ์ Issatchenkia orientalis VCU24 ในการควบคุมโรคแอนแทรคโนสในมะมว่ งพนั ธุ์น้า ดอกไม ้ PHOUTTHAPHONE XAYAVONGSA วทิ ยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกั สูตรวทิ ยาศาสตรมหาบณั ฑิต สาขาวิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา สิงหาคม 2560 ลิขสิทธ์ิเป็นของมหาวทิ ยาลยั บูรพา กิตติกรรมประกาศ วทิ ยานิพนธ์ฉบบั น้ีสา เร็จไปได ้ ดว้ ยความกรุณาและเมตตาเป็นอยา่ งสูงจากทา่ นอาจารย์ ผชู้ ่วยศาสตราจารย ์ ดร.อนุเทพ ภาสุระ กรรมการที่ปรึกษาวิทยานิพนธ์ ที่ใหค้ า ปรึกษา ขอ้ ช้ีแนะที่ เป็นประโยชน์ต่อการทา งานวจิ ยั เรื่อยมา ตลอดจนการดูแลความกา้ วหนา้ ของการดา เนินงานตา่ ง ๆ และใหค้ วามช่วยเหลือในการแกไ้ ขขอ้ บกพร่องในวทิ ยานิพนธ์ของขา้ พเจา้ จนกระทง่ั ลุล่วงไปได้ ดว้ ยดี ขา้ พเจา้ มีความรู้สึกซาบซ้ึงในความเมตตากรุณาและความทุม่ เทของอาจารย ์ จึงขอกราบ ขอบพระคุณอาจารยเ์ ป็นอยา่ งสูงไว ้ณ ที่น้ี ข้าพเจ้าขอกราบขอบพระคุณผู้ช่วยศาสตราจารย ์ ดร.ธิดา เดชฮวบ ประธานกรรรมการ วิทยานิพนธ์ ผชู้ ่วยศาสตราจารย ์ ดร.อภิรดี ปิลันธนภาคย์ และ ผชู้ ่วยศาสตราจารย ์ ดร.สุดารัตน์ สวนจิตร กรรมการสอบวทิ ยานิพนธ์ ที่กรุณาใหค้ า แนะนา เพื่อแกไ้ ขว้ ทิ ยานิพนธ์ส่วนบกพร่อง เพื่อใหว้ ทิ ยานิพนธ์เล่มน้ีสมบูรณ์ยง่ิ ข้ึน ขอกราบขอบพระคุณคณาจารยผ์ ทู้ รงคุณวฒุ ิทุกทา่ นที่ไดป้ ระสิทธิประสาทวชิ าความรู้ ฝึกฝนทกั ษะ กระบวนการคิดและการทา งาน ตลอดระยะเวลาการศึกษามหาบณั ฑิตคร้ังน้ีแก่ ข้าพเจ้า ขอขอบคุณบุคลากรประจาโครงการบัณฑิตศึกษา และภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ทุกทา่ นที่คอยช่วยเหลือและอา นวยความสะดวกในการ ประสานงาน เพื่อขอความอนุเคราะห์การใชเ้ ครื่องมือและสารเคมีตา่ ง ๆ ในการทา
    [Show full text]
  • COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E a OUTRAS FRUTÍFERAS NO BRASIL
    UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIENCIAS AGRÁRIAS E VETERINÁRIAS DE JABOTICABAL COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E A OUTRAS FRUTÍFERAS NO BRASIL Roberta Cristina Delphino Carboni Engenheira Agrônoma 2018 T E S E / C A R B O N I R. C. D. 2 0 1 8 UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIENCIAS AGRÁRIAS E VETERINÁRIAS DE JABOTICABAL COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E A OUTRAS FRUTÍFERAS NO BRASIL Roberta Cristina Delphino Carboni Orientador: Prof. Dr. Antonio de Goes Co-orientadora: Dra. Andressa de Souza Pollo Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Doutora em Agronomia (Genética e Melhoramento de Plantas) 2018 Carboni, Roberta Cristina Delphino C264d Complexos de espécies de Colletotrichum associados aos citros e a outras frutíferas no Brasil / Roberta Cristina Delphino Carboni. – – Jaboticabal, 2018 x, 107 p.: il.; 29 cm Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 2018 Orientador: Antonio de Goes Co-orientadora: Dra. Andressa de Souza Pollo Banca examinadora: Kátia Cristina Kupper, Rita de Cássia Panizzi, Juliana Altafin Galli, Marcos Tulio de Oliveira Bibliografia 1. Citrus spp., Colletotrichum spp. 2. Análise polifásica. 3. marcadores ISSR. I. Título. II. Jaboticabal-Faculdade de Ciências Agrárias e Veterinárias. CDU 634.3:632.4 Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Diretoria Técnica de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal. DADOS CURRICULARES DO AUTOR ROBERTA CRISTINA DELPHINO CARBONI - nascida em 03 de novembro de 1987, em Jaboticabal-SP, é Engenheira Agrônoma formada pela Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP), Câmpus de Jaboticabal-SP, em fevereiro de 2012.
    [Show full text]
  • Molecular Detection of the Seed-Borne Pathogen Colletotrichum Lupini Targeting the Hyper-Variable IGS Region of the Ribosomal Cluster
    plants Article Molecular Detection of the Seed-Borne Pathogen Colletotrichum lupini Targeting the Hyper-Variable IGS Region of the Ribosomal Cluster Susanna Pecchia 1,* , Benedetta Caggiano 1, Daniele Da Lio 2, Giovanni Cafà 3 , Gaetan Le Floch 2 and Riccardo Baroncelli 4,* 1 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy 2 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, IBSAM, ESIAB, Université de Brest, Technopôle Brest-Iroise, 29280 Plouzané, France 3 CABI Europe-UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK 4 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Calle del Duero 12, 37185 Villamayor (Salamanca), Spain * Correspondence: [email protected] (S.P.); [email protected] (R.B.) Received: 20 June 2019; Accepted: 12 July 2019; Published: 14 July 2019 Abstract: Lupins anthracnose is a destructive seed and airborne disease caused by Colletotrichum lupini, affecting stems and pods. Primary seed infections as low as 0.01–0.1% can cause very severe yield losses. One of the most effective management strategies is the development of a robust and sensitive seed detection assay to screen seed lots before planting. PCR-based detection systems exhibit higher levels of sensitivity than conventional techniques, but when applied to seed tests they require the extraction of PCR-quality DNA from target organisms in backgrounds of saprophytic organisms and inhibitory seed-derived compounds. To overcome these limitations, a new detection protocol for C. lupini based on a biological enrichment step followed by a PCR assay was developed. Several enrichment protocols were compared with Yeast Malt Broth amended with ampicillin, streptomycin, and lactic acid were the most efficient.
    [Show full text]
  • Defensin-Like Peptides in Wheat Analyzed by Whole-Transcriptome Sequencing: a Focus on Structural Diversity and Role in Induced Resistance
    Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance Tatyana I. Odintsova1, Marina P. Slezina1, Ekaterina A. Istomina1, Tatyana V. Korostyleva1, Artem S. Kasianov1, Alexey S. Kovtun2, Vsevolod J. Makeev1, Larisa A. Shcherbakova3 and Alexander M. Kudryavtsev1 1 Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia 2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia 3 All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Region, Russia ABSTRACT Antimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and de novo transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat Triticum kiharae and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of Fusarium sambucinum. Using a combination of two pipelines for DEFL mining in transcriptome data sets, as many as 143 DEFL genes were identified in T. kiharae, the vast majority of them represent novel genes. According to the number of cysteine residues and the cysteine motif, wheat DEFLs were classified into ten groups. Classical defensins with a characteristic 8-Cys motif assigned to group 1 DEFLs represent the most abundant group comprising 52 family members. DEFLs with a characteristic 4- Cys motif CX{3,5}CX{8,17}CX{4,6}C named group 4 DEFLs previously found only Submitted 17 July 2018 in legumes were discovered in wheat.
    [Show full text]
  • Antifungal Defensins and Their Role in Plant Defense
    REVIEW ARTICLE published: 02 April 2014 doi: 10.3389/fmicb.2014.00116 Antifungal defensins and their role in plant defense Ariane F. Lacerda1,2 , Érico A. R. Vasconcelos 2,3 , Patrícia Barbosa Pelegrini 2 and Maria F. Grossi de Sa 2,3 * 1 Department of Biochemistry and Molecular Biology, Federal University of Rio Grande do Norte, Natal, Brazil 2 Plant-Pest Interaction Laboratory, Embrapa – Genetic Resources and Biotechnology, Brasília, Brazil 3 Catholic University of Brasilia, Brasília, Brazil Edited by: Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides Tzi Bun Ng, The Chinese University of (AMP) have been studied. However, Broekaert et al. (1995) only coined the term “plant Hong Kong, China defensin,” after comparison of a new class of plant antifungal peptides with known insect Reviewed by: defensins. From there, many plant defensins have been reported and studies on this class Noton Kumar Dutta, Johns Hopkins University, USA of peptides encompass its activity toward microorganisms and molecular features of the Dmitri Debabov, NovaBay mechanism of action against bacteria and fungi. Plant defensins also have been tested Pharmaceuticals, USA as biotechnological tools to improve crop production through fungi resistance generation *Correspondence: in organisms genetically modified (OGM). Its low effective concentration towards fungi, Maria F.Grossi de Sa, Plant-Pest ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better Interaction Laboratory, Embrapa – Genetic Resources and choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of Biotechnology, PqEB Avenue W5 the history of plant defensins since their discovery at the beginning of 90s, following the Norte (final), P.O.
    [Show full text]
  • Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins
    Journal of Fungi Article Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins Mark R. Bleackley 1, Shaily Vasa 1, Peta J. Harvey 2 , Thomas M. A. Shafee 1, Bomai K. Kerenga 1 , Tatiana P. Soares da Costa 1, David J. Craik 2 , Rohan G. T. Lowe 1 and Marilyn A. Anderson 1,* 1 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] (M.R.B.); [email protected] (S.V.); [email protected] (T.M.A.S.); [email protected] (B.K.K.); [email protected] (T.P.S.d.C.); [email protected] (R.G.T.L.) 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QID 4072, Australia; [email protected] (P.J.H.); [email protected] (D.J.C.) * Correspondence: [email protected] Received: 15 July 2020; Accepted: 19 August 2020; Published: 24 August 2020 Abstract: Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46–50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs).
    [Show full text]
  • Defensins of Grasses: a Systematic Review
    biomolecules Review Defensins of Grasses: A Systematic Review , Tatyana I. Odintsova * y , Marina P. Slezina y and Ekaterina A. Istomina Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; [email protected] (M.P.S.); [email protected] (E.A.I.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 8 June 2020; Accepted: 8 July 2020; Published: 10 July 2020 Abstract: The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure–function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.
    [Show full text]
  • Basic Insight on Plant Defensins
    Basic insight on plant defensins @ Roxana Portieles, Camilo Ayra, Orlando Borrás Plant Division, Center for Genetic Engineering and Biotechnology, CIGB Ave 31 / 158 and 190, Playa, PO Box 6162, Havana 10 600, Cuba E-mail: [email protected] ABSTRACT REVIEW Defensins are small cysteine-rich peptides with antimicrobial activity. Plant defensins have a characteristic three- dimensional folding pattern that is stabilized by eight disulfide-linked cysteines. This pattern is very similar to defense peptides of mammals and insects, suggesting an ancient and conserved origin. Functionally, these proteins exhibit a diverse array of biological activities, although they all serve a common function as defenders of their hosts. Plant defensins are active against a broad range of phytopathogenic fungi and even against human pathogens, which indicates their potential in therapeutics. This review briefly describes the distribution, structure, function and putative modes of antimicrobial activity of plant defensins and reflects their potential in agriculture and medical applications. Key works: defensin, cysteine-rich peptides, mode of action Biotecnología Aplicada 2006;23:75-78 RESUMEN Conocimientos básicos acerca de las defensinas de plantas. Las defensinas son pequeños péptidos ricos en cisteína con actividad antimicrobiana. Las defensinas de plantas poseen un característico patrón de plegamiento tri-dimensional estabilizado por ocho puentes disulfuro de residuo de cisteinas. Este patrón comparte una alta semejanza con los péptidos de defensa de mamíferos e insectos, sugiriendo un origen común conservado. Funcionalmente estas proteínas exhiben un conjunto diverso de actividades biológicas, aunque todas están al servicio de una función común, como defensoras de sus hospederos. Las defensinas de plantas se activan contra un amplio rango de hongos fitopatogénicos e incluso contra patógenos humanos, lo cual indica su potencial para el desarrollo de terapéuticos.
    [Show full text]
  • Modes of Action of a Bi-Domain Plant Defensin Mtdef5 Against a Bacterial Pathogen Xanthomonas Campestris
    fmicb-09-00934 May 14, 2018 Time: 15:47 # 1 ORIGINAL RESEARCH published: 16 May 2018 doi: 10.3389/fmicb.2018.00934 Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris Siva L. S. Velivelli1, Kazi T. Islam1†, Eric Hobson1,2 and Dilip M. Shah1* 1 Donald Danforth Plant Science Center, St. Louis, MO, United States, 2 Department of Biology, Jackson State University, Jackson, MS, United States Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. Edited by: A unique bi-domain defensin, designated MtDef5, was recently characterized for Santi M. Mandal, its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains Indian Institute of Technology two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we Kharagpur, India characterize antibacterial activity of this defensin and its two domains, MtDef5A and Reviewed by: Muhammad Saleem, MtDef5B, against two economically important plant bacterial pathogens, Gram-negative University of Kentucky, United States Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits Esther Orozco, Centro de Investigación y de Estudios the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. Avanzados del IPN, Mexico MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent *Correspondence: MtDef5.
    [Show full text]
  • In Silico Structural Characterization of Class II Plant Defensins
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.065185; this version posted April 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. In silico Structural Characterization of Class II Plant Defensins from Arabidopsis thaliana Laura S.M. Costa1,2, Állan S. Pires1, Neila B. Damaceno1, Pietra O. Rigueiras1, Mariana R. Maximiano1, Octavio L. Franco1,2,3, William F. Porto3,4* 1 Centro de Análises Proteômicas e Bioquímicas. Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil. 2 Departamento de Biologia, Programa de Pós-Graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora-MG, Brazil. 3 S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, Brazil. 4 Porto Reports, Brasília-DF, Brazil – www.portoreports.com *Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.065185; this version posted April 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Defensins compose a polyphyletic group of multifunctional defense peptides. The cis- defensins, also known as cysteine stabilized αβ (CSαβ) defensins, are one of the most ancient defense peptide families.
    [Show full text]
  • CARACTERIZAÇÃO E EPIDEMIOLOGIA COMPARATIVA DE ESPÉCIES DE Colletotrichum EM ANONÁCEAS NO ESTADO DE ALAGOAS
    1 UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM PROTEÇÃO DE PLANTAS JAQUELINE FIGUEREDO DE OLIVEIRA COSTA CARACTERIZAÇÃO E EPIDEMIOLOGIA COMPARATIVA DE ESPÉCIES DE Colletotrichum EM ANONÁCEAS NO ESTADO DE ALAGOAS RIO LARGO 2014 2 JAQUELINE FIGUEREDO DE OLIVEIRA COSTA CARACTERIZAÇÃO E EPIDEMIOLOGIA COMPARATIVA DE ESPÉCIES DE Colletotrichum EM ANONÁCEAS NO ESTADO DE ALAGOAS Tese apresentada ao Programa de Pós-Graduação em Proteção de Plantas da Universidade Federal de Alagoas, como parte dos requisitos para obtenção do título de Doutor em Proteção de Plantas. COMITÊ DE ORIENTAÇÃO: Profa. Dra. Iraildes Pereira Assunção Profa. Dra. Kamila Correia Câmara Prof. Dr. Gaus Silvestre de Andrade Lima RIO LARGO 2014 3 Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecário Responsável: Valter dos Santos Andrade C837c Costa, Jaqueline Figueredo de Oliveira. Caracterização e epidemiologia comparativa de espécies de Colletotrichum em anonáceas no estado de Alagoas / Jaqueline Figueredo de Oliveira Costa. – 2014. 110 f. : il. Orientadora: Iraildes Pereira Assunção. Coorientadores: Kamila Câmara Corrêia, Gaus Silvestre de Andrade Lima. Tese (Doutorado em Proteção de plantas) – Universidade Federal de Alagoas. Centro de Ciências Agrárias. Rio Largo, 2014. Inclui bibliografia. 1. Fungicidas. 2. Ácido salicilhidroxâmico. 3. Annona squamosa. 4. Multilocus. 5. Pinhas. 6. Graviola – Doenças e pragas I. Título. CDU: 632.4:634.41 4 Folha de Aprovação JAQUELINE FIGUEREDO DE OLIVEIRA COSTA CARACTERIZAÇÃO E EPIDEMIOLOGIA COMPARATIVA DE ESPÉCIES DE Colletotrichum EM ANONÁCEAS NO ESTADO DE ALAGOAS Tese submetida ao corpo docente do Programa de Pós- Graduação em Proteção de Plantas da Universidade Federal de Alagoas e Aprovada em 18 de dezembro de 2014.
    [Show full text]
  • Antifungal Plant Defensins: Mechanisms of Action and Production
    Molecules 2014, 19, 12280-12303; doi:10.3390/molecules190812280 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Antifungal Plant Defensins: Mechanisms of Action and Production Kim Vriens 1, Bruno P. A. Cammue 1,2,* and Karin Thevissen 1 1 Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium 2 Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent 9052, Belgium * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-1632-9682; Fax: +32-1632-1966. Received: 18 July 2014; in revised form: 29 July 2014 / Accepted: 4 August 2014 / Published: 14 August 2014 Abstract: Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents. Keywords: mechanism of action; antimicrobial peptide; plant defensin; RsAFP2; NaD1; MsDef1; MtDef4; Psd1; heterologous protein expression; chemical protein synthesis 1.
    [Show full text]