<I>Myocoptes Musculinus</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>Myocoptes Musculinus</I> Comparative Medicine Vol 66, No 3 Copyright 2016 June 2016 by the American Association for Laboratory Animal Science Pages 197–207 Original Research Ectoparasite Burden, Clinical Disease, and Immune Responses throughout Fur Mite (Myocoptes musculinus) Infestation in C57BL/6 and Rag1–/– Mice Cassandra R Moats,1,2,* Victoria K Baxter,2,3 Nathan M Pate,2 and Julie Watson1,2 Immunocompetent weanling mice infested with Myocoptes musculinus harbor high mite loads, yet burdens decrease with age. The development of immunity to the parasite may explain this observation. In this study, we followed M. musculinus burdens in Rag1−/− mice and immunocompetent C57BL/6 controls from 4 to 36 wk of age and compared the clinical signs and body weights of noninfested and infested mice of both strains over time. In addition, histopathology of skin lesions and expression of cytokines and transcription factors associated with Th1- and Th2-type immune responses were assessed. Myocoptes burdens decreased and remained low in B6 mice over time, whereas Rag1−/− mice showed an initial decrease in burdens after 4 wk of age followed by an increase from 24 to 36 wk. In addition, Rag1−/− mice had higher burdens than B6 mice over time. Both strains of infested mice exhibited clinical signs of fur mite infestation—including alopecia, poor weight gain, mite-associated debris, and pruritus—and clinical signs positively correlated with the severity of the Myocoptes burden. Histopathology of skin from both strains of infested mice showed decreased lesion severity with age, likely a result of declining mite populations. Finally, compared with noninfested controls, infested B6 mice had increased expression of markers associated with the Th2-type immune response, which increased in magnitude with increasing age and duration of infestation. These results suggest that development of adaptive immunity plays a role in control of fur mite populations and that heavier infestations may result in more severe clinical signs and skin lesions. Despite advances in diagnosis and treatment, control of murine infested with M. musculinus but overt atopic dermatitis in in- fur mite infestations (Myobia musculi, Myocoptes musculinus, and fested NC/Kuj mice.22 Other reports described severe ulcer- Radfordia affinis) remains a challenge for many modern rodent ative dermatitis in M. musculi-infested B6 mice6 and dermatitis facilities. Therefore, it is crucial define the potential effects of mite and wasting in M. musculinus-infested BALB/c mice.13 Con- infestation on research, either as a result of their effects on host im- versely, enzootically infested mice on a mixed B6.129 back- mune responses or development of clinical disease. Many reports ground showed no clinical signs of M. musculinus infestation at describe the host immune response to fur mite infestation,12,13,22,23 any age.19 Although disease manifestation might reflect strain which may have pronounced effects on studies of immunology, susceptibility, changes in mite population levels may also ex- infectious diseases, autoimmunity, or transplantation.12,29 In ad- plain variations in clinical severity. dition, many studies report dermatologic pathology and other Previous studies indicate that host fur mite burdens can de- clinical signs of infestation, which may either confound experi- crease dramatically over the course of infestation. In one study, mental results or require early study removal.6,12,13,22 Though fur weanling mice enzootically infested with M. musculinus harbored mite infestations may directly affect rodent health and research heavy mite loads, yet by 28 wk of age, nearly a quarter of mice outcomes, the relationships between clinical acariasis, magnitude lacked any evidence of mites or eggs on microscopic exam.25 In of infestation, and host immunologic responses remain unclear. mice infested with M. musculi, mite levels rose initially but then These relationships are of particular interest given that mite bur- declined to stable low levels.8 Given recognized age-dependent dens vary substantially throughout the course of infestation.25 decreases in the mite burden and well-documented immunologic The clinical signs of fur mite infestation vary considerably. changes, the development of adaptive immunity to the mite may Although most infestations are subclinical, fur mite infesta- play an important role in reducing populations over time. tions may cause alopecia, pruritus, dermatitis, decreased Fur mite infestations may upregulate host adaptive immune weight gain, and poor reproductive performance.3,10 One study responses, particularly Th2 CD4+ T cell responses. Several studies reported no gross lesions in BALB/c and C57BL/6 (B6) mice of infested mice document this phenomenon, citing upregulation of the cytokine IL4, increased IgE concentration, and tissue mast cell infiltration and degranulation.13,14,22,23,26 Effector functions of Received: 21 Sep 2015. Revision requested: 26 Oct 2015. Accepted: 29 Oct 2015. T cells and B cells via Th2-type responses and IgE production, 1Research Animal Resources and 2Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland; and 3Molecular Microbiology respectively, lead to host clearance of and future protection from and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland. other parasites, such as helminths. For instance, the expulsion *Corresponding author. Email: [email protected]. of various nematodes from experimentally infected mice is Th2- 197 Vol 66, No 3 Comparative Medicine June 2016 dependent, requiring Th2 cells and IL4 receptor signaling.18,20 Ad- spp.), and fur mites (Myobia and Radfordia spp. only). After a 1-wk ditional evidence shows that host immunity to skin ectoparasites, acclimation period in our facilities, breeding pairs or trios were stimulated by arthropod feeding or burrowing,30 leads to host established for each strain. resistance.4 For example, regulation of ectoparasite burdens and Mite infestation. B6.129 mixed background mice were used to future immunity to Sarcoptes and Demodex mites is dependent on infest breeders. These mice were previously donated from a re- both humoral and cell-mediated immunity involving competent search colony naturally infested with a monoinfection of mites T cell responses and the expression of a variety of cytokines.2,7,28 In (M. musculinus). For infestation of B6 and Rag1−/− breeders (used addition, mice infested with the anopluran louse Polyplax serrata to produce offspring for mite burden and clinical disease studies), develop resistance to the parasite and a steady decline in louse a single live, infested female mouse was placed in each breeding burdens over time.24 Although the specific mechanisms underly- cage and removed (approximately 1 wk later) after infestation was ing the control of ectoparasite and helminth infections may differ, confirmed by microscopic exam of fur pluck samples. For infesta- a functional, adaptive immune response is perhaps important for tion of B6 and Rag1−/− breeders (used to produce offspring for tissue ectoparasite clearance and future host resistance. cytokine analysis and histology), a single, whole mouse pelt from The purpose of the current study is to more clearly define the a recently euthanized infested mouse was placed in each breeding relationships between host fur mite populations, clinical disease, cage of mice. Infestation was confirmed by microscopic exam of and the immune response to infestation. To investigate these as- fur pluck samples, approximately 1 wk later. Hereafter, infestation sociations, we compared mite population levels and clinical signs occurred by direct contact from parents to offspring. Study animals of M. musculinus infestation in B6 mice and Rag1−/− mice, which from infested and noninfested breeding cages were weaned at ap- lack mature T cells and B cells,21 from weaning into adulthood. proximately 21 to 28 d of age and placed in same-sex groups of 3 Our first goal was to assess the role of adaptive immunity on mite to 5 siblings for the remainder of the study. All noninfested B6 and populations by evaluating Myocoptes burdens in infested B6 and Rag1−/− breeders and control mice were screened regularly through Rag1−/− mice from 4 to 36 wk of age. We hypothesized that in- microscopic exam of fur plucks to ensure that negative status was fested B6, but not Rag1−/− mice, would demonstrate age-related maintained throughout the study. decreases in Myocoptes burdens and that B6 mice would have Assessment of mite burden. Infested Rag1−/− and B6 mice at 4, 6, lower overall burdens compared with Rag1−/− mice. In addition, 8, 12, 16, 20, 24, 30, and 36 wk of age were assessed for Myocoptes we compared clinical data (body weight and clinical signs) from burden by microscopic examination of fur plucks from 3 standard noninfested and infested B6 and Rag1−/− mice over time to deter- sites: the dorsal neck, posterior dorsum, and caudoventral abdo- mine whether clinical severity correlated with host mite burdens. men. To collect fur samples, forceps were used to grasp and pluck We hypothesized that clinical disease severity would positively approximately the same amount of fur from each site (one pluck correlate with higher mite burdens in both strains of mice. We of fur per site). Each of the 3 fur plucks was placed on a section also compared histopathologic skin lesion severity in both in- of transparent cellophane tape (3M, St. Paul, MN) and adhered to fested strains as they aged and hypothesized that lesion sever- a glass slide (Fisher Scientific, Waltham, MA). All samples were ity would decrease in B6 but not Rag1−/− mice over time, due to blinded prior to evaluation and examined by 1 of 2 experienced higher mite burdens in Rag1−/− mice. Finally, we evaluated cyto- observers. Slides were examined under a microscope at 4× and kine and transcription factor markers of Th2-type and Th1-type 10× magnification, and the number of mites and eggs observed responses in infested and uninfested B6 mice over time. in the 3 fur samples were totaled to calculate a relative Myocop- tes burden.
Recommended publications
  • Comparative Study of Mites Infecting Mice and Rats in Al- Diwaniyah City, South of Iraq
    Biochem. Cell. Arch. Vol. 18, No. 1, pp. 259-261, 2018 www.connectjournals.com/bca ISSN 0972-5075 COMPARATIVE STUDY OF MITES INFECTING MICE AND RATS IN AL- DIWANIYAH CITY, SOUTH OF IRAQ Habeebwaseelkadhum Shubber and Murtadha Nabeel Murtadha Al-Tameemi Department of Biology, Collage of Science, University of Qadisiyah, Iraq. e-mail : [email protected], [email protected] (Accepted 3 March 2018) ABSTRACT : The study aimed at comparing infection of Myobia musculi with that of Ornithonys susbacoti, during the study period of 2016-2017. A total of 220 rodents were identified including Musmusculus (89), Rattus norvegicus (37), R. rattus (48) & Swiss albino (46). After the specimens are anesthetized, mites are investigated. It was found that Musmusculus were infected byMyobia musculi at 35.9% comparison with Rattus norvegicus, R. rattus and Swiss albino were infected by Ornithonys susbacoti at (29.7%, 41.6%, 8.6%), respectively. Key words : Mits, Myobia musculi, Ornithonys susbacoti, mice, rats. INTRODUCTION Iraq, ectoparasites of wild animals were poorly studied Rodent belong to the Animal kingdom, Chordata (Abul-Hab and Shihab, 1996; Abul-hab, 1984, 1986) phylum- Mammals class within the Real Mammals above reported Ornithonys susbacoti (Hirst, 1913) from the order of above the heading and to the order of Rodentia commensal and semi wild rodents. Then Abul-hab and (Fleer et al, 2011). They are considered the highest orders Shihab (1996) found it on the long-eared hedgehog of Mammals, as they constitute a ration more the 40% Hemiechinus auritus (Gmelin, 1770) collected in Wassit among all kinds of Mammals and the most successful Governorate, Central Iraq.
    [Show full text]
  • MALAYSIAN PARASITIC MITES II. MYOBIIDAE (PROSTIGMATA) from RODENTS L 2 3 A
    74 6 Vol. 6,No. 2 Internat. J. Acarol. 109 MALAYSIAN PARASITIC MITES II. MYOBIIDAE (PROSTIGMATA) FROM RODENTS l 2 3 A. Fain , F. S. Lukoschus and M. Nadchatram ----- ABSTRACT-The fur-mites of the family Myobiidae parasitic on rodents in Malaysia are studied. They belong to 9 species and 2 genera Radfordia Ewing and Myobia von Reyden. The new taxa include one new subgenus Radfordia (Rat timyobia); 4 new species~ Radfordia (Rat timyobia) pahangensis, R.(R.) selangorensis, R. (R.) subangensis, Myobia malaysiensis and one new subspecies Radfordia (Radfordia) ensifera jalorensis. These are described and illustrated. In addition, the male of Radfordia (Rat:ttmyouti.a) acinaciseta Wilson, 1967 is described for the first time. ----- During a stay in the Institute for Medical Research, Kuala Lumpur, F. S. L. collected a number of parasitic mites from various hosts (Fain et al., 1980). This paper deals with the species of Myobiidae found on rodents. Nine species in 2 genera-Radfordia and Myobia, , were collected. A new subgenus, Radfordia (Rattimyobia), 4 new species, Radfordia (Rattimyobia) pahangensi s, R. (R.) selangorensis, R. (R.) subangensis, Myobia malaysiensis, and 1 new subspecies, R. (Radfordia ) ensifera jalorensis, are described and illustrated. In addition, the male of R. (Rattimyobia) acinaciseta Wilson is described for the first time. The holotypes are deposited in the British Museum, Natural History, London. Paratypes are in the following institutions: Institute for Medical Research, Kuala Lumpur; Academy of Sciences, Department of Parasitology, Prague; Bernice Bishop Museum, Honolulu; Field Museum of Natural History, Chicago; Institut royal des Sciences naturelles, Bruxelles; Institute of Acaro­ logy, Columbus; Zoologisches Museum, Hamburg; Rijksmuseum Natural History, Leiden; U.
    [Show full text]
  • Development of a Real-Time Pcr Assay for Mouse Fur Mites
    DEVELOPMENT OF A REAL-TIME PCR ASSAY FOR MOUSE FUR MITES AND EVALUATION OF PILOT STUDY by Allison Poore B.S. (Dickinson College) 2012 THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in BIOMEDICAL SCIENCE in the GRADUATE SCHOOL of HOOD COLLEGE May 2019 Accepted: ________________________________ ________________________________ Dr. Craig Laufer, Ph.D. Dr. Ann Boyd, Ph.D. Committee Member Director, Biomedical Science Program ________________________________ ________________________________ Dr. Ann Boyd, Ph.D. Dr. April Boulton, Ph.D. Committee Member Dean of the Graduate School ________________________________ Dr. Wang-Ting Hsieh, Ph.D. Thesis Adviser STATEMENT OF USE AND COPYRIGHT WAIVER I do authorize Hood College to lend this thesis, or reproductions of it, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. ii DEDICATION To Scott. And to my Mom and Dad. I love you. iii ACKNOWLEDGEMENTS Thank you to the National Cancer Institute for funding and for their continued work to improve the lives of patients living with cancer. Thank you to all the Hood College faculty who have supported me throughout my time as a graduate student. A special thanks to Dr. Ann Boyd, who made every effort to help me finish my degree through every challenge. An additional special thank you to Dr. Rachel Beyer, who also took extra time and provided accommodation to help me finish my classes. Thank you to Dr. Wang-Ting Hsieh for years of mentoring in molecular biology. I am so grateful for the knowledge and experience I have gained as part of your group.
    [Show full text]
  • Laboratory Animal Management: Rodents
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/2119 SHARE Rodents (1996) DETAILS 180 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-04936-8 | DOI 10.17226/2119 CONTRIBUTORS GET THIS BOOK Committee on Rodents, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council FIND RELATED TITLES SUGGESTED CITATION National Research Council 1996. Rodents. Washington, DC: The National Academies Press. https://doi.org/10.17226/2119. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Rodents i Laboratory Animal Management Rodents Committee on Rodents Institute of Laboratory Animal Resources Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C.1996 Copyright National Academy of Sciences. All rights reserved. Rodents ii National Academy Press 2101 Constitution Avenue, N.W. Washington, D.C. 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • Total Ige As a Serodiagnostic Marker to Aid Murine Fur Mite Detection
    Journal of the American Association for Laboratory Animal Science Vol 51, No 2 Copyright 2012 March 2012 by the American Association for Laboratory Animal Science Pages 199–208 Total IgE as a Serodiagnostic Marker to Aid Murine Fur Mite Detection Gordon S Roble,1,2,* William Boteler,5 Elyn Riedel,3 and Neil S Lipman1,4 Mites of 3 genera—Myobia, Myocoptes, and Radfordia—continue to plague laboratory mouse facilities, even with use of stringent biosecurity measures. Mites often spread before diagnosis, predominantly because of detection dif!culty. Current detection methods have suboptimal sensitivity, are time-consuming, and are costly. A sensitive serodiagnostic technique would facilitate detection and ease workload. We evaluated whether total IgE increases could serve as a serodiagnostic marker to identify mite infestations. Variables affecting total IgE levels including infestation duration, sex, age, mite species, soiled-bedding exposure, and ivermectin treatment were investigated in Swiss Webster mice. Strain- and pinworm-associated effects were examined by using C57BL/6 mice and Swiss Webster mice dually infested with Syphacia obvelata and Aspiculuris tetraptera, respectively. Mite infestations led to signi!cant increases in IgE levels within 2 to 4 wk. Total IgE threshold levels and corresponding sensitivity and speci!city values were determined along the continuum of a receiver-operating charac- teristic curve. A threshold of 81 ng/mL was chosen for Swiss Webster mice; values above this point should trigger screening by a secondary, more speci!c method. Sex-associated differences were not signi!cant. Age, strain, and infecting parasite caused variability in IgE responses. Mice exposed to soiled bedding showed a delayed yet signi!cant increase in total IgE.
    [Show full text]
  • Comparative Study of Mites Infecting Mice & Rats in Al-Diwaniyah City
    Comparative Study Of Mites Infecting Mice & Rats In Al-Diwaniyah City, South Of Iraq Habeeb waseel kadhum shubber1, Murtadha Nabeel Murtadha Al-Tameemi1 1Biology Department, Collage of science, University of Qadisiyah, ,Iraq. [email protected] [email protected] Abstract: The study aimed at comparing infection of Myobia musculi with that of Ornithonyssus bacoti, during the study period of 2016-2017, A total of 220 rodents were identified including Mus musculus(89), Rattus norvegicus(37), R. rattus(48) & Swiss albino(46). After the Specimens are anesthetized, mites are investigated. It was found that Mus musculus were infected by Myobia musculi at 35.9% comparison with Rattus norvegicus, R. rattus and Swiss albino were infected by Ornithonyssus bacoti at (29.7%, 41.6%, 8.6%) respectively. Keyword: mits, Myobia musculi, Ornithonyssus bacoti, mice, rats Introduction: Rodent belong to the Animal kingdom, Chordata phylum- Mammals class within the Real Mammals above the order of above the heading and to the order of Rodentia [1]. They are considered the highest orders of Mammals, as they constitute a ration more the 40% among all kinds of Mammals , and the most successful biggest groups of Mammals in multiplication. They are world-wide prevalence and are able to accommodate to get wide a variety in environments [2]. Rodents play an important role in human health and economy as they have close contact with man[3]. They are considered as carrier of many diseases, either directly through a rodent's bite, excrete or urine contaminated with infections, since rodents can be carrier hosts, Reservoir hosts or intermediate hosts, or indirectly through Arthropoda parasiting on a rodents outside like Lice, Fleas, Mites and Ticks that work as a carrying medium of diseases between human beings and other animals[4].
    [Show full text]
  • Booklice (<I>Liposcelis</I> Spp.), Grain Mites (<I>Acarus Siro</I>)
    Journal of the American Association for Laboratory Animal Science Vol 55, No 6 Copyright 2016 November 2016 by the American Association for Laboratory Animal Science Pages 737–743 Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): ‘Other Pests’ Occasionally Found in Laboratory Animal Facilities Elizabeth A Clemmons* and Douglas K Taylor Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles Tribolium( spp.) are common stored-product pests that have pre- viously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized. Several insect and mite species are termed ‘stored-product Furthermore, the presence of these pests in storage and hous- pests,’ reflecting the fact that they routinely infest items such ing areas can lead to food wastage and negative human health as foodstuffs stored for any noteworthy period of time. Some consequences such as allergic hypersensitivity.11,52,53 In light of of the most economically important insect pests include beetles these attributes, these species should perhaps not be summarily of the order Coleoptera and moths and butterflies of the order disregarded if found in laboratory animal facilities.
    [Show full text]
  • Fur, Skin, and Ear Mites (Acariasis)
    technical sheet Fur, Skin, and Ear Mites (Acariasis) Classification flank. Animals with mite infestations have varying clinical External parasites signs ranging from none to mild alopecia to severe pruritus and ulcerative dermatitis. Signs tend to worsen Family as the animals age, but individual animals or strains may be more or less sensitive to clinical signs related Arachnida to infestation. Mite infestations are often asymptomatic, but may be pruritic, and animals may damage their skin Affected species by scratching. Damaged skin may become secondarily There are many species of mites that may affect the infected, leading to or worsening ulcerative dermatitis. species listed below. The list below illustrates the most Nude or hairless animals are not susceptible to fur mite commonly found mites, although other mites may be infestations. found. Humans are not subject to more than transient • Mice: Myocoptes musculinus, Myobia musculi, infestations with any of the above organisms, except Radfordia affinis for O. bacoti. Transient infestations by rodent mites may • Rats: Ornithonyssus bacoti*, Radfordia ensifera cause the formation of itchy, red, raised skin nodules. Since O. bacoti is indiscriminate in its feeding, it will • Guinea pigs: Chirodiscoides caviae, Trixacarus caviae* infest humans and may carry several blood-borne • Hamsters: Demodex aurati, Demodex criceti diseases from infected rats. Animals with O. bacoti • Gerbils: (very rare) infestations should be treated with caution. • Rabbits: Cheyletiella parasitivorax*, Psoroptes cuniculi Diagnosis * Zoonotic agents Fur mites are visible on the fur using stereomicroscopy and are commonly diagnosed by direct examination of Frequency the pelt or, with much less sensitivity, by examination Rare in laboratory guinea pigs and gerbils.
    [Show full text]
  • Demodex Sp., Myobia Musculi E Myocoptes Musculinus Em Camundongo Mus
    ISSN: 2238-9970 Arquivos de Pesquisa Animal, v.1, n.1, p.1 - 8, 2017 Demodex sp., Myobia musculi e Myocoptes musculinus em camundongo Mus musculus Demodex sp., Myobia musculi e Myocoptes musculinus in mice Mus musculus Josivania S. Pereira1*, Zuliete Aliona A. de Souza Fonseca2, Kaliane Alessandra R. de Paiva3, Iris da S. Marques4, Sílvia Maria M. Ahid2 Resumo potássio a 10%, parasitismo pelos A espécie Mus musculus (Linnaeus, ácaros: Myocoptes musculinus, Myobia 1758), é utilizada em pesquisas musculi e Demodex sp. Todos os laboratoriais e quando usado como ectoparasitos foram observados em modelo experimental pode ser diferentes estágios de vida. A acometido por ectoparasitos. Objetivou- severidade das lesões e o prurido se relatar a infestação múltipla por intenso observados sugerem associação ácaros em M. musculus. Em um ao número elevado das três espécies de espécime de M. musculus, realizou-se ácaros. Registra-se a infestação múltipla exames parasitológicos no Laboratório em M. musculus por M. musculinus, M. de Parasitologia Animal da Universidade musculi e Demodex sp. no estado do Federal Rural do Semi-Árido (UFERSA). Rio Grande do Norte, Brasil. Este Durante inspeção corpórea, foram achado reforça dados da literatura sobre identificadas lesões no pescoço e M. musculinus ser um ácaro espécie- cabeça, bem como prurido intenso. específica que acomete camundongos Através de raspados cutâneos em áreas de laboratórios no Brasil. corpóreas distintas, identificou-se após clareamento em solução de hidróxido de 1-Docente adjunta do Centro de Ciências Biológicas e da Saúde(CCBS) da Universidade Federal Rural do Semi- Árido (UFERSA); 2- Médica Veterinária; 3- Doutoranda do Programa de PósGraduação em Ciência Animal da UFERSA; 4-Discente do curso de graduação em Medicina Veterinária da UFERSA.
    [Show full text]
  • MELLIS, ANNA MARIE MS Spatial Variation in Mammal And
    MELLIS, ANNA MARIE M.S. Spatial Variation in Mammal and Ectoparasite Communities in the Foothills along the Southern Appalachian Mountains. (2021) Directed by Dr. Bryan McLean. 66 pp. Small mammal and ectoparasite community variation and abundance is important for monitoring the transmission rate of zoonotic diseases and informing conservation efforts that maintain host and parasite biodiversity in ecosystems facing global climate change. The purpose of this study was to identify the factors driving variation in small mammal and ectoparasite communities in the Southern Appalachian Mountains. I took an approach to sampling that allowed me to test predictions from island biogeography theory; namely, that host species richness varies with distance from the main Appalachian mountain range. I also examined how ectoparasite species richness varied with small mammal richness as well as ecological variables. Finally, I analyzed ectoparasite abundances at the community- and individual-host levels to understand how changes in host species richness may affect infestation rates. Comprehensive field surveys and ectoparasite screenings were performed across four field sites, two isolated from the Southern Appalachian Mountains and two along the Southern Appalachian Mountains. I found that these field sites were characterized by a mix of high and low elevation mammal species, and that community structure varied with degree of isolation for mammals, but not ectoparasites. Habitat type was a significant driver of species variation within and among sites. I found decreased abundances in ectoparasite compound communities when host species diversity was highest, which is consistent with predictions from a dilution effect. However, when evaluating abundances of individual ectoparasites, only one (Leptotrombidium peromysci) of four species displayed patterns consistent a dilution effect.
    [Show full text]
  • (ACARI, Trombidiformes) SA Filim
    Acarina 19 (1): 3–34 © Acarina 2011 COMParatiVE ANALYSES OF THE INTERNAL anatoMY AND FUNCTIONAL MORPHOLOGY OF THE ELEUTHERENGONA (ACARI, TROMBIDIFORMES) S. A. Filimonova Zoological Institute, Russian Academy of Sciences, Universitetskaya emb., 1, 199034, St. Petersburg, Russia; e-mail: [email protected] ABSTRACT: The study summarizes data on the internal anatomy of the mites belonging to the parvorder Eleutherengona (Acari- formes: Trombidiformes) mainly based on the families Tetranychidae, Cheyletidae, Syringophilidae, Myobiidae, and Demodicidae. The arrangement and functioning of the digestive tract, propodosomal glands, connective tissue, and reproductive system of both sexes are taken into account to reveal common features of the Eleutherengona as well as possible phylogenetically informative characters in particular families. The study shows that all the examined eleutherengone families demonstrate a mixture of relatively primitive and advanced fea- tures. The following most striking internal characters are common to all studied eleutherengone species. The postventricular midgut is represented by a simple tube-like excretory organ, which is usually in open connection with the ventriculus. The anal and genital openings of the females are close to each other and located at the terminal end of the body. The glandular component of the testicular epithelium is absent or highly reduced, as well as the male accessory glands. The number of salivary glands is reduced or these glands are lost in some parasitic forms. The coxal glands are either devoid of the proximal filter sacculus or provided by a sacculus with a considerably reduced lumen. The coxal gland epithelium does not possess a regular brush border, showing high pinocytotic activity. KEY WORDS: mites, internal anatomy, ultrastructure, digestive tract, salivary glands, coxal glands, reproductive organs, Eleutherengona.
    [Show full text]
  • New Observations on Mites of the Family Myobiidae MEGNIN, 1877 (Acari: Prostigmata) with Special Reference to Their Host-Parasite Relationships
    II BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE ENTOMOLOGIE, 73 : 5-50, 2003 BULLETIN VAN HET KON INKLIJK BELGISCH !NSTITUUT VOOR NATUURWET ENSCHAPPEN ENTOMOLOG IE, 73: 5-50, 2003 New observations on mites of the family Myobiidae MEGNIN, 1877 (Acari: Prostigmata) with special reference to their host-parasite relationships by Andre V. BOCHKOV and Alex FAIN Summary host. Some of them may cause a dermatitis in laboratmy rodents. Specificity for certain taxa of hosts and traces of Several species of myobiid mites belonging to ten, of the 50 known para ll el evolution with hosts are well marked at all taxo­ genera are revised. Among th em 5 new species and 4 new subgenera are described: Crocidurobia (Crocidurobia) dusbabeki sp. nov., Rad­ nomical leve ls of Myobiidae. Most representatives of par­ fordia (Radfordia) colomys sp. nov., Radfordia (Radfordia) dephomys ticular species group, subgenera, genera, tribes and sub­ sp. nov., Radfordia (Radfordia) myomysci sp. nov. and Radfordia families of the myobiids are associated with a well-defmed (Radfordia) delec/ori sp. nov., Emballomyobia subgen. nov., Olomyo­ bia subgen. nov., Acomyobia subgen. nov. and Pe/romyscobia sub­ taxonomic group of hosts (DusBABEK, 1969b; UCHI KAWA , gen. nov. 1988; FAIN, 1994; BOCHKOV, l997b, 1999a,b) . Therefore, The following stages of recognised species are described and de­ these mites constitute a good model for study the phenom­ picted for the first time: Females ( I species): Ugandobia (Emballo­ enon of para myobia) emballonurae FAIN, 1972 comb. nov. Males (4 species): llel evolution. Ugandobia (Ugandobia) garambensis FAIN, 1973 , Idiurobia idiuri According to th e traditional point of view, the family (FAIN, 1973), Radfordia (Radfordia) hyslricosa FAIN, 1972 comb.
    [Show full text]