A New Araeoscelid Reptile, Zarcasaurus Tanyderus, from The

Total Page:16

File Type:pdf, Size:1020Kb

A New Araeoscelid Reptile, Zarcasaurus Tanyderus, from The A newarceoscelid reptile, Zarcasaaras tanyderus, fromthe Gutler Formation (Lower Permian) of north-centralNew Mexico byDonald B. Brinknan,Curator, Tyrrell Museum of Palaeontology,Drumheller, Alberta, David S Berman,Associate Curator, Section of Vertebrate Fossils, Carnegie Museumoi NaturalHistory, Pittsburgh, PA, and DavidA. Eberth,Graduale Student, Department ol Geology, University of Toronto, Toronto, 0ntario A new genus and species of araeoscelid that Petrolacosauruswas related to the cap- skull, and are interpreted as an adaptation reptlle, Zarusaurus tanuderus, is described torhinomorphs.It alsohas been argued thlt to a specializeddiet that probably included on the basisof a partiai jaw and disarticu- Petrolacosaurusbelongs to a group of archaic protectedby a heavy exoskel- postcranial invertebrates lated elements from the Cutler mammal-likerep- importantlv this theory is ex- (Lower edaphosaursof the early eton. Most Formition Permian) of north-cen- a lower tral New Mexico. It is the first reoresenta- tile pelycosaurs(Stovall, Price, and Romer, tendedto suggestthat the absenceof tive of this family to be reported from that 1956).Most recently,a redescriptionof Pe- temporal fenestra in Araeoscelismay be the state, and it is considered closely related to trolacosaurusbv Reisz0.977 , 1981\has estab- result of a secondaryclosure. These conclu- Araeoscelis.Z. tanyderus possesses a com- lishedfirmly 6oth its positionas a primitive sions prompted a somewhat revised classi- bination of primitive and derived features diaosid and its close relationship with Ar- fication in which Araeosceliswas assignedto with respeci to Araeoscelis, indicating that aeoicelis.Previously undescribed specimens the AraeoscelidaeWilliston, 1910, and Petro- they could not have had a direct ancestor- of Araeoscelispresently under study (Reisz, lacosaurusto the PetrolacosauridaePeabody, descendant relationship. Berman,and Scott,in preparation)have pro- 1952;both families were united under the vided additionalinformation that greatlyex- suborderAraeoscelidia Williston, 1913.Other pands upon our assessmentof the generathat have been included in this sub- Introduction phylogenetic relationships of Araeoscelis,a order, but which are consideredtoo poorly The phylogeneticpositions of Araeoscelisand summary of which can be given here. Cur- known to be assignedto either famiiy, ar-e Petrolacosaurusare important to our under- rent evidenceindicates that Araeoscellsshares I(adaliosaurusCredner, 1889, and Dictybolus standingof the early diversificationof diap- a more recent common ancestorwith-that Olson, 1970. sid reptiles.Araeoscelis is a small,lightly built is, it is more closelyrelated to--Petrolacosau- The new araeosceliddescribed herc as Zar- reptile from the Lower Permianof Texasand rus than with the captorhinomorphs,and that casaurustanyderus consists of a partial, dis- Oklahoma (Vaughn, 1955;Simpson, 1979). both genera share a more recent common articulatedskeleton collected by the authors In the most recent detailed descrintion of ancestorwith eosuchiansthan with the cap- during the summer of 1982from the Cutler Araeoscelis,Vaughn (1955)concluded that it torhinomorphs. Formation (Lower Permian) near the village is bestconsidered a lizard-likeexperiment of Together, Araeoscelisand Petrolacosaurusof Arroyo del Agua in Rio Arriba County, the anapsid captorhinomorph reptiles. He representthe earliest,most primitive known north-centralNew Mexico (Fig. 1). The dis- argued that, exceptfor such featuresas the stagein theadaptive radiation of the diapsid covery was reported in a preliminary paper upper temporal fenestra,specialized denti- reptiles. This relationship is strongly sup- on the sedimentology and paleontology of tion, elongatelimbs, and elongate cervical ported by their postcranialskeletons that ex- the Lower Permianred-bed deposits of north- vertebrae,Araeoscelis resembles in most re- hibit only minor differences,but, most central New Mexico (Eberth and Berman, spectsthe primitive membersof the group. importantly, they share numerous derived 1983).Z. tanyderusrepresents the first record On the basis of better preservedearly cap- feafures.Cranial differencesbetween the two of an araeosceloidfrom New Mexico. It is torhinomorphs, Carroll (1959)agreed wiih genera,on the other hand, aremore marked. more closely related to Araeoscelisthan to Pe- Vaughn's assessment.Romer (1956, 1966, They are recognizedas providing Araeoscelistrolacosaurusand is, therefore, assigned to 1967),on the other hand, placed Araeoscelis with a more massive, sturdily constructed the Araeoscelidae. with a number of poorly known, early (Per- mian and Triassic) forms generally referred to asprotorosaurs, which he regardedas an- cestralto the sauropterygians(plesiosaurs, nothosaurs,and placodonts).The protoro- saurs,as defined bv Romer,are now believed to be a ratherdiverse assemblage of distantly related forms (Kuhn-Schnyder, 1967; Brink- man, 1981;Chatterjee, 1980; Carroll , 7981), and there is little evidenceto suggestthat Araeoscelisis closely related to any of them (Vaughn,1955). The controversyof the phylogeneticaffin- ities of Araeoscelishas seemingly been re- solved with the demonstration of its close relationship with Petrolacosaurus,a diapsid reptile of lizard-likeproportions from the Late Pennsylvanianof Kansas.Petrolacosaurus was originally describedby Peabody(1952), who believedit to be closelyrelated to the eosu- chians,the most primitive group of diapsid reptiles, with strong ties with the captorhi- nomorphs.Vaughn (1955)recognized the close similarity between Araeoscelisand Petrolaco- L--.-- saurusand even suggestedthat they may be- Iong to the same family, thereby implying FIGURE l-Locality of Zarcasnurustanyderus, Rio Arriba County, north-central New Mexico. May 1984 Nau MexicoGeology Systematicpaleontology of an ancient river svstem. The limited ex- TABLE 1-Measurements (in mm) of vertebrae of Class Rsprrlre tents of the crevasse channels suggest the Zarcasaurustanyderus gen. et sp. nov., CM 47704. 2 is the height SuborderAnaeoscrlron Williston, 1913 proximity of interchannel pond and./or marsh f. is the greatestlength of centrum, the centrum at the anterior end, 3 is the trans- Family AnaroscEuoanWilliston, 1910 environments where such channels would of width of the centrum at the anterior end, 4 Zanceseunus, new genus verse quickly lose their U-shape morphology. is the height of the centrum at the posterior end, Tvpr spnclss:Zarcasaurus tanyderus nsp. DIacNosrs-Same as for the genus. 5 is the transverse width of the centrum at the Eryuor-ocv-Refers to the Agua Sarca, a posterior end, and 5 is the length of the neural smallcreek about 3 km northwest of the type Description and comparison arch pedicle. locality;pronounced Zarca and spelledas such All of the elements assigned to the holo- Vertebra on early maps and publications (Langston, type, CM 41704,werc collected from the sur- 1es3). face and had eroded out of a single slope. Axis 2.8 3.5 7.5 DracNosrs-A small araeoscelid closely re- Although only two elements (dorsal verte- Midcervical 77.2 4.0 4.6 3.5 3.8 8.5 lated to Araeoscelisand characterized by the brae) were articulated, all the elements were Posteriorcervical 8.6 3.5 3.7 3.1 3.9 4.3 following derived features: cervical verte- found closely associated. None of the parts Dorsal 5.9 2.8 3.9 3.2 3.9 3.4 brae are longer, with central lengths exceed- is duplicated and all are of an appropriate Dorsai 5.0 3.4 3.5 3.3 4.0 3.4 ing those of the dorsals by as much as two size to have belonged to a single individual. times; absence of a prominent notch on the No bones were found associated with CM distal edge of the astragalus that separates 41704 that would indicate the presence of the articular facets for the fourth distal tarsal another form of similar size. For these rea- tentative, as is identification of the prearti- and centrale. Primitive features that distin- sons, CM 47704is considered to represent a cular-angular contact near the ventral mar- gdsh Zarcasaurusfrom Araeoscelisinclude: the single individual that probably was repre- gin of the jaw fragment. In its possession of humerus lacks ectepicondylar foramen; a sented originally by a greater part of artic- a precoronoid, Zarcasauruswould more closely supracondylar process is present on the pos- ulated skeleton. approach Araeoscelis than Petrolacosaurui. terior condyle of the femur; a concave area Lowrn 1ew-The lower jaw is represented There is no evidence of a postsplenial in Zar- of finished bone separates the lateral and me- by a short section of the left ramus just an- casaurus.The postsplenial is absent in Ar- dial articular surfaces on the proximal end terior to the adductor fossa (Fig. 2). It in- aeoscelis.but is present in Petrolacosaurusas of the tibia; the tibial facet of the astragalus cludes the posterior end of the dentary, which a moderate-sized element wedged between is convex and not developed into a ridge- includes one emptv socket and two incom- the angular and prearticular at the level of and-trough pattern. plete teeth. The more complete tooth is miss- the coronoid. ing only its tip; this is possibly a result of VnnrpnnaE-Three cervical and five dorsal Zarcasaurus tanyderus, new species wear. The tooth is stout, like those of 4r- vertebrae of varying degrees of complete- Ervrr.rorocv-Derived from the Greek tany, aeoscelis,rather than like the slender teeth of ness and fragments of centra comprise the long, and deros, neck, referring to the spec- Petrolacosaurus,though it lacks the
Recommended publications
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • Modestoetal2007.Pdf
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 149•• 237262 Original Article SKULL OF EARLY PERMIAN CAPTORHINID REPTILES. P. MODESTO ET AL. Zoological Journal of the Linnean Society, 2007, 149, 237–262. With 12 figures The skull and the palaeoecological significance of Labidosaurus hamatus, a captorhinid reptile from the Lower Permian of Texas SEAN P. MODESTO1*, DIANE M. SCOTT2, DAVID S. BERMAN1, JOHANNES MÜLLER2 and ROBERT R. REISZ2 1Section of Vertebrate Palaeontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, USA 2Department of Biology, University of Toronto in Mississauga, Mississauga, Ontario L5L 1C6, Canada Received May 2005; accepted for publication February 2006 The cranial skeleton of the large captorhinid reptile Labidosaurus hamatus, known only from the Lower Permian of Texas, is described on the basis of new, undescribed specimens. Labidosaurus is distinguished from other captorhin- ids by the more extreme sloping of the ventral (alveolar) margin of the premaxilla, a low dorsum sellae of the para- basisphenoid, a reduced prootic, a narrow stapes, and a relatively small foramen intermandibularis medius. Despite the presence of a single row of teeth in each jaw, the skull of Labidosaurus resembles most closely those of mor- adisaurines, the large multiple-tooth-rowed captorhinids of the latest Early and Middle Permian. A phylogenetic analysis confirms that the single-tooth-rowed L. hamatus is related most closely to moradisaurines within Cap- torhinidae, a relationship that supports the hypothesis of a diphyletic origin for multiple rows of marginal teeth in captorhinids (in the genus Captorhinus and in the clade Moradisaurinae).
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Evolution and Homology of the Astragalus in Early Amniotes: New Fossils, New Perspectives
    JOURNAL OF MORPHOLOGY 267:415–425 (2006) Evolution and Homology of the Astragalus in Early Amniotes: New Fossils, New Perspectives F. Robin O’Keefe,1* Christian A. Sidor,1 Hans C.E. Larsson,2 Abdoudaye Maga,3 and Oumarou Ide3 1Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568 2Redpath Museum, McGill University, Montreal, Quebec H3A 2K6, Canada 3Institut de Recherches en Sciences Humaines, Niamey, Niger Republic ABSTRACT The reorganization of the ankle in basal tarsal elements are unclear, rendering the study of amniotes has long been considered a key innovation al- specific joint articulations difficult (Sumida, 1997, p. lowing the evolution of more terrestrial and cursorial be- 387). New data and new insights on the developmen- havior. Understanding how this key innovation arose is a complex problem that largely concerns the homologizing tal and evolutionary repatterning of the amniote of the amniote astragalus with the various ossifications in ankle are therefore of prime importance, for they the anamniote tarsus. Over the last century, several hy- bear on one of the key transitions in tetrapod his- potheses have been advanced homologizing the amniote tory: the attainment of full terrestriality after the astragalus with the many ossifications in the ankle of long transition from fin to limb (Clack, 2002). amphibian-grade tetrapods. There is an emerging consen- Perhaps the most important novelty within the sus that the amniote astragalus is a complex structure amniote tarsus is the astragalus, a large, complex emerging via the co-ossification of several originally sep- arate elements, but the identities of these elements re- bone comprising the primary area of articulation for main unclear.
    [Show full text]
  • 622-2014Lectureweek5
    BIOLOGY 622 – FALL 2014 BASAL AMNIOTA - STRUCTURE AND PHYLOGENY WEEK – 5 EUREPTILIA – “PROTOROTHYRIDIDAE AND ARAEOSCELIDIA S. S. SUMIDA INTRODUCTION Now that we have determined the distinction of Eureptilia and Parareptilia, and used Captorhinidae as the model of the basalmost family of eureptilians, we may now address the remaining primitive members of Eureptilia. Of course Eureptilia is a huge group, including numerous extinct groups, and all sorts of extant taxa including extant diapsids – lizards and snakes, turtles (which are probably highly derived diapsids) the remaining extant archosauromorphs – the crocodilians and the birds (derived from saurischian therapod dinosaurs). The group that was “displaced” by the Captorhinidae as the most primitive of reptilians has a somewhat complicated history. Recall that Carroll (1969) designated the family Romeriidae as the group from which all other amniotes arose. The group was named for genus Romeria, originally named by Lewellyn Price with two species – Romeria texana and R. pricei (both from the Lower Permian of Texas). In the 1970s, Heaton (1979) removed Romeria from Romeriidae, suggesting they were better placed in the Captorhinidae. This left Romeriidae without its namesake, so the name reverted to Protorothyrididae. (Carroll persisted in calling this group the “Protorothyridae”.) Nonetheless, the monophyly of the Protorothyrididae was assumed. This was in part because most workers that “included” the Protorothyrididae in any phylogenetic analyses, usually did so only by using a single representative genus to represent the entire family – usually Protorthyris or Paleothyris. For example, in the illustration following, Heaton and Reisz (1986) used only Captorhinus to represent Captorhinidae, Protorothyris to represent Protorothyrididae, and Petrolacosaurus to represent basal Diapsida.
    [Show full text]
  • Libro 34(1).Indb 29 19/12/2007 20:36:37 30 Lopez Et Al
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es /info/estratig/journal.htm Journal of Iberian Geology 34 (1) 2008: 29-56 The playa environments of the Lodève Permian basin (Languedoc-France) Los ambientes de playa de la Cuenca de Lòdeve (Languedoc-Francia) M. Lopez1, G. Gand2, J. Garric3, F. Körner4, J. Schneider4. 1Laboratoire Dynamique de la Lithosphère, UMR 5573, Université de Montpellier II, Case 060, 34095 Montpellier Cedex 05 (France), e-mail: [email protected] 2 Laboratoire Biogéosciences, Université de Bourgogne, CNRS; 6, Bd Gabriel, 21000 Dijon (France) 3Jacques Garric, 16 rue des Azalées, la Chamberte, 34070 Montpellier(France) 4Freiberg University, Department of Palaeontology, Institute of Geology, Bernhard-von-Cotta street 2; D-09596 Freiberg (Germany). Received: 13/05/07/ Accepted: 25/09/07 Abstract The Lodève Permian synrift sequence is represented by thick stacked climate-controled playa cycles which have been constrained by structural, sedimentological, geochemical and paleontological processes. The present paper merges the different results in order to better constrain the dynamics and palaeoecologycal evolution of the playa system from Late Cisuralian to Early Lopingian time. In this depositional environment, thining upwards sheet-flood sequences represent flooding events; they are relayed by ephemeral ponding, suspension settling and limited carbonate precipitation accompanied by large amounts of shallow to subaerial sedimentary structures (current and wind ripples, desiccation cracks, rain drops, etc.). The aridity of the climate contrasts with the surprising abundance of the fauna encountered into carbonate-rich silty-clay playa-lake deposits. Ephemeral pools are colonized by numerous shellfish: Choncostraca, Triopsids, and Insects, which led to intense burrowing of the overbank deposits (Scoyenia facies).
    [Show full text]
  • Tetrapod Phylogeny
    © J989 Elsevier Science Publishers B. V. (Biomédical Division) The Hierarchy of Life B. Fernholm, K. Bremer and H. Jörnvall, editors 337 CHAPTER 25 Tetrapod phylogeny JACQUES GAUTHIER', DAVID CANNATELLA^, KEVIN DE QUEIROZ^, ARNOLD G. KLUGE* and TIMOTHY ROWE^ ' Deparlmenl qf Herpelology, California Academy of Sciences, San Francisco, CA 94118, U.S.A., ^Museum of Natural Sciences and Department of Biology, Louisiana State University, Baton Rouge, LA 70803, U.S.A., ^Department of ^oology and Museum of Vertebrate ^oology. University of California, Berkeley, CA 94720, U.S.A., 'Museum of ^oology and Department of Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A. and ^Department of Geological Sciences, University of Texas, Austin, TX 78713, U.S.A. Introduction Early sarcopterygians were aquatic, but from the latter part of the Carboniferous on- ward that group has been dominated by terrestrial forms commonly known as the tet- rapods. Fig. 1 illustrates relationships among extant Tetrápoda [1-4J. As the clado- grams in Figs. 2•20 demonstrate, however, extant groups represent only a small part of the taxonomic and morphologic diversity of Tetrápoda. We hope to convey some appreciation for the broad outlines of tetrapod evolution during its 300+ million year history from late Mississippian to Recent times. In doing so, we summarize trees de- rived from the distribution of over 972 characters among 83 terminal taxa of Tetrápo- da. More than 90% of the terminal taxa we discuss are extinct, but all of the subter- minal taxa are represented in the extant biota. This enables us to emphasize the origins of living tetrapod groups while giving due consideration to the diversity and antiquity of the clades of which they are a part.
    [Show full text]
  • Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids from Europe
    Callibrachion and Datheosaurus, two historical and previously mistaken basal caseasaurian synapsids from Europe FREDERIK SPINDLER, JOCELYN FALCONNET, and JÖRG FRÖBISCH Spindler, F., Falconnet, J., and Fröbisch, J. 2016. Callibrachion and Datheosaurus, two historical and previously mis- taken basal caseasaurian synapsids from Europe. Acta Palaeontologica Polonica 61 (3): 597–616. This study represents a re-investigation of two historical fossil discoveries, Callibrachion gaudryi (Artinskian of France) and Datheosaurus macrourus (Gzhelian of Poland), that were originally classified as haptodontine-grade sphenaco- dontians and have been lately treated as nomina dubia. Both taxa are here identified as basal caseasaurs based on their overall proportions as well as dental and osteological characteristics that differentiate them from any other major syn- apsid subclade. As a result of poor preservation, no distinct autapomorphies can be recognized. However, our detailed investigations of the virtually complete skeletons in the light of recent progress in basal synapsid research allow a novel interpretation of their phylogenetic positions. Datheosaurus might represent an eothyridid or basal caseid. Callibrachion shares some similarities with the more derived North American genus Casea. These new observations on Datheosaurus and Callibrachion provide new insights into the early diversification of caseasaurs, reflecting an evolutionary stage that lacks spatulate teeth and broadened phalanges that are typical for other caseid species. Along with Eocasea, the former ghost lineage to the Late Pennsylvanian origin of Caseasauria is further closed. For the first time, the presence of basal caseasaurs in Europe is documented. Key words: Synapsida, Caseasauria, Carboniferous, Permian, Autun Basin, France, Intra-Sudetic Basin, Poland. Frederik Spindler [[email protected]], Dinosaurier-Park Altmühltal, Dinopark 1, 85095 Denkendorf, Germany.
    [Show full text]
  • Reptilia: Captorhinidae) and the Community Histology of the Early Permian Fissure-Fill Fauna Dolese Quarry, Richards Spur, Oklahoma
    The Ontogenetic Osteohistology of the Eureptile Captorhinus aguti (Reptilia: Captorhinidae) and the Community Histology of the Early Permian Fissure-Fill Fauna Dolese Quarry, Richards Spur, Oklahoma by Eilidh Jaine Richards A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Eilidh Jaine Richards 2016 The Ontogenetic Osteohistology of the Eureptile Captorhinus aguti (Reptilia: Captorhinidae) and the Community Histology of the Early Permian Fissure-Fill Fauna Dolese Quarry, Richards Spur, Oklahoma Eilidh Jaine Richards Master of Science Department of Ecology and Evolutionary Biology University of Toronto 2016 Abstract Palaeohistological research has greatly enhanced our ability to draw conclusions about the physiology and growth of extinct vertebrates. A comprehensive histological growth study has never been undertaken in an Early Permian taxon at the initial stages of terrestrial vertebrate evolution. Captorhinus aguti, a common Early Permian eureptile from the fissure-fill locality near Richards Spur, Oklahoma, is the ideal taxon for a study of this type. C. aguti femora from all growth stages were measured and sectioned to compare bone structure through ontogeny. Representatives of other major taxa from the Richards Spur locality were also sectioned to compare histology across the palaeocommunity. Long bones of all sectioned Richards Spur taxa, including all growth stages of C. aguti, display slow growing parallel-fibered lamellar bone with poor vascularization. Captorhinids were the only taxon from this locality that lacked growth lines, implying that they were employing a different growth strategy from the other taxa that were preserved at this locality.
    [Show full text]
  • A Systematic and Ecomorphological Investigation of the Early Amniotes from Mazon Creek, Francis Creek Shale, Illinois, USA
    A systematic and ecomorphological investigation of the early amniotes from Mazon Creek, Francis Creek Shale, Illinois, USA. by Arjan Mann A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences Carleton University Ottawa, Ontario ©2020, Arjan Mann Abstract The late Carboniferous-aged (309-307 Ma) Mazon Creek lagerstätte produces some of the earliest tetrapod fossils, including those of major Paleozoic lineages such as the second oldest reptile. Despite this, the Mazon Creek lagerstätte has remained a difficult and unproductive vertebrate locality for researchers to utilize in tetrapod diversity studies due to the scarcity of fossils of this kind. Over the past decades, several new terrestrial tetrapod fossils collected from Mazon Creek have come to light. These include several new virtually-complete fossils of the earliest fossorially adapted recumbirostrans. Here I provide a revised systematic study of the Mazon Creek pan- amniote fauna, in an attempt to reassess the terrestrial ecosystem diversity present at the late Carboniferous lagerstätte. The results accumulate to systematic descriptions of four new and unique recumbirostran taxa (Diabloroter bolti, Infernovenator steenae, FMNH 1309, and MPM VP359229.2) and a re-description of the basal eureptile Cephalerpeton ventriarmatum leading to the anointment of the oldest parareptile Carbonodraco lundi (formerly Cephalerpeton aff. C. ventriarmatum from Linton, Ohio). Descriptions are aided by modern imaging techniques and updated phylogenetic analyses using Maximum parsimony and Bayesian methods where applicable. Across the newly described terrestrial fauna there is an unexpected ecomorphological diversity of bauplans present. These range from the short-bodied Diabloroter to the serpentine, long-bodied, and limb-reduced MPM VP359229.2.
    [Show full text]