A Diapsid Reptile from the Pennsylvanian of Kansas

Total Page:16

File Type:pdf, Size:1020Kb

A Diapsid Reptile from the Pennsylvanian of Kansas A DIAPSID REPTILE FROM THE PENNSYLVANIAN OF KANSAS ROBERT R. REISZ Department of Biology University of Toronto Erindale Campus Mississauga, Ontario Canada L5L 1C6 SPECIAL PUBLICATION OF THE MUSEUM OF NATURAL HISTORY, UNIVERSITY OF KANSAS NUMBER 7 1981 1^\ EmstWIayrLfcrary . / UNIVERSIT^BI^'XANSAS PUBLICATIONS ^ <) I ' ( MUSEUM OF NATURAL HISTORY Copies of publications may be obtained from the Publications Secretary, Museum of Natural History, University of Kansas, Lawrence, Kansas 66045. A list of available Special Publications is provided on the inside back cover. University of Kansas Museum of Natural History Special Publication No. 7 February 18, 1981 A Diapsid Reptile From the Pennsylvanian of Kansas BY Robert R. Reisz Department of Biology University of Toronto Erindale Campus Mississauga, Ontario Canada L5L 1C6 University ok Kansas Lawrence 1981 UNIVERSITY OF KANSAS PUBLICATIONS MUSEUM OF NATURAL HISTORY Editor: Joseph T. Collins Editors for this issue: E. O. Wilev and Larry D. Martin h/[r'7 Special Publication No. 7 LIBRARY pp. 1-74; 26 figures 1 table Published February 18, 1981 II II o Q ?nnR - RD I U SiTY Copyrighted 1981 BY Museum of Natural History University of Kansas Lawrence, Kansas 66045 U.S.A. Printed by University of Kansas Printing Service Lawrence, Kansas ISBN: 0-S933S-011-3 This is the first of a series of Special Publications honoring the contributions of Dr. Theodore H. Eaton to the fields of vertebrate paleontology and zoology. The series will center around the Pennsyl\anian fauna of eastern Kansas, and will include papers on fishes, amphibians and reptiles, as befits the wide-ranging interests Dr. Eaton has shown in his research. E. O. Wiley Labry D. Martin 15 June 1980 Lawrence, Kansas CONTENTS INTRODUCTION - 1 ACKNOWLEDGEMENTTS - 2 DESCRIPTn'E AXD SYSTEMATIC HiSTORY 2 SYSTEMATIC DESCRIPTION 4 Family Petrolacosauridae Peabody, 1952 4 Genus Petrolacosauriis Lane, 1945 4 Pefrolacosmirus kansensis Lane, 1945 4 OSTEOLOGY - - 5 Skull 5 Dermal Bones of the Skull Roof 9 Dermal Bones of the Palate 21 Ossifications of the Palatoquadrate Cartilage 23 Ossifications of the Braincase 24 Mandible 26 Dentitiox 27 Sclerotic Plates — 28 Vertebrate 28 Cervical Vertebrae 29 Dorsal Vertebrae 33 Sacral Vertebrae 34 Caudal Vertebrae 35 Ribs 36 Pectoral Girdle 38 Pelvic Girdle 40 Limbs .-. 43 PHYLOGENETIC REL.4TIONSHIPS OF PETROLACOSAURUS 54 Hypotheses of Relatio.vships 57 Basic Taxa 58 Shared Derived Characters Testing the Hypothesis of Relationship Betv^^een Petrolacosaurus and Paleothyris 61 Shared Derived Char.acters Testing the Hypothesis of Relationship Between Petrolacosaurus and Youngina 62 Petrolacosaurus Compared with Aracoscelis 64 HEARING IN PETROLACOSAURUS AND OTHER EARLY REPTILES .. 66 CONCLUSIONS 69 SUMMARY 71 LITERATURE CITED 72 ) INTRODUCTION AH living reptiles can be grouped into Sauropsida, and therefore diapsids, could not four orders: Chelonia, Rhynchocephalia, be derived from captorhinomorphs. Squamata and Crocodilia. The latter three Romer (1966) rejected Watson's theory of can be associated with the largest assemblage the evolution of the ear and reiterated his of fossil reptiles, collectively called diapsid belief that all true reptiles can be derived reptiles. The diapsid condition refers to the from primitive captorhinomorphs. In a re- presence of two pairs of temporal openings view of early reptilian evolution, Romer on the skull roof behind the orbits. This con- (1967) suggested not only that the sauropsid- dition has been retained in a primitive form theropsid dichotomy, insofar as it exists, has in crocodilians and in the sole living rhyncho- little phylogenetic significance, but also that cephalian Sphenodon ptinctatum but has been the term Sauropsida has no systematic or modified in the squamates by the progressive phylogenetic meaning. Furthermore, he em- loss of dermal bones in the temporal region. phasized that the diapsids may not belong to Diapsid reptiles have an evolutionary his- a single phyletic unit. He argued that two tory long thought to extend only into the late discrete diapsid groups should be recognized, Permian. The early evolution of this assem- the Archosauria and the Lepidosauria. He blage is not well documented in the fossil proposed that the Lepidosauria (the squa- record. Consequently, the origins and phy- mates, rhynchocephalians and the ancestral letic relationships of member groups have eosuchians) on the one hand, and the Archo- been subject to dispute. sauria (the two dinosaur orders, pterosaurs, On several occasions, Watson ( 1951, 1954 crocodilians and the basic Triassic group, the reiterated his belief in Goodrich's concept of thecodonts) on the other, evolved separately a basic dichotomy among reptiles. According from the ancestral captorhinomoqjhs. It was to this theory, one group called the Therop- his suggestion that the miileretid skull pattern sida led to mammals and included the mam- represents an intennediate stage between the mal-like reptile orders Pelycosauria and The- ancestral captorhinomorphs and the lepido- rapsida. The other group, the Sauropsida, saurs. ' also called "true" reptiles, included the diap- In 1967 Reig set forth, and later (1970) sid reptiles and the turtles (Chelonia). Wat- elaborated, a radically different hypothesis for son argued for independent origins of the the origin of archosaurs. He proposed that Theropsida and Sauropsida from anthraco- the ancestors of archosaurs should be sought saurian amphibians via some unknown inter- among varanopsid pelycosaurs. Most of the mediate forms. He based this conclusion on comparable features cited by Reig as indica- his theory of the evolution of the ear (Wat- tive of phylogenetic relationships are, how- son, 1953). He discounted the possibility of ever, primitive characteristics found in the captorhinomorphs having given rise to the ancestral captorhinomorphs (Romer, 1971). Sauropsida and, hence, to the diapsid rep- Gow (1972), in his reconsideration of the tiles. He actually placed the Captorhino- milleretids, contended that this group gave morpha among the Theropsida. In 1957 Wat- rise directly to the Squamata. He felt on the son suggested that the diapsids evolved from other hand, that the Rhynchocephalia and the seymoriamorph anthracosaurs via the Millero- Archosauria had an entirely independent ori- sauria. gin. Vaughn ( 1955 ) also accepted the saurop- The above workers have based their theo- sid-theropsid dichotomy and felt that the ries of the origins and early evolution of the SPECIAL PUBLICATION MUSEUM OF NATURAL HISTORY NO. 7 diapsid reptiles mainly on the meager evi- primitive captorhinomorphs and to more ad- dence provided by the known Permian coty- vanced diapsid reptiles. The problem of hear- losaurs and on the Upper Permian and Trias- ing in Petrolacosaurus and other early reptiles sic diapsids. Thanks mainly to the labors of forms an integral part of this study. Robert L. Carroll and the late Frank E. Pea- body, the problem of the origins and early Acknowledgements evolution of diapsid reptiles can be reconsid- I am greatly indebted to T. H. Eaton of ered. Carroll, during a period of about ten the University of Kansas Natural History Mu- years, described and reconsidered all of the seum, at whose suggestion this study was available Pennsylvanian and Lower Permian undertaken and who kindly allowed me to specimens of primitive captorhinomorphs. One borrow the Petrolacosaurus specimens at his significant conclusion became evident: the disposal. I am particularly grateful to Dr. and described members of this group conform to Mrs. Eaton for courtesies extended to mc a single conservative morphological pattern during the time spent studying the Kansas suflBciently to indi- and remained generalized collection. cate that i^rimitixe captorhinomoqohs could Thanks are due also to R. L. Carroll whose be ancestral to most subsequent reptilian line- wise guidance, friendliness, and unrelenting ages (Carroll and Baird, 1972; Clark and Car- support were invaluable. I am very grateful roll, 1973). to P. L. Robinson of University College for In 1952, Peabody published a partial de- her many valuable and instructive sugges- scription of Petrokicosaiinis kansensis and tions, for numerous stimulating conversations, suggested that this reptile from the LTpper and for making the time spent studying in Pennsylvanian was a member of the most London so pleasant. I ha\'e profited also from primitive diapsid order, the "Eosuchia." The several interesting discussions with Donald fragmentary nature of the specimens available Baird of Princeton University and Malcolm for this study led others, however, question to Heaton of University of Toronto. Peabody's contention. Subsequently Peabody Thanks are due to Bobb Shaeffer and E. S. spent two grueling summers 1953 and 1954 — Gaffney, both of the American Museum of collecting more specimens but died before — Natural History, New York, for extended could undertake reconsideration of the he a loans of specimens. anatomy of Petrolacosatirus. This collection fonus basis of present These the the study. DESCRIPTIVE AND SYSTEMATIC show that Petrolacosaiirus is a specimens HISTORY diapsid reptile with affinities to both primitive captorhinomorphs and the earliest "eosuch- Lane first described Petrolacosaurus kan- iaiis." sensis in 1945 and referred the genus to the My interest in Petrolacosaiirus was aroused family Si)henacodontidae of the order Pely- during a visit to the Kansas University Mu- cosauria ( 1946) on the basis of a tarsus found seum of Natural
Recommended publications
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • From the Terrestrial Upper Triassic of China
    第 39 卷 第 4 期 古 脊 椎 动 物 学 报 pp. 251~265 2001 年 10 月 V ERTEBRATA PALASIATICA figs. 1~4 ,pl. I 中国陆相上三叠统第一个初龙形类动物1) 吴肖春1 刘 俊2 李锦玲2 (1 加拿大自然博物馆 渥太华 K1P 6P4) (2 中国科学院古脊椎动物与古人类研究所 北京 100044) 摘要 初步研究了山西省永和县桑壁镇铜川组二段产出的两件初龙形类化石标本 ( IVPP V 12378 ,V 12379) ,在此基础上建立了一新属新种 ———桑壁永和鳄 ( Yonghesuchus sangbiensis gen. et sp. nov. ) 。 它以下列共存的衍生特征区别于其他初龙形类 (archosauriforms) :1) 吻部前端尖削 ;2) 眶前窝前部具一凹陷 ;3) 眶前窝与外鼻孔间宽 ;4) 眶后骨下降突的后 2/ 3 宽且深凹 ;5) 基蝶 骨腹面有两个凹陷 ;6) 齿骨后背突相当长 ;7) 关节骨的反关节区有明显的背脊 ,有穿孔的翼 状的内侧突 ,以及指向前内侧向和背向的十分显著的后内侧突。 由于缺乏跗骨的形态信息 ,目前很难通过支序分析建立永和鳄的系统发育关系。但可以 通过头骨形态来推测永和鳄在初龙形类中的系统位置。永和鳄有翼骨齿 ,这表明它不属于狭 义的初龙类 (archosaurians) 。其通过内颈动脉脑支的孔位于基蝶骨的前侧面而不是腹面 ,在 这点上永和鳄比原鳄龙科 ( Proterochampsidae) 更进步 ,这表明与后者相比永和鳄和狭义的初 龙类的关系可能更近。在中国早期的初龙形类中 ,达坂吐鲁番鳄 ( Turf anosuchus dabanensis) 与桑壁永和鳄最接近 ,但前者由于内颈动脉脑支的孔腹位而比后者更为原始。 根据以上头骨特征以及枢后椎椎体之间间椎体的存在与否 ,推测派克鳄 ( Euparkeria) 、 达坂吐鲁番鳄 (如果存在间椎体) 、原鳄龙科和永和鳄与初龙类的关系逐渐接近 。而且这与这 些初龙形类的生存时代基本一致。 永和鳄比产于上三叠统下部的原鳄龙 ( Proterocham psa) 进步 ,它的发现支持含化石的铜 川组时代为晚三叠世的观点。 关键词 山西永和 ,晚三叠世 ,铜川组 ,初龙形类 ,解剖学 中图法分类号 Q915. 864 1) 中国科学院古生物学与古人类学科基础研究特别支持基金项目(编号 :9809) 资助。 收稿日期 :2001- 03- 23 252 古 脊 椎 动 物 学 报 39 卷 THE ANATOMY OF THE FIRST ARCHOSAURIFORM ( DIAPSIDA) FROM THE TERRESTRIAL UPPER TRIASSIC OF CHINA WU Xiao2Chun1 L IU J un2 L I Jin2Ling2 (1 Paleobiology , Research Division , Canadian M useum of Nat ure P.O.Box 3443 Station D, Ottawa, ON K1P 6P4 , Canada) (2 Instit ute of Vertebrate Paleontology and Paleoanthropology , Chinese Academy of Sciences Beijing 100044) Abstract Yonghesuchus sangbiensis , a new genus and species of the Archosauriformes , is erected on the basis of its peculiar cranial features. This taxon represents the first record of tetrapods from the Late Triassic terrestrial deposits of China. Its discovery is significant not only to our study on the phylogeny of the Archosauriformes but also to our understanding of the evolution of the Triassic terrestrial vertebrate faunae in China.
    [Show full text]
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • New Insights on Prestosuchus Chiniquensis Huene
    New insights on Prestosuchus chiniquensis Huene, 1942 (Pseudosuchia, Loricata) based on new specimens from the “Tree Sanga” Outcrop, Chiniqua´ Region, Rio Grande do Sul, Brazil Marcel B. Lacerda1, Bianca M. Mastrantonio1, Daniel C. Fortier2 and Cesar L. Schultz1 1 Instituto de Geocieˆncias, Laborato´rio de Paleovertebrados, Universidade Federal do Rio Grande do Sul–UFRGS, Porto Alegre, Rio Grande do Sul, Brazil 2 CHNUFPI, Campus Amı´lcar Ferreira Sobral, Universidade Federal do Piauı´, Floriano, Piauı´, Brazil ABSTRACT The ‘rauisuchians’ are a group of Triassic pseudosuchian archosaurs that displayed a near global distribution. Their problematic taxonomic resolution comes from the fact that most taxa are represented only by a few and/or mostly incomplete specimens. In the last few decades, renewed interest in early archosaur evolution has helped to clarify some of these problems, but further studies on the taxonomic and paleobiological aspects are still needed. In the present work, we describe new material attributed to the ‘rauisuchian’ taxon Prestosuchus chiniquensis, of the Dinodontosaurus Assemblage Zone, Middle Triassic (Ladinian) of the Santa Maria Supersequence of southern Brazil, based on a comparative osteologic analysis. Additionally, we present well supported evidence that these represent juvenile forms, due to differences in osteological features (i.e., a subnarial fenestra) that when compared to previously described specimens can be attributed to ontogeny and indicate variation within a single taxon of a problematic but important
    [Show full text]
  • Modestoetal2007.Pdf
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 149•• 237262 Original Article SKULL OF EARLY PERMIAN CAPTORHINID REPTILES. P. MODESTO ET AL. Zoological Journal of the Linnean Society, 2007, 149, 237–262. With 12 figures The skull and the palaeoecological significance of Labidosaurus hamatus, a captorhinid reptile from the Lower Permian of Texas SEAN P. MODESTO1*, DIANE M. SCOTT2, DAVID S. BERMAN1, JOHANNES MÜLLER2 and ROBERT R. REISZ2 1Section of Vertebrate Palaeontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, USA 2Department of Biology, University of Toronto in Mississauga, Mississauga, Ontario L5L 1C6, Canada Received May 2005; accepted for publication February 2006 The cranial skeleton of the large captorhinid reptile Labidosaurus hamatus, known only from the Lower Permian of Texas, is described on the basis of new, undescribed specimens. Labidosaurus is distinguished from other captorhin- ids by the more extreme sloping of the ventral (alveolar) margin of the premaxilla, a low dorsum sellae of the para- basisphenoid, a reduced prootic, a narrow stapes, and a relatively small foramen intermandibularis medius. Despite the presence of a single row of teeth in each jaw, the skull of Labidosaurus resembles most closely those of mor- adisaurines, the large multiple-tooth-rowed captorhinids of the latest Early and Middle Permian. A phylogenetic analysis confirms that the single-tooth-rowed L. hamatus is related most closely to moradisaurines within Cap- torhinidae, a relationship that supports the hypothesis of a diphyletic origin for multiple rows of marginal teeth in captorhinids (in the genus Captorhinus and in the clade Moradisaurinae).
    [Show full text]
  • Clades™ Prehistoric Card Game a Clade Is a Section of the Evolutionary Family Tree­—Basically Any Branch, Including All Its Sub-Branches
    CLADES™ PREHISTORIC Card Game A clade is a section of the evolutionary family tree —basically any branch, including all its sub-branches. A clade is a family of organisms, or living things, that are all more closely related to each other than they are to any other organisms. In this game you match cards according to their clades. Contents: Deck of 83 Clades Prehistoric cards. Includes 27 cards of each color and 2 bonus cards. There are also 5 animal description cards not used in play. Object: Spot matching card triples to collect the biggest animal pile! Setup Deal 1 face-down card to each player as their personal card. For now, players keep these cards face-down and don’t look at them. Deal 12 face-down shared cards to the middle of the play area. If you’re learning or teaching the game: • Before dealing, set aside the bonus cards and the cards showing only one or two animals. Play with just the cards showing three animals. • Deal 7 shared cards instead of 12. CLADESPrehistoricRules2.indd 1 10/17/17 10:15 AM All players help flip the 12 shared cards face-up. Sort the cards into three Making Triples rows according to their clades: top for Mammalia (mammals), middle for Sauropsida (sauropsids, or reptiles and birds), and bottom for Arthropoda In Clades Prehistoric, any two cards can make a triple with exactly one other (arthropods, or “bugs”). When the table is ready, each player picks up their card in the deck. personal card and looks at it.
    [Show full text]
  • Antimicrobial Peptides in Reptiles
    Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development.
    [Show full text]
  • Classification of the Major Taxa of Amphibia and Reptilia
    Station 1. Amphibian and Reptile Diversity Classification of the Major Taxa of Amphibia and Reptilia ! Phylum Chordata examples ! Subphylum Vertebrata ! Class Amphibia ! Subclass Labyrinthodontia extinct earliest land vertebrates ! Subclass Lepospondyli extinct forms of the late Paleozoic ! Subclass Lissamphibia modern amphibians ! Order Urodela newts and salamanders ! Order Anura frogs and toads ! Order Gymnophiona caecilians ! Class Reptilia ! Subclass Anapsida ! Order Captorhinomorpha extinct stem reptiles ! Order Testudina (Chelonia) turtles ! Subclass Synapsida ! Order Pelycosauria primitive mammal-like reptiles ! Order Therapsida advanced mammal-like reptiles ! Subclass Lepidosaura ! Order Eosuchia early lepidosaurs ! Order Squamata lizards, snakes, amphisbaenians, and the tuatara ! Subclass Archosauria ! Order Thecodontia extinct ancestors of dinosaurs, birds, etc ! Order Pterosauria extinct flying reptiles ! Order Saurischia dinosaurs with pubis extending anteriorly ! Order Ornithischia dinosaurs with pubis rotated posteriorly ! Order Crocodilia crocodiles and alligators ! Subclass Euryapsida extinct marine reptiles Station 1. Amphibian Skin AMPHIBIAN SKIN Most amphibians (amphi = double, bios = life) have a complex life history that often includes aquatic and terrestrial forms. All amphibians have bare skin - lacking scales, feathers, or hair -that is used for exchange of water, ions and gases. Both water and gases pass readily through amphibian skin. Cutaneous respiration depends on moisture, so most frogs and salamanders are
    [Show full text]
  • An Early Late Triassic Long-Necked Reptile with a Bony Pectoral Shield and Gracile Appendages
    An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages JERZY DZIK and TOMASZ SULEJ Dzik, J. and Sulej, T. 2016. An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages. Acta Palaeontologica Polonica 61 (4): 805–823. Several partially articulated specimens and numerous isolated bones of Ozimek volans gen. et sp. nov., from the late Carnian lacustrine deposits exposed at Krasiejów in southern Poland, enable a reconstruction of most of the skeleton. The unique character of the animal is its enlarged plate-like coracoids presumably fused with sterna. Other aspects of the skeleton seem to be comparable to those of the only known specimen of Sharovipteryx mirabilis from the latest Middle Triassic of Kyrgyzstan, which supports interpretation of both forms as protorosaurians. One may expect that the pectoral girdle of S. mirabilis, probably covered by the rock matrix in its only specimen, was similar to that of O. volans gen. et sp. nov. The Krasiejów material shows sharp teeth, low crescent scapula, three sacrals in a generalized pelvis (two of the sacrals being in contact with the ilium) and curved robust metatarsal of the fifth digit in the pes, which are unknown in Sharovipteryx. Other traits are plesiomorphic and, except for the pelvic girdle and extreme elongation of appendages, do not allow to identify any close connection of the sharovipterygids within the Triassic protorosaurians. Key words: Archosauromorpha, Sharovipteryx, protorosaurs, gliding, evolution, Carnian, Poland. Jerzy Dzik [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, 00-818 Warszawa, Poland and Wydział Biologii Uniwersytetu Warszawskiego, Centrum Nauk Biologiczno-Chemicznych, ul.
    [Show full text]