Monads of Effective Descent Type and Comonadicity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Mal'tsevness and Partial Protomodularity
PARTIAL MAL’TSEVNESS AND PARTIAL PROTOMODULARITY DOMINIQUE BOURN Abstract. We introduce the notion of Mal’tsev reflection which allows us to set up a partial notion of Mal’tsevness with respect to a class Σ of split epimorphisms stable under pullback and containing the isomorphisms, and we investigate what is remaining of the properties of the global Mal’tsev context. We introduce also the notion of partial protomodularity in the non-pointed context. Introduction A Mal’tsev category is a category in which any reflexive relation is an equivalence relation, see [9] and [10]. The categories Gp of groups and K-Lie of Lie K-algebras are major examples of Mal’tsev categories. The terminology comes from the pi- oneering work of Mal’tsev in the varietal context [16] which was later on widely developped in [18]. In [3], Mal’tsev categories were characterized in terms of split epimorphisms: a finitely complete category D is a Mal’tsev one if and only if any pullback of split epimorphisms in D: t¯ X′ o X O g¯ / O ′ ′ f s f s t Y ′ o Y g / is such that the pair (s′, t¯) is jointly extremally epic. More recently the same kind of property was observed, but only for a certain class Σ of split epimorphisms (f,s) which is stable under pullback and contains arXiv:1507.02886v1 [math.CT] 10 Jul 2015 isomorphisms. By the classes of Schreier or homogeneous split epimorphisms in the categories Mon of monoids and SRng of semi-rings [8], by the classes of puncturing or acupuncturing split epimorphims in the category of quandles [6], by the class of split epimorphic functors with fibrant splittings in the category CatY of categories with a fixed set of objects Y [5]. -
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Universality of Multiplicative Infinite Loop Space Machines
UNIVERSALITY OF MULTIPLICATIVE INFINITE LOOP SPACE MACHINES DAVID GEPNER, MORITZ GROTH AND THOMAS NIKOLAUS Abstract. We establish a canonical and unique tensor product for commutative monoids and groups in an ∞-category C which generalizes the ordinary tensor product of abelian groups. Using this tensor product we show that En-(semi)ring objects in C give rise to En-ring spectrum objects in C. In the case that C is the ∞-category of spaces this produces a multiplicative infinite loop space machine which can be applied to the algebraic K-theory of rings and ring spectra. The main tool we use to establish these results is the theory of smashing localizations of presentable ∞-categories. In particular, we identify preadditive and additive ∞-categories as the local objects for certain smashing localizations. A central theme is the stability of algebraic structures under basechange; for example, we show Ring(D ⊗ C) ≃ Ring(D) ⊗ C. Lastly, we also consider these algebraic structures from the perspective of Lawvere algebraic theories in ∞-categories. Contents 0. Introduction 1 1. ∞-categories of commutative monoids and groups 4 2. Preadditive and additive ∞-categories 6 3. Smashing localizations 8 4. Commutative monoids and groups as smashing localizations 11 5. Canonical symmetric monoidal structures 13 6. More functoriality 15 7. ∞-categories of semirings and rings 17 8. Multiplicative infinite loop space theory 19 Appendix A. Comonoids 23 Appendix B. Algebraic theories and monadic functors 23 References 26 0. Introduction The Grothendieck group K0(M) of a commutative monoid M, also known as the group completion, is the universal abelian group which receives a monoid map from M. -
Protomodular Aspect of the Dual of a Topos
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE IN PRESS Advances in Mathematics 187 (2004) 240–255 http://www.elsevier.com/locate/aim Protomodular aspect of the dual of a topos Dominique Bourn Centre Universitaire de la Mi-voix, Lab. d’Analyse, Ge´ome´trie et Alge`bre, Universite´ du Littoral, 50 rue Ferdinand Buisson, BP699, 62228 Calais Cedex, France Received 3 March 2003; accepted 15 September 2003 Communicated by Ross Street Abstract The structure of the dual of a topos is investigated under its aspect of a Barr exact and protomodular category. In particular the normal monomorphisms in the fibres of the fibration of pointed objects are characterized, and the change of base functors with respect to this same fibration are shown to reflect those normal monomorphisms. r 2003 Elsevier Inc. All rights reserved. MSC: 18B25; 18D30; 08B10 Keywords: Topos; Fibrations; Mal’cev and protomodular categories 0. Introduction It is well known that, given a topos E; the subobject classifier O is endowed with an internal structure of Heyting Algebra, and that consequently the contravariant ‘‘power-set’’ functor OðÞ : Eop-E takes its values in the category HeytE of internal Heyting algebras in E: But the category Heyt of Heyting Algebras shares with the categories Gp of groups or Rg of rings the property of being protomodular. This property [3] says that the fibration of pointed objects p : PtC-C; whose fibre at X is the category PtX C of split epimorphisms with codomain X; has its change of base functors conservative (i.e. -
Invertible Objects in Motivic Homotopy Theory
Invertible Objects in Motivic Homotopy Theory Tom Bachmann M¨unchen2016 Invertible Objects in Motivic Homotopy Theory Tom Bachmann Dissertation an der Fakult¨atf¨urMathematik, Informatik und Statistik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Tom Bachmann aus Chemnitz M¨unchen, den 19. Juli 2016 Erstgutachter: Prof. Dr. Fabien Morel Zweitgutachter: Prof. Dr. Marc Levine Drittgutachter: Prof. Dr. math. Oliver R¨ondigs Tag der m¨undlichen Pr¨ufung:18.11.2016 Eidesstattliche Versicherung Bachmann, Tom Name, Vorname Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema Invertible Objects in Motivic Homotopy Theory selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. München, 1.12.2016 Ort, Datum Unterschrift Doktorandin/Doktorand Eidesstattliche Versicherung Stand: 31.01.2013 vi Abstract If X is a (reasonable) base scheme then there are the categories of interest in stable motivic homotopy theory SH(X) and DM(X), constructed by Morel-Voevodsky and others. These should be thought of as generalisations respectively of the stable homotopy category SH and the derived category of abelian groups D(Ab), which are studied in classical topology, to the \world of smooth schemes over X". Just like in topology, the categories SH(X); DM(X) are symmetric monoidal: there is a bifunctor (E; F ) 7! E ⊗ F satisfying certain properties; in particular there is a unit 1 satisfying E ⊗ 1 ' 1 ⊗ E ' E for all E. -
6. Galois Descent for Quasi-Coherent Sheaves 19 7
DESCENT 0238 Contents 1. Introduction 2 2. Descent data for quasi-coherent sheaves 2 3. Descent for modules 4 4. Descent for universally injective morphisms 9 4.1. Category-theoretic preliminaries 10 4.3. Universally injective morphisms 11 4.14. Descent for modules and their morphisms 12 4.23. Descent for properties of modules 15 5. Fpqc descent of quasi-coherent sheaves 17 6. Galois descent for quasi-coherent sheaves 19 7. Descent of finiteness properties of modules 21 8. Quasi-coherent sheaves and topologies 23 9. Parasitic modules 31 10. Fpqc coverings are universal effective epimorphisms 32 11. Descent of finiteness and smoothness properties of morphisms 36 12. Local properties of schemes 39 13. Properties of schemes local in the fppf topology 40 14. Properties of schemes local in the syntomic topology 42 15. Properties of schemes local in the smooth topology 42 16. Variants on descending properties 43 17. Germs of schemes 44 18. Local properties of germs 44 19. Properties of morphisms local on the target 45 20. Properties of morphisms local in the fpqc topology on the target 47 21. Properties of morphisms local in the fppf topology on the target 54 22. Application of fpqc descent of properties of morphisms 54 23. Properties of morphisms local on the source 57 24. Properties of morphisms local in the fpqc topology on the source 58 25. Properties of morphisms local in the fppf topology on the source 58 26. Properties of morphisms local in the syntomic topology on the source 59 27. Properties of morphisms local in the smooth topology on the source 59 28. -
THE FUNDAMENTAL THEOREMS of HIGHER K-THEORY We Now Restrict Our Attention to Exact Categories and Waldhausen Categories, Where T
CHAPTER V THE FUNDAMENTAL THEOREMS OF HIGHER K-THEORY We now restrict our attention to exact categories and Waldhausen categories, where the extra structure enables us to use the following types of comparison the- orems: Additivity (1.2), Cofinality (2.3), Approximation (2.4), Resolution (3.1), Devissage (4.1), and Localization (2.1, 2.5, 5.1 and 7.3). These are the extensions to higher K-theory of the corresponding theorems of chapter II. The highlight of this chapter is the so-called “Fundamental Theorem” of K-theory (6.3 and 8.2), comparing K(R) to K(R[t]) and K(R[t,t−1]), and its analogue (6.13.2 and 8.3) for schemes. §1. The Additivity theorem If F ′ → F → F ′′ is a sequence of exact functors F ′,F,F ′′ : B→C between two exact categories (or Waldhausen categories), the Additivity Theorem tells us when ′ ′′ the induced maps K(B) → K(C) satisfy F∗ = F∗ + F∗ . To state it, we need to introduce the notion of a short exact sequence of functors, which was mentioned briefly in II(9.1.8). Definition 1.1. (a) If B and C are exact categories, we say that a sequence F ′ → F → F ′′ of exact functors and natural transformations from B to C is a short exact sequence of exact functors, and write F ′ F ։ F ′′, if 0 → F ′(B) → F (B) → F ′′(B) → 0 is an exact sequence in C for every B ∈B. (b) If B and C are Waldhausen categories, we say that F ′ F ։ F ′′ is a short exact sequence, or a cofibration sequence of exact functors if each F ′(B) F (B) ։ F ′′(B) is a cofibration sequence and if for every cofibration A B in B, the evident ′ map F (A) ∪F ′(A) F (B) F (B) is a cofibration in C. -
Arxiv:1808.09738V4 [Math.CT] 12 Nov 2020 Oueycoe N Rsre Ne Lsdiae.Se[ See Images
A CHARACTERISATION OF THE CATEGORY OF COMPACT HAUSDORFF SPACES VINCENZO MARRA AND LUCA REGGIO Abstract. We provide a characterisation of the category KH of compact Hausdorff spaces and continuous maps by means of categorical properties only. To this aim we introduce a notion of filtrality for coherent categories, relating certain lattices of subob- jects to their Boolean centers. Our main result reads as follows: Up to equivalence, KH is the unique non-trivial well-pointed pretopos which is filtral and admits all set-indexed copowers of its terminal object. 1. Introduction Several characterisations of the class of compact Hausdorff spaces are available in the liter- ature. For example, de Groot’s Theorem asserts that compact Hausdorff spaces form the only non-trivial, productive and closed-hereditary class of topological spaces which are ab- solutely closed and preserved under closed images. See [Wattel, 1968, p. 51], and [Franklin & Thomas, 1970] for a categorical translation of this result. The category KH of compact Hausdorff spaces and continuous maps has been widely investigated in categorical topo- logy. There, the characterisation of subcategories of the category of topological spaces is an important concern. In this direction, Herrlich and Strecker showed that KH is the unique non-trivial full epireflective subcategory of Hausdorff spaces that is varietal in the sense of [Linton, 1966]. See [Herrlich & Strecker, 1971], and also [Richter, 1996]. A common feature of these characterisations is that they are all relative to an ambient class of topological spaces. To the best of our knowledge, the only abstract characterisa- tions of the category of compact Hausdorff spaces were provided in [Richter, 1991, Richter, 1992]. -
Monadicity, Purity, and Descent Equivalence
Monadicity, Purity, and Descent Equivalence .A t hesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Programme in Mathematics and S tatistics York Cniversity Toronto, Ontario National Library Bibliothèque nationale 191 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Sewices seMces bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON Ki A ON4 ûtiawaON K1AW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence aliowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, dism%ute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts ffom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Monadicity, Purity, and Descent Equivalence by Xiuzhan Guo a dissertation submitted to the Faculty of Graduate Studies of York University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY E 2000 Permission has been granted to the LIBRARY OF YORK UNIVERSITY to lend or sel1 copies of this dissertation. to the NATIONAL LIBRARY OF CANADA to microfilm this dissertation and to lend or seIl copies of the film. -
A New Characterization of the Tate-Shafarevich Group
Master Thesis in Mathematics Advisor: Prof. Ehud De Shalit Arithmetic of Abelian Varieties over Number Fields: A New Characterization of the Tate-Shafarevich Group Menny Aka June 2007 To Nili King 2 Acknowledgments This thesis is the culmination of my studies in the framework of the AL- GANT program. I would like to take this opportunity to thank all those who have helped me over the past two years. First, I would like to express my deepest gratitude to Professor Ehud De Shalit, for teaching me so many things, referring me to the ALGANT program and for the wonderful guid- ance he provided in preparing this thesis. I want to thank Professor Bas Edixhoven, for his oce that is always open, for teaching me all the alge- braic geometry I know and for all the help he gave me in the rst year of the program in Leiden. I also want to thank Professor Boas Erez for the great help and exibility along the way. With the help of these people, the last two years were especially enriching, in the mathematical aspect and in the other aspects of life. Introduction This thesis was prepared for the ALGANT program which focuses on the syn- thesis of ALgebra Geometry And Number Theory. The subject of this thesis shows the various inter-relations between these elds. The Tate-Shafarevich group is a number theoretic object that is attached to a geometric object (an Abelian variety). Our new characterization is a geometric one, and its proof is mainly algebraic, using Galois cohomology and theorems from class eld theory. -
Categorical and Combinatorial Aspects of Descent Theory
Categorical and combinatorial aspects of descent theory Ross Street March 2003 Abstract There is a construction which lies at the heart of descent theory. The combinatorial aspects of this paper concern the description of the construction in all dimensions. The description is achieved precisely for strict n-categories and outlined for weak n- categories. The categorical aspects concern the development of descent theory in low dimensions in order to provide a template for a theory in all dimensions. The theory involves non-abelian cohomology, stacks, torsors, homotopy, and higher-dimensional categories. Many of the ideas are scattered through the literature or are folklore; a few are new. Section Headings §1. Introduction §2. Low-dimensional descent §3. Exactness of the 2-category of categories §4. Parametrized categories §5. Factorizations for parametrized functors §6. Classification of locally trivial structures §7. Stacks and torsors §8. Parity complexes §9. The Gray tensor product of ω-categories and the descent ω-category §10. Weak n-categories, cohomology and homotopy §11. Computads, descent and simplicial nerves for weak n-categories §12. Brauer groups ⁄ §13. Giraud’s H2 and the pursuit of stacks 1. Introduction Descent theory, as understood here, has been generalized from a basic example → involving modules over rings. Given a ring morphism fR : S, each right R-module ⊗ M determines a right S-module MS R . This process is encapsulated by the “pseudofunctor” Mod from the category of rings to the category of (large) categories; to each ring R it assigns the category ModR of right R-modules and to each morphism f −⊗ → the functor R S : ModR ModS. -
A Quick Introduction to Fibered Categories and Topological Stacks
A QUICK INTRODUCTION TO FIBERED CATEGORIES AND TOPOLOGICAL STACKS BEHRANG NOOHI Abstract. This is a quick introduction to fibered categories and topological stacks. Contents 1. Categories fibered in groupoids 1 1.1. The 2-category of fibered categories 3 1.2. Fiber products and inner-homs in FibT 4 1.3. Descent condition 4 1.4. The stack associated to a category fibered in groupoids 5 1.5. Quotient stacks 5 2. Topological stacks 6 2.1. Stacks over Top 6 2.2. Representable morphisms of stacks 7 2.3. Topological stacks 7 2.4. Examples of topological stacks 8 2.5. Classifying space of a topological stack 9 References 9 1. Categories fibered in groupoids The formalism of categories fibered in groupoids provides a convenient framework for dealing with lax groupoid-valued functors. In this section, we recall some basic facts about categories fibered in groupoids. We recall that a groupoid is a (small) category in which all morphisms are isomor- phisms. A set, viewed as a category with only identity morphisms, is a groupoid. By abuse of terminology, we sometimes use the term set for any groupoid that is equivalent to a groupoid of this form (the correct terminology is equivalence rela- tion). Let T be a fixed category. An example to keep in mind is T = Top, the category of topological spaces. A category fibered in groupoids over T is a category X together with a functor π : X ! T satisfying the following properties: (i) (Lifting arrows.) For every arrow f : V ! U in T, and for every object X in X such that π(X) = U, there is an arrow F : Y ! X in X such that π(F ) = f.