The Grothendieck Festschrift Volume I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motives, Volume 55.2
http://dx.doi.org/10.1090/pspum/055.2 Recent Titles in This Series 55 Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert £. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Areata conference on representations of finite groups (Humboldt State University, Areata, California, July 1986) 46 Spencer J. Bloch, editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985) 45 Felix E. Browder, editor, Nonlinear functional analysis and its applications (University of California, Berkeley, July 1983) 44 William K. Allard and Frederick J. Almgren, Jr., editors, Geometric measure theory and the calculus of variations (Humboldt State University, Areata, California, July/August 1984) 43 Francois Treves, editor, Pseudodifferential operators and applications (University of Notre Dame, Notre Dame, Indiana, April 1984) 42 Anil Nerode and Richard A. -
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Monads of Effective Descent Type and Comonadicity
Theory and Applications of Categories, Vol. 16, No. 1, 2006, pp. 1–45. MONADS OF EFFECTIVE DESCENT TYPE AND COMONADICITY BACHUKI MESABLISHVILI Abstract. We show, for an arbitrary adjunction F U : B→Awith B Cauchy complete, that the functor F is comonadic if and only if the monad T on A induced by the adjunction is of effective descent type, meaning that the free T-algebra functor F T : A→AT is comonadic. This result is applied to several situations: In Section 4 to give a sufficient condition for an exponential functor on a cartesian closed category to be monadic, in Sections 5 and 6 to settle the question of the comonadicity of those functors whose domain is Set,orSet, or the category of modules over a semisimple ring, in Section 7 to study the effectiveness of (co)monads on module categories. Our final application is a descent theorem for noncommutative rings from which we deduce an important result of A. Joyal and M. Tierney and of J.-P. Olivier, asserting that the effective descent morphisms in the opposite of the category of commutative unital rings are precisely the pure monomorphisms. 1. Introduction Let A and B be two (not necessarily commutative) rings related by a ring homomorphism i : B → A. The problem of Grothendieck’s descent theory for modules with respect to i : B → A is concerned with the characterization of those (right) A-modules Y for which there is X ∈ ModB andanisomorphismY X⊗BA of right A-modules. Because of a fun- damental connection between descent and monads discovered by Beck (unpublished) and B´enabou and Roubaud [6], this problem is equivalent to the problem of the comonadicity of the extension-of-scalars functor −⊗BA :ModB → ModA. -
6. Galois Descent for Quasi-Coherent Sheaves 19 7
DESCENT 0238 Contents 1. Introduction 2 2. Descent data for quasi-coherent sheaves 2 3. Descent for modules 4 4. Descent for universally injective morphisms 9 4.1. Category-theoretic preliminaries 10 4.3. Universally injective morphisms 11 4.14. Descent for modules and their morphisms 12 4.23. Descent for properties of modules 15 5. Fpqc descent of quasi-coherent sheaves 17 6. Galois descent for quasi-coherent sheaves 19 7. Descent of finiteness properties of modules 21 8. Quasi-coherent sheaves and topologies 23 9. Parasitic modules 31 10. Fpqc coverings are universal effective epimorphisms 32 11. Descent of finiteness and smoothness properties of morphisms 36 12. Local properties of schemes 39 13. Properties of schemes local in the fppf topology 40 14. Properties of schemes local in the syntomic topology 42 15. Properties of schemes local in the smooth topology 42 16. Variants on descending properties 43 17. Germs of schemes 44 18. Local properties of germs 44 19. Properties of morphisms local on the target 45 20. Properties of morphisms local in the fpqc topology on the target 47 21. Properties of morphisms local in the fppf topology on the target 54 22. Application of fpqc descent of properties of morphisms 54 23. Properties of morphisms local on the source 57 24. Properties of morphisms local in the fpqc topology on the source 58 25. Properties of morphisms local in the fppf topology on the source 58 26. Properties of morphisms local in the syntomic topology on the source 59 27. Properties of morphisms local in the smooth topology on the source 59 28. -
THE FUNDAMENTAL THEOREMS of HIGHER K-THEORY We Now Restrict Our Attention to Exact Categories and Waldhausen Categories, Where T
CHAPTER V THE FUNDAMENTAL THEOREMS OF HIGHER K-THEORY We now restrict our attention to exact categories and Waldhausen categories, where the extra structure enables us to use the following types of comparison the- orems: Additivity (1.2), Cofinality (2.3), Approximation (2.4), Resolution (3.1), Devissage (4.1), and Localization (2.1, 2.5, 5.1 and 7.3). These are the extensions to higher K-theory of the corresponding theorems of chapter II. The highlight of this chapter is the so-called “Fundamental Theorem” of K-theory (6.3 and 8.2), comparing K(R) to K(R[t]) and K(R[t,t−1]), and its analogue (6.13.2 and 8.3) for schemes. §1. The Additivity theorem If F ′ → F → F ′′ is a sequence of exact functors F ′,F,F ′′ : B→C between two exact categories (or Waldhausen categories), the Additivity Theorem tells us when ′ ′′ the induced maps K(B) → K(C) satisfy F∗ = F∗ + F∗ . To state it, we need to introduce the notion of a short exact sequence of functors, which was mentioned briefly in II(9.1.8). Definition 1.1. (a) If B and C are exact categories, we say that a sequence F ′ → F → F ′′ of exact functors and natural transformations from B to C is a short exact sequence of exact functors, and write F ′ F ։ F ′′, if 0 → F ′(B) → F (B) → F ′′(B) → 0 is an exact sequence in C for every B ∈B. (b) If B and C are Waldhausen categories, we say that F ′ F ։ F ′′ is a short exact sequence, or a cofibration sequence of exact functors if each F ′(B) F (B) ։ F ′′(B) is a cofibration sequence and if for every cofibration A B in B, the evident ′ map F (A) ∪F ′(A) F (B) F (B) is a cofibration in C. -
Monadicity, Purity, and Descent Equivalence
Monadicity, Purity, and Descent Equivalence .A t hesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Programme in Mathematics and S tatistics York Cniversity Toronto, Ontario National Library Bibliothèque nationale 191 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Sewices seMces bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON Ki A ON4 ûtiawaON K1AW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence aliowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, dism%ute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts ffom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Monadicity, Purity, and Descent Equivalence by Xiuzhan Guo a dissertation submitted to the Faculty of Graduate Studies of York University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY E 2000 Permission has been granted to the LIBRARY OF YORK UNIVERSITY to lend or sel1 copies of this dissertation. to the NATIONAL LIBRARY OF CANADA to microfilm this dissertation and to lend or seIl copies of the film. -
Modern Birkhauser Classics
Modern Birkhauser Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkhauser in recent decades have been groundbreaking and have come to be regarded as foun dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac cessible to new generations of students, scholars, and researchers. The Grothendieck Festschrift Volume II A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck P. Cartier L. lUusie N.M. Katz G. Laumon Yu.I. Manin K.A. Ribet Editors Reprint of the 1990 Edition Birkhauser Boston • Basel • Berlin Luc lUusie Pierre Cartier Universite de Paris-Sud Institut des Hautes Etudes Scientifiques Departement de Mathematiques F-91440 Bures-sur-Yvette F-91405 Orsay France France Gerard Laumon Nicholas M. Katz Universite de Paris-Sud Princeton University Departement de Math6matiques Department of Mathematics F-91405 Orsay Princeton, NJ 08544 France U.S.A. Yuri I. Manin Kenneth A. Ribet Max-Planck Institut ftir Mathematik University of California D-53111 Bonn Department of Mathematics Germany Berkeley, CA 94720 U.S.A. Originally published as Volume 87 in the series Progress in Mathematics Cover design by Alex Gerasev. Mathematics Subject Classification (2000): 00B15, 00B30, 01A60, 01A75 (primary); 11F37, 11F72, 11G05,11G40,11M41,11R29,11R34,11S23,11S31,11S37,12H05,13K05,13N10,14A99,14B15, 14C17, 14D05, 14E20, 14F05, 14F20, 14F30, 14F32, 14F35, 14F40, 14F99, 14G05, 14G10, 14H25, 14H40,14L05,14L15,14M10,14M15,17B10,17B67,18A99,18B40,18E30,18F20,20F34,20F36, 20L05, 22E35, 22E50, 32C15, 32C38, 32S50, 32S60, 57M07, 58G25. -
A New Characterization of the Tate-Shafarevich Group
Master Thesis in Mathematics Advisor: Prof. Ehud De Shalit Arithmetic of Abelian Varieties over Number Fields: A New Characterization of the Tate-Shafarevich Group Menny Aka June 2007 To Nili King 2 Acknowledgments This thesis is the culmination of my studies in the framework of the AL- GANT program. I would like to take this opportunity to thank all those who have helped me over the past two years. First, I would like to express my deepest gratitude to Professor Ehud De Shalit, for teaching me so many things, referring me to the ALGANT program and for the wonderful guid- ance he provided in preparing this thesis. I want to thank Professor Bas Edixhoven, for his oce that is always open, for teaching me all the alge- braic geometry I know and for all the help he gave me in the rst year of the program in Leiden. I also want to thank Professor Boas Erez for the great help and exibility along the way. With the help of these people, the last two years were especially enriching, in the mathematical aspect and in the other aspects of life. Introduction This thesis was prepared for the ALGANT program which focuses on the syn- thesis of ALgebra Geometry And Number Theory. The subject of this thesis shows the various inter-relations between these elds. The Tate-Shafarevich group is a number theoretic object that is attached to a geometric object (an Abelian variety). Our new characterization is a geometric one, and its proof is mainly algebraic, using Galois cohomology and theorems from class eld theory. -
Categorical and Combinatorial Aspects of Descent Theory
Categorical and combinatorial aspects of descent theory Ross Street March 2003 Abstract There is a construction which lies at the heart of descent theory. The combinatorial aspects of this paper concern the description of the construction in all dimensions. The description is achieved precisely for strict n-categories and outlined for weak n- categories. The categorical aspects concern the development of descent theory in low dimensions in order to provide a template for a theory in all dimensions. The theory involves non-abelian cohomology, stacks, torsors, homotopy, and higher-dimensional categories. Many of the ideas are scattered through the literature or are folklore; a few are new. Section Headings §1. Introduction §2. Low-dimensional descent §3. Exactness of the 2-category of categories §4. Parametrized categories §5. Factorizations for parametrized functors §6. Classification of locally trivial structures §7. Stacks and torsors §8. Parity complexes §9. The Gray tensor product of ω-categories and the descent ω-category §10. Weak n-categories, cohomology and homotopy §11. Computads, descent and simplicial nerves for weak n-categories §12. Brauer groups ⁄ §13. Giraud’s H2 and the pursuit of stacks 1. Introduction Descent theory, as understood here, has been generalized from a basic example → involving modules over rings. Given a ring morphism fR : S, each right R-module ⊗ M determines a right S-module MS R . This process is encapsulated by the “pseudofunctor” Mod from the category of rings to the category of (large) categories; to each ring R it assigns the category ModR of right R-modules and to each morphism f −⊗ → the functor R S : ModR ModS. -
A Quick Introduction to Fibered Categories and Topological Stacks
A QUICK INTRODUCTION TO FIBERED CATEGORIES AND TOPOLOGICAL STACKS BEHRANG NOOHI Abstract. This is a quick introduction to fibered categories and topological stacks. Contents 1. Categories fibered in groupoids 1 1.1. The 2-category of fibered categories 3 1.2. Fiber products and inner-homs in FibT 4 1.3. Descent condition 4 1.4. The stack associated to a category fibered in groupoids 5 1.5. Quotient stacks 5 2. Topological stacks 6 2.1. Stacks over Top 6 2.2. Representable morphisms of stacks 7 2.3. Topological stacks 7 2.4. Examples of topological stacks 8 2.5. Classifying space of a topological stack 9 References 9 1. Categories fibered in groupoids The formalism of categories fibered in groupoids provides a convenient framework for dealing with lax groupoid-valued functors. In this section, we recall some basic facts about categories fibered in groupoids. We recall that a groupoid is a (small) category in which all morphisms are isomor- phisms. A set, viewed as a category with only identity morphisms, is a groupoid. By abuse of terminology, we sometimes use the term set for any groupoid that is equivalent to a groupoid of this form (the correct terminology is equivalence rela- tion). Let T be a fixed category. An example to keep in mind is T = Top, the category of topological spaces. A category fibered in groupoids over T is a category X together with a functor π : X ! T satisfying the following properties: (i) (Lifting arrows.) For every arrow f : V ! U in T, and for every object X in X such that π(X) = U, there is an arrow F : Y ! X in X such that π(F ) = f. -
Λ-RINGS and the FIELD with ONE ELEMENT Introduction Many Writers Have Mused About Algebraic Geometry Over Deeper Bases Than
Λ-RINGS AND THE FIELD WITH ONE ELEMENT JAMES BORGER Abstract. The theory of Λ-rings, in the sense of Grothendieck's Riemann{ Roch theory, is an enrichment of the theory of commutative rings. In the same way, we can enrich usual algebraic geometry over the ring Z of integers to produce Λ-algebraic geometry. We show that Λ-algebraic geometry is in a precise sense an algebraic geometry over a deeper base than Z and that it has many properties predicted for algebraic geometry over the mythical field with one element. Moreover, it does this is a way that is both formally robust and closely related to active areas in arithmetic algebraic geometry. Introduction Many writers have mused about algebraic geometry over deeper bases than the ring Z of integers. Although there are several, possibly unrelated reasons for this, here I will mention just two. The first is that the combinatorial nature of enumer- ation formulas in linear algebra over finite fields Fq as q tends to 1 suggests that, just as one can work over all finite fields simultaneously by using algebraic geome- try over Z, perhaps one could bring in the combinatorics of finite sets by working over an even deeper base, one which somehow allows q = 1. It is common, follow- ing Tits [60], to call this mythical base F1, the field with one element. (See also Steinberg [58], p. 279.) The second purpose is to prove the Riemann hypothesis. With the analogy between integers and polynomials in mind, we might hope that Spec Z would be a kind of curve over Spec F1, that Spec Z ⊗F1 Z would not only make sense but be a surface bearing some kind of intersection theory, and that we could then mimic over Z Weil's proof [64] of the Riemann hypothesis over function fields.1 Of course, since Z is the initial object in the category of rings, any theory of algebraic geometry over a deeper base would have to leave the usual world of rings and schemes. -
Reminiscences of Grothendieck and His School
REMINISCENCES OF GROTHENDIECK AND HIS SCHOOL LUC ILLUSIE, WITH SPENCER BLOCH, VLADIMIR DRINFELD, ET AL. In the afternoon of Tuesday, January 30, 2007 Illusie met with Beilinson, Bloch, Drinfeld and a few other guests at Beilinson's place in Chicago. He chatted by the fireside, recalling memories of his days with Grothendieck. Here is a slightly edited version of a transcript prepared by Thanos Papa¨ıoannou,Keerthi Madapusi Sampath, and Vadim Vologodsky. At the IHES |(Illusie) I began attending Grothendieck's seminars at the IHES in '64 for the first part of SGA 5 ('64{ '65). The second part was in '65{'66. The seminar was on Tuesdays. It started at 2:15 and lasted one hour and a half. After that we had tea. Most of the talks were given by Grothendieck. Usually, he had pre-notes prepared over the summer or before, and he would give them to the potential speakers. Among his many students he distributed the expos´es,and also he asked his students to write down notes. The first time I saw him I was scared. It was in '64. I had been introduced to him through Cartan, who said, For what you're doing, you should meet Grothendieck. I was indeed looking for an Atiyah-Singer index formula in a relative situation. A relative situation is of course in Grothendieck's style, so Cartan immediately saw the point. I was doing something with Hilbert bundles, complexes of Hilbert bundles with finite cohomology, and he said, It reminds me of something done by Grothendieck, you should discuss with him.