(ACARI, Trombidiformes) SA Filim
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Study of Mites Infecting Mice and Rats in Al- Diwaniyah City, South of Iraq
Biochem. Cell. Arch. Vol. 18, No. 1, pp. 259-261, 2018 www.connectjournals.com/bca ISSN 0972-5075 COMPARATIVE STUDY OF MITES INFECTING MICE AND RATS IN AL- DIWANIYAH CITY, SOUTH OF IRAQ Habeebwaseelkadhum Shubber and Murtadha Nabeel Murtadha Al-Tameemi Department of Biology, Collage of Science, University of Qadisiyah, Iraq. e-mail : [email protected], [email protected] (Accepted 3 March 2018) ABSTRACT : The study aimed at comparing infection of Myobia musculi with that of Ornithonys susbacoti, during the study period of 2016-2017. A total of 220 rodents were identified including Musmusculus (89), Rattus norvegicus (37), R. rattus (48) & Swiss albino (46). After the specimens are anesthetized, mites are investigated. It was found that Musmusculus were infected byMyobia musculi at 35.9% comparison with Rattus norvegicus, R. rattus and Swiss albino were infected by Ornithonys susbacoti at (29.7%, 41.6%, 8.6%), respectively. Key words : Mits, Myobia musculi, Ornithonys susbacoti, mice, rats. INTRODUCTION Iraq, ectoparasites of wild animals were poorly studied Rodent belong to the Animal kingdom, Chordata (Abul-Hab and Shihab, 1996; Abul-hab, 1984, 1986) phylum- Mammals class within the Real Mammals above reported Ornithonys susbacoti (Hirst, 1913) from the order of above the heading and to the order of Rodentia commensal and semi wild rodents. Then Abul-hab and (Fleer et al, 2011). They are considered the highest orders Shihab (1996) found it on the long-eared hedgehog of Mammals, as they constitute a ration more the 40% Hemiechinus auritus (Gmelin, 1770) collected in Wassit among all kinds of Mammals and the most successful Governorate, Central Iraq. -
Gamasid Mites
NATIONAL RESEARCH TOMSK STATE UNIVERSITY BIOLOGICAL INSTITUTE RUSSIAN ACADEMY OF SCIENCE ZOOLOGICAL INSTITUTE M.V. Orlova, M.K. Stanyukovich, O.L. Orlov GAMASID MITES (MESOSTIGMATA: GAMASINA) PARASITIZING BATS (CHIROPTERA: RHINOLOPHIDAE, VESPERTILIONIDAE, MOLOSSIDAE) OF PALAEARCTIC BOREAL ZONE (RUSSIA AND ADJACENT COUNTRIES) Scientific editor Andrey S. Babenko, Doctor of Science, professor, National Research Tomsk State University Tomsk Publishing House of Tomsk State University 2015 UDK 576.89:599.4 BBK E693.36+E083 Orlova M.V., Stanyukovich M.K., Orlov O.L. Gamasid mites (Mesostigmata: Gamasina) associated with bats (Chiroptera: Vespertilionidae, Rhinolophidae, Molossidae) of boreal Palaearctic zone (Russia and adjacent countries) / Scientific editor A.S. Babenko. – Tomsk : Publishing House of Tomsk State University, 2015. – 150 р. ISBN 978-5-94621-523-7 Bat gamasid mites is a highly specialized ectoparasite group which is of great interest due to strong isolation and other unique features of their hosts (the ability to fly, long distance migration, long-term hibernation). The book summarizes the results of almost 60 years of research and is the most complete summary of data on bat gamasid mites taxonomy, biology, ecol- ogy. It contains the first detailed description of bat wintering experience in sev- eral regions of the boreal Palaearctic. The book is addressed to zoologists, ecologists, experts in environmental protection and biodiversity conservation, students and teachers of biology, vet- erinary science and medicine. UDK 576.89:599.4 -
MALAYSIAN PARASITIC MITES II. MYOBIIDAE (PROSTIGMATA) from RODENTS L 2 3 A
74 6 Vol. 6,No. 2 Internat. J. Acarol. 109 MALAYSIAN PARASITIC MITES II. MYOBIIDAE (PROSTIGMATA) FROM RODENTS l 2 3 A. Fain , F. S. Lukoschus and M. Nadchatram ----- ABSTRACT-The fur-mites of the family Myobiidae parasitic on rodents in Malaysia are studied. They belong to 9 species and 2 genera Radfordia Ewing and Myobia von Reyden. The new taxa include one new subgenus Radfordia (Rat timyobia); 4 new species~ Radfordia (Rat timyobia) pahangensis, R.(R.) selangorensis, R. (R.) subangensis, Myobia malaysiensis and one new subspecies Radfordia (Radfordia) ensifera jalorensis. These are described and illustrated. In addition, the male of Radfordia (Rat:ttmyouti.a) acinaciseta Wilson, 1967 is described for the first time. ----- During a stay in the Institute for Medical Research, Kuala Lumpur, F. S. L. collected a number of parasitic mites from various hosts (Fain et al., 1980). This paper deals with the species of Myobiidae found on rodents. Nine species in 2 genera-Radfordia and Myobia, , were collected. A new subgenus, Radfordia (Rattimyobia), 4 new species, Radfordia (Rattimyobia) pahangensi s, R. (R.) selangorensis, R. (R.) subangensis, Myobia malaysiensis, and 1 new subspecies, R. (Radfordia ) ensifera jalorensis, are described and illustrated. In addition, the male of R. (Rattimyobia) acinaciseta Wilson is described for the first time. The holotypes are deposited in the British Museum, Natural History, London. Paratypes are in the following institutions: Institute for Medical Research, Kuala Lumpur; Academy of Sciences, Department of Parasitology, Prague; Bernice Bishop Museum, Honolulu; Field Museum of Natural History, Chicago; Institut royal des Sciences naturelles, Bruxelles; Institute of Acaro logy, Columbus; Zoologisches Museum, Hamburg; Rijksmuseum Natural History, Leiden; U. -
Host Finding of the Pigeon Tick Argas Reflexus
Medical and Veterinary Entomology (2016) 30, 193–199 doi: 10.1111/mve.12165 Host finding of the pigeon tick Argas reflexus B. BOXLER1, P.ODERMATT2,3 andD. HAAG-WACKERNAGEL1 1Department of Biomedicine, University of Basel, Basel, Switzerland , 2Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland and 3University of Basel, Basel, Switzerland Abstract. The medically and veterinary important feral pigeon tick Argas reflexus (Ixodida: Argasidae) Fabricius usually feeds on pigeons, but if its natural hosts are not available, it also enters dwellings to bite humans that can possibly react with severe allergic reactions. Argas reflexus is ecologically extremely successful as a result of some outstanding morphological, physiological, and ethological features. Yet, it is still unknown how the pigeon tick finds its hosts. Here, different host stimuli such as living nestlings as well as begging calls, body heat, smell, host breath and tick faeces, were tested under controlled laboratory conditions. Of all stimuli tested, only heat played a role in host-finding. The heat stimulus was then tested under natural conditions withina pigeon loft. The results showed that A. reflexus is able to find a host over short distances of only a few centimetres. Furthermore, it finds its host by random movements and recognizes a host only right before direct contact is made. The findings are useful for the control of A. reflexus in infested apartments, both to diagnose an infestation and to perform a success monitoring after disinfestation. Key words. Columba livia, body heat, ectoparasite, feral pigeon, host cues, host detection, host stimuli. Introduction and as an Argasid typically remains within the nest or burrow of its hosts (Klowden, 2010). -
Development of a Real-Time Pcr Assay for Mouse Fur Mites
DEVELOPMENT OF A REAL-TIME PCR ASSAY FOR MOUSE FUR MITES AND EVALUATION OF PILOT STUDY by Allison Poore B.S. (Dickinson College) 2012 THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in BIOMEDICAL SCIENCE in the GRADUATE SCHOOL of HOOD COLLEGE May 2019 Accepted: ________________________________ ________________________________ Dr. Craig Laufer, Ph.D. Dr. Ann Boyd, Ph.D. Committee Member Director, Biomedical Science Program ________________________________ ________________________________ Dr. Ann Boyd, Ph.D. Dr. April Boulton, Ph.D. Committee Member Dean of the Graduate School ________________________________ Dr. Wang-Ting Hsieh, Ph.D. Thesis Adviser STATEMENT OF USE AND COPYRIGHT WAIVER I do authorize Hood College to lend this thesis, or reproductions of it, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. ii DEDICATION To Scott. And to my Mom and Dad. I love you. iii ACKNOWLEDGEMENTS Thank you to the National Cancer Institute for funding and for their continued work to improve the lives of patients living with cancer. Thank you to all the Hood College faculty who have supported me throughout my time as a graduate student. A special thanks to Dr. Ann Boyd, who made every effort to help me finish my degree through every challenge. An additional special thank you to Dr. Rachel Beyer, who also took extra time and provided accommodation to help me finish my classes. Thank you to Dr. Wang-Ting Hsieh for years of mentoring in molecular biology. I am so grateful for the knowledge and experience I have gained as part of your group. -
Laboratory Animal Management: Rodents
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/2119 SHARE Rodents (1996) DETAILS 180 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-04936-8 | DOI 10.17226/2119 CONTRIBUTORS GET THIS BOOK Committee on Rodents, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council FIND RELATED TITLES SUGGESTED CITATION National Research Council 1996. Rodents. Washington, DC: The National Academies Press. https://doi.org/10.17226/2119. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Rodents i Laboratory Animal Management Rodents Committee on Rodents Institute of Laboratory Animal Resources Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C.1996 Copyright National Academy of Sciences. All rights reserved. Rodents ii National Academy Press 2101 Constitution Avenue, N.W. Washington, D.C. 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. -
The External Parasites of Birds: a Review
THE EXTERNAL PARASITES OF BIRDS: A REVIEW BY ELIZABETH M. BOYD Birds may harbor a great variety and numher of ectoparasites. Among the insects are biting lice (Mallophaga), fleas (Siphonaptera), and such Diptera as hippohoscid flies (Hippohoscidae) and the very transitory mosquitoes (Culicidae) and black flies (Simuliidae), which are rarely if every caught on animals since they fly off as soon as they have completed their blood-meal. One may also find, in birds ’ nests, bugs of the hemipterous family Cimicidae, and parasitic dipterous larvae that attack nestlings. Arachnida infesting birds comprise the hard ticks (Ixodidae), soft ticks (Argasidae), and certain mites. Most ectoparasites are blood-suckers; only the Ischnocera lice and some species of mites subsist on skin components. The distribution of ectoparasites on the host varies with the parasite concerned. Some show no habitat preference while others tend to confine themselves to, or even are restricted to, definite areas on the body. A list of 198 external parasites for 2.55 species and/or subspecies of birds east of the Mississippi has been compiled by Peters (1936) from files of the Bureau of Entomology and Plant Quarantine between 1928 and 1935. Fleas and dipterous larvae were omitted from this list. According to Peters, it is possible to collect three species of lice, one or two hippoboscids, and several types of mites on a single bird. He records as many as 15 species of ectoparasites each from the Bob-white (Co&us uirginianus), Song Sparrow (Melospiza melodia), and Robin (Turdus migratorius). The lice and plumicolous mites, however, are typically the most abundant forms present on avian hosts. -
Germany) 185- 190 ©Zoologische Staatssammlung München;Download
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2004 Band/Volume: 027 Autor(en)/Author(s): Rupp Doris, Zahn Andreas, Ludwig Peter Artikel/Article: Actual records of bat ectoparasites in Bavaria (Germany) 185- 190 ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA 27 2 185-190 München, Ol. Juli 2004 ISSN 0341-8391 Actual records of bat ectoparasites in Bavaria (Germany) Doris Rupp, Andreas Zahn & Peter Ludwig ) Rupp, D. & A. Zahn & P. Ludwig (2004): Actual records of bat ectoparasites in Bavaria (Germany). - Spixiana 27/2: 185-190 Records of ectoparasites of 19 bat species coilected in Bavaria are presented. Altogether 33 species of eight parasitic families of tleas (Ischnopsyllidae), batflies (Nycteribiidae), bugs (Cimicidae), mites (Spinturnicidae, Macronyssidae, Trom- biculidae, Sarcoptidae) and ticks (Argasidae, Ixodidae) were found. Eight species were recorded first time in Bavaria. All coilected parasites are deposited in the collection of the Zoologische Staatsammlung München (ZSM). Doris Rupp, Gailkircher Str. 7, D-81247 München, Germany Andreas Zahn, Zoologisches Institut der LMU, Luisenstr. 14, D-80333 München, Germany Peter Ludwig, Peter Rosegger Str. 2, D-84478 Waldkraiburg, Germany Introduction investigated. The investigated bats belonged to the following species (number of individuals in brack- There are only few reports about bat parasites in ets: Barbastelhis barbastelliis (7) - Eptesicus nilsomi (10) Germany and the Bavarian ectoparasite fauna is - E. serotimis (6) - Myotis bechsteinii (6) - M. brandtii - poorly investigated yet. From 1998 tili 2001 we stud- (20) - M. daubentonii (282) - M. emarginatus (12) ied the parasite load of bats in Bavaria. -
Total Ige As a Serodiagnostic Marker to Aid Murine Fur Mite Detection
Journal of the American Association for Laboratory Animal Science Vol 51, No 2 Copyright 2012 March 2012 by the American Association for Laboratory Animal Science Pages 199–208 Total IgE as a Serodiagnostic Marker to Aid Murine Fur Mite Detection Gordon S Roble,1,2,* William Boteler,5 Elyn Riedel,3 and Neil S Lipman1,4 Mites of 3 genera—Myobia, Myocoptes, and Radfordia—continue to plague laboratory mouse facilities, even with use of stringent biosecurity measures. Mites often spread before diagnosis, predominantly because of detection dif!culty. Current detection methods have suboptimal sensitivity, are time-consuming, and are costly. A sensitive serodiagnostic technique would facilitate detection and ease workload. We evaluated whether total IgE increases could serve as a serodiagnostic marker to identify mite infestations. Variables affecting total IgE levels including infestation duration, sex, age, mite species, soiled-bedding exposure, and ivermectin treatment were investigated in Swiss Webster mice. Strain- and pinworm-associated effects were examined by using C57BL/6 mice and Swiss Webster mice dually infested with Syphacia obvelata and Aspiculuris tetraptera, respectively. Mite infestations led to signi!cant increases in IgE levels within 2 to 4 wk. Total IgE threshold levels and corresponding sensitivity and speci!city values were determined along the continuum of a receiver-operating charac- teristic curve. A threshold of 81 ng/mL was chosen for Swiss Webster mice; values above this point should trigger screening by a secondary, more speci!c method. Sex-associated differences were not signi!cant. Age, strain, and infecting parasite caused variability in IgE responses. Mice exposed to soiled bedding showed a delayed yet signi!cant increase in total IgE. -
Comparative Study of Mites Infecting Mice & Rats in Al-Diwaniyah City
Comparative Study Of Mites Infecting Mice & Rats In Al-Diwaniyah City, South Of Iraq Habeeb waseel kadhum shubber1, Murtadha Nabeel Murtadha Al-Tameemi1 1Biology Department, Collage of science, University of Qadisiyah, ,Iraq. [email protected] [email protected] Abstract: The study aimed at comparing infection of Myobia musculi with that of Ornithonyssus bacoti, during the study period of 2016-2017, A total of 220 rodents were identified including Mus musculus(89), Rattus norvegicus(37), R. rattus(48) & Swiss albino(46). After the Specimens are anesthetized, mites are investigated. It was found that Mus musculus were infected by Myobia musculi at 35.9% comparison with Rattus norvegicus, R. rattus and Swiss albino were infected by Ornithonyssus bacoti at (29.7%, 41.6%, 8.6%) respectively. Keyword: mits, Myobia musculi, Ornithonyssus bacoti, mice, rats Introduction: Rodent belong to the Animal kingdom, Chordata phylum- Mammals class within the Real Mammals above the order of above the heading and to the order of Rodentia [1]. They are considered the highest orders of Mammals, as they constitute a ration more the 40% among all kinds of Mammals , and the most successful biggest groups of Mammals in multiplication. They are world-wide prevalence and are able to accommodate to get wide a variety in environments [2]. Rodents play an important role in human health and economy as they have close contact with man[3]. They are considered as carrier of many diseases, either directly through a rodent's bite, excrete or urine contaminated with infections, since rodents can be carrier hosts, Reservoir hosts or intermediate hosts, or indirectly through Arthropoda parasiting on a rodents outside like Lice, Fleas, Mites and Ticks that work as a carrying medium of diseases between human beings and other animals[4]. -
Argasidae Soft Ticks
Lect.5 Arthropoda 3rd class Dr.Omaima Argasidae Soft ticks Soft ticks are a group of ticks that belong to the tick family called Argasids. They are less abundant than hard ticks and are usually not a major issue for livestock, horses or pets, but can be a problem in traditional or outdoor poultry operations in endemic regions. There are about 185 soft tick species worldwide. Biology and life cycle of soft ticks They are called "soft" ticks because they have a "leathery" consistence. Soft ticks are significantly different from hard ticks in their anatomy, but also in their feeding and host-finding behavior. In contrast with in hardticks, the capitulum is below the abdomen and can't be seen from upside, and sof ticks dont' have a dorsal shield (scutum). Soft ticks behave more like poultry mites than like hard ticks. They build populations close to their hosts, in cracks and crevices of buildings and caves, or in bird nests. They can survive for very long periods without feeding, waiting for their hosts to come back to their nests or shelters. As all ticks, they undergo a metamorphosis and develop through the typical stages of larvae, nymphs (various stages) and adults. The life cycle (i.e. from eggs to eggs of the next generation) can be completed in a few months or many years, depending on species and climatic and ecological conditions, but especially on the presence or absence of suitable hosts. In contrast with hard ticks mating occurs off the host. Females lay a few hundred eggs in several batches. -
Booklice (<I>Liposcelis</I> Spp.), Grain Mites (<I>Acarus Siro</I>)
Journal of the American Association for Laboratory Animal Science Vol 55, No 6 Copyright 2016 November 2016 by the American Association for Laboratory Animal Science Pages 737–743 Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): ‘Other Pests’ Occasionally Found in Laboratory Animal Facilities Elizabeth A Clemmons* and Douglas K Taylor Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles Tribolium( spp.) are common stored-product pests that have pre- viously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized. Several insect and mite species are termed ‘stored-product Furthermore, the presence of these pests in storage and hous- pests,’ reflecting the fact that they routinely infest items such ing areas can lead to food wastage and negative human health as foodstuffs stored for any noteworthy period of time. Some consequences such as allergic hypersensitivity.11,52,53 In light of of the most economically important insect pests include beetles these attributes, these species should perhaps not be summarily of the order Coleoptera and moths and butterflies of the order disregarded if found in laboratory animal facilities.