3 Tracking In-Air Gestures in Collaborative Environments Using Commodity Hard- Ware 17 3.1 Depth Cameras

Total Page:16

File Type:pdf, Size:1020Kb

3 Tracking In-Air Gestures in Collaborative Environments Using Commodity Hard- Ware 17 3.1 Depth Cameras Research Collection Doctoral Thesis A Framework for Optimal In-Air Gesture Recognition in Collaborative Environments Author(s): Alavi, Ali Seyed Publication Date: 2020 Permanent Link: https://doi.org/10.3929/ethz-b-000449030 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 26416 A Framework for Optimal In-Air Gesture Recognition in Collaborative Environments A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH Zurich (Dr. sc. ETH Zurich) presented by SEYED ALI ALAVI Master of Science in Secure and Dependable Computer Systems born on 15.09.1984 citizen of Iran accepted on the recommendation of Prof. Dr. Konrad Wegener, examiner Prof. Dr. Andreas Kunz, co-examiner Prof. Dr. Morten Fjeld, co-examiner 2020 Abstract Hand gestures play an important role in communication between humans, and increasingly in the inter- action between humans and computers, where users can interact with a computer system to manipulate digital content, provide input, and give commands to a digital system. Thanks to advances in computer vision and camera technology, in-air hand gestures can be tracked without the need for instrumenting the hands. This allows for a wide variety of interesting and powerful use cases. First, hand gestures that happen naturally during human to human communication can be tracked and interpreted. This has been extensively used and researched, for example for communicating deictic ges- tures to remote participants. Most such solutions rely on communicating such gestures using extensive visual feedback, for example by showing remote participant’s hand, or even his or her full body, to their remote partners. While useful for many scenarios, such heavy reliance on visual feedback limits the us- ability and accessibility of such solutions, for example for blind and visually impaired (BVI) participants, or for scenarios where screen real state is limited. Even when used for human-computer interaction, in-air interfaces rely on visual feedback. Because in-air gestures are ephemeral, and there is no haptic feedback, it is difficult for a new user to perform them properly. Thus, a typical approach to address this problem is by drawing the hand trajectory on the display. This causes distraction, especially if multiple users who share a single display simultaneously interact with the system. Another approach is to have a fast gesture classifier, which allows giving quick feedback to the user, even shortly before finishing the gesture, provided that it is sufficiently different. Due to the way that most of the current classifiers are designed, these feedbacks are mainly limited to reporting whether the gesture could be classified, and if so, to which class did it belong. Such feedback has limited usefulness, as the only thing the user can do after receiving such feedback is to repeat the gesture if it was failed. But why it failed and how their performance can be improved remains unknown. This thesis proposes methods for utilizing in-air gestures for enhancing digital collaboration without iii heavy reliance on visual feedback. This is especially useful for collaborative scenarios where some participants have limited access to the visual channel, most notably BVI participants and remote partic- ipants, and for scenarios where the display in the collaborative environment is crowded with content, to showing large visual cues is not desirable. Specifically, this thesis addresses two main challenges: • How to communicate in-air gestures, specifically deictic gestures, to blind and visually impaired participants, as well as remote participants, while minimizing (or eliminating) the need for visual feedback. For BVI participants, this is achieved by tracking deictic gestures of sighted participants, deciding whether they are performing a deictic gesture, and then communicating the target of the gesture to the BVI participants using a Braille display or a screen reader. For remote participants, this is achieved by showing the target of pointing gesture using a small highlighter on the screen, as well as by allowing the remote participant to control the opacity of the visual feedback if a more complicated visual feedback is necessary. • How to use in-air gestures in collaborative scenarios for human-computer interaction, while min- imizing the use of visual feedback. This is achieved by proposing a new algorithm for gesture recognition that can provide fast, useful, and non-distracting feedback for in-air gestures. The algorithm always keeps the user informed about the state of the gesture recognizer, and informs the user about what they need to do next to get closer to finishing a gesture by giving them non- distracting visual cues. Moreover, the proposed algorithm is independent of the speed, scale or orientation of the gestures. This allows the users to perform gestures from different distances and angles relative to the camera, with a speed they are comfortable with, which gives them ample opportunity to learn how to perform gestures. Additionally, a new algorithm for creating large gesture sets for in-air interactions using a smaller set of gestures is introduced, thus reducing the need for learning new gestures by the users. The resulting gestures are also guaranteed to be easily detectable by the proposed gesture recognizer. Finally, because studying these problems requires a setup capable of uninstrumented hand tracking, this thesis proposes cost-effective hardware setups that allow for setting up collaborative environments with horizontal or vertical displays that are capable of tracking in-air gestures. iv Zusammenfassung Handgesten spielen eine wichtige Rolle in der Kommunikation zwischen Menschen, aber in zunehmen- dem Masse auch in der Kommunikation mit Computern. Mit seinen Gesten kann der Mensch den digita- len Inhalt manipulieren, Eingaben vornehmen, oder Befehle in den Computer eingeben. Durch die stetige Weiterentwicklung in der Bildverarbeitung und der Kameratechnologie können solche frei im Raum aus- geübten Gesten erkannt werden, ohne dass hierfür Sensoren an der Hand oder an dem Arm angebracht werden müssen. Dies ermöglicht eine Vielzahl interessanter und leistungsfähiger Anwendungsfälle. Diese Systeme können auch solche intuitiven Gesten erkennen und interpretieren, wie sie in der Kom- munikation zwischen Menschen auftreten. Diese Möglichkeit wurde intensiv erforscht, beispielsweise hinsichtlich der Übertragung deiktischer Gesten an entfernte Teilnehmer. Viele der Lösungen beruhen darauf, dass eine umfassende visuelle Darstellung ermöglicht wird, indem man beispielsweise die Hand des entfernten Teilnehmers darstellt oder sogar der ganze Körper den anderen Gesprächsteilnehmern gezeigt wird. Obwohl die Lösungen für viele Anwendungen nützlich sind, so ist doch diese starke Aus- richtung auf den visuellen Wahrnehmungskanal ein limitierender Faktor für einige Personen, beispiels- weise für Blinde und Sehbehinderte (BVI), aber auch für Szenarien, in denen nur kleine Bildflächen zur Verfügung stehen, z.B. Smartphones oder Tablets. Aber auch für die Interaktion zwischen Mensch und Computer sind solche frei im Raum ausgeführten Gesten auf ein visuelles Feedback angewiesen. Da solche Gesten kurzlebig sind und keine haptische Rückmeldung liefern, fällt es einem neuen Anwender schwer, diese zu erlernen und richtig auszufüh- ren. Eine Möglichkeit, diesem Problem zu begegnen besteht darin, den durch die Geste ausgeführten Pfad auf einem Bildschirm darzustellen. Hierdurch entstehen aber Ablenkungen und Missverständnisse, insbesondere dann, wenn die Gesten mehrerer Anwender auf dem gleichen Bildschirm dargestellt wer- den. Ein anderer Ansatz besteht in einer schnellen Zuordnung der Gesten, welche dem Anwender eine Rückmeldung über die korrekte Ausführung der Geste gibt. Allerdings beschränken sich die heutigen Klassifizierungsmodule darauf, lediglich die korrekte Klassifizierung und die zugehörige Klasse auszu- geben. Diese Information ist allerdings für den Anwender nur bedingt hilfreich, da er im Falle einer v fehlerhaften oder nicht erkannten Geste diese einfach nur wiederholen kann. Er erhält aber keine Mittei- lung darüber, warum diese Geste fehlerhaft war und wie sie korrigiert werden kann. Im Rahmen dieser Arbeit werden Methoden entwickelt, mit welchen solche Gesten für die Verbesserung der digitalen Zu- sammenarbeit eingesetzt werden können, ohne sich stark auf eine visuelle Rückmeldung abstützen zu müssen. Das ist insbesondere für solche Formen der digitalen Zusammenarbeit wichtig, in denen einige Teilnehmer nur einen eingeschränkten Zugang zu dem visuellen Wahrnehmungskanal haben, wie bei- spielsweise BVI oder Teilnehmer mit kleinen mobilen Endgeräten; aber auch für solche Fälle, in denen der Bildschirm bereits mit anderem Inhalt komplett belegt ist. Die Arbeit fokussiert insbesondere auf die folgenden beiden Punkte: · Ausgabe von frei im Raum ausgeführten Gesten – insbesondere deiktischen Gesten – an BVI oder an Anwender mit kleinen mobilen Endgeräten, während für den Ausführenden dieser Gesten die visuelle Rückmeldung minimiert oder komplett eiminiert wird. Hierzu werden die Gesten der sehenden Teilnehmer erfasst und entschieden, ob es sich um eine deiktische Geste handelt oder nicht. Die erkannten deiktischen Gesten werden dann für BVI auf einer Braille-Zeile oder über ein Bildschirm-Lesegerät ausgegeben. Für die Teilnehmer mit kleinen
Recommended publications
  • GPU-Based Multiplatform Transcoding 1  Mahmut Ş
    GPU-Based MultiPlatform Transcoding 1 Mahmut Ş. Sağıroğlu Founded in 2007, Erlab Software is a privately-held company based in Istanbul, Turkey. Erlab Software is a technology company that develops innovative and value added solutions for the customers with emerging technologies. Unique Position in the Market 2 Specialities: o Internet TV, o Content Management System (CMS), Market Position: o PlayReady DRM, o Video Transcoding, Video Streaming, o Covered 100% of Internet TV / Video market o Microsoft Smooth Streaming, in Turkey with his own solutions. o HTTP Live Streaming, o Windows 8, Windows Phone 8, o Serving to 80% of the subscribers with o Kinect, Xbox, Microsoft Pixelsense, Erlab’s Content Management Solutions o Enterprise Video Solutions, o OTT Video Solutions, o Smart TV Background 3 o Encoding is the most time consuming process in video processing. o Video decoding / encoding / processing is inherently parallellizable. o New generation NVIDIA GPU’s have an embedded hardware for video encoding. Motivation 4 o Video encoding is always on the agenda o %90 of the internet users watches video on any device o Lifelogging trend o Satellite Imagery o 2 trillion minutes (5 million years) of video content will cross the Internet each month in 2017 * * http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html Challenges 5 Encoding and processing needs heavy mathematical operations Erlab’s Running CPU Based 6 Transcoding Solution For Adaptive Streaming Packetize Resize 1 Encode 1 Packetize Source 1 Decode Resize 2 Encode 2 Packetize Resize m Encode m Transmit Packetize Resize 1 Encode 1 Source n Decode Resize 2 Encode 2 Resize m Encode m Packetize Packetize CPU Based Solution 7 OPERATIONS DECODING F1 F2 F3 F4 F5 .
    [Show full text]
  • Group Touch: Distinguishing Tabletop Users in Group Settings Via Statistical Modeling of Touch Pairs Abigail C
    Group Touch: Distinguishing Tabletop Users in Group Settings via Statistical Modeling of Touch Pairs Abigail C. Evans,1 Katie Davis,1 James Fogarty,2 Jacob O. Wobbrock1 1The Information School, 2Computer Science & Engineering DUB Group | University of Washington Seattle, WA, USA 98195 {abievans, kdavis78, wobbrock}@uw.edu, [email protected] ABSTRACT We present Group Touch, a method for distinguishing among multiple users simultaneously interacting with a tabletop computer using only the touch information supplied by the device. Rather than tracking individual users for the duration of an activity, Group Touch distinguishes users from each other by modeling whether an interaction with the tabletop corresponds to either: (1) a new user, or (2) a change in users currently interacting with the tabletop. This reframing of the challenge as distinguishing users rather than tracking and identifying them allows Group Touch to support multi-user collaboration in real-world settings without custom instrumentation. Specifically, Group Touch examines pairs of touches and uses the difference in orientation, distance, and time between two touches to Figure 1. Group Touch can distinguish among users “in the wild” determine whether the same person performed both touches with a mean accuracy of 92.92% (SD=3.94%) using only touch in the pair. Validated with field data from high-school information. Pictured above are high school students in a classroom. students in a classroom setting, Group Touch distinguishes The challenge of distinguishing among users (i.e., knowing one among users “in the wild” with a mean accuracy of 92.92% user’s touches are different from another’s) is a different challenge than identifying them (i.e., knowing to whom each touch belongs).
    [Show full text]
  • SMAC: a Simplified Model of Attention and Capture in Multi-Device Desk-Centric Environments
    SMAC: A Simplified Model of Attention and Capture in Multi-Device Desk-Centric Environments ZHEN LI, University of Toronto, Canada 2 MICHELLE ANNETT, MishMashMakers, Canada KEN HINCKLEY, Microsoft Research, United States DANIEL WIGDOR, University of Toronto, Canada Prior research has demonstrated that users are increasingly employing multiple devices during daily work. Currently, devices such as keyboards, cell phones, and tablets remain largely unaware of their role within a user’s workflow. As a result, transitioning between devices is tedious, often to the degree that users are discouraged from taking full advantage of the devices they have within reach. This work explores the device ecologies used in desk-centric environments and complies the insights observed into SMAC, a simplified model of attention and capture that emphasizes the role of user-device proxemics, as mediated by hand placement, gaze, and relative body orientation, as well as inter-device proxemics. SMAC illustrates the potential of harnessing the rich, proxemic diversity that exists between users and their device ecologies, while also helping to organize and synthesize the growing body of literature on distributed user interfaces. An evaluation study using SMAC demonstrated that users could easily understand the tenants of user- and inter-device proxemics and found them to be valuable within their workflows. CCS Concepts: • Human-centered computing → Interaction paradigms; Interaction techniques. Additional Key Words and Phrases: Proxemics, user proxemics, inter-device proxemics, cross-device interaction, distributed user interfaces ACM Reference Format: Zhen Li, Michelle Annett, Ken Hinckley, and Daniel Wigdor. 2019. SMAC: A Simplified Model of Attention and Capture in Multi-Device Desk-Centric Environments.
    [Show full text]
  • Judson White
    JUDSON WHITE Austin, TX (877) 316-7975 [email protected] https://github.com/judwhite BIO . 16 years professional experience . C# / .NET, Go (Golang) . Originally from a C and C++ background; open to learning other languages . Hands-on development and architecture/system design . Equally happy to contribute in a team member, technical lead, or architect position ACKNOWLEDGMENTS Rattz Jr., Joseph C. (2009). Pro LINQ: Language Integrated Query. New York, NY: Apress. TALKS . “Go: A Practical Start Guide”. Bleeding Edge Web at Capital Factory, 23 March 2016 o Slides: https://github.com/judwhite/talks-edgeatx (includes video) . “Go: A Practical Start Guide” Dell Developer User Group, 30 March 2016 o Slides: https://github.com/judwhite/talks-dell . “Performance Tuning in Go” North Austin Golang Meetup at Tech Ranch, 26 May 2016 o Slides: https://github.com/judwhite/talks-goperf TECHNICAL SKILLS . General: o Multithreaded / concurrent applications o Distributed systems (workloads, messaging, RPC, consensus) o HTTP API design / RESTful Services o CQRS / SOLID principles o Full-development lifecycle and agile methodologies o Performance and memory profiling/tuning . .NET: o ASP.NET MVC, Web API, WCF, Razor Views o WPF/XAML/MVVM, Windows Forms o StructureMap, Autofac, Dapper, Entity Framework o NUnit, MSTest, Moq . Databases / Datastores: o MS SQL Server, Postgres, MySQL, SQLite, BoltDB, Elasticsearch o Schema design and T-SQL . Distributed Messaging: o NSQ (contributor) . Source Control: o Git, TFS, Perforce, Subversion, ClearCase, Source Depot EXPERIENCE DELL – ROUND ROCK, TX 2/14 - PRESENT Software Dev Prin Engineer / Tech Lead . Responsible for a rewrite of the commercial side of Dell.com with a focus on improving performance, reliability, and scalability.
    [Show full text]
  • An Improved Modular Framework for Developing Multi-Surface Interaction
    AN IMPROVED MODULAR FRAMEWORK FOR DEVELOPING MULTI-SURFACE INTERACTION A Paper Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Jed Patrick Limke In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Program: Software Engineering December 2015 Fargo, North Dakota North Dakota State University Graduate School Title AN IMPROVED MODULAR FRAMEWORK FOR DEVELOPING MULTI-SURFACE INTERACTION By Jed Patrick Limke The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Jun Kong Chair Dr. Juan Li Dr. Jin Li Approved: 12/21/2015 Dr. Brian Slator Date Department Chair ABSTRACT Advances in multi-touch capabilities have led to their use in a vast array of devices, but usable interactions that span across devices are less frequently encountered. To address this con- cern, a framework was created for the development of interaction spaces which gave developers the tools to write applications which united tabletop and handheld devices, allowing each device to utilize its inherent interaction style yet still communicate effectively. However, while this framework provided proof that such interactions were possible, it failed to prove itself as easily reusable by subsequent developers. To address this concern, we have created an improved framework to both fulfill the goals of the original framework and confront its shortcomings. Our improved framework features a new intra-component communication system, mobile device independence, configurable user interfaces, and automatic exposure of available interac- tions.
    [Show full text]
  • Projectable Interactive Surface Using Microsoft Kinect V2
    2015 IEEE/SICE International Symposium on System Integration (SII) December 11-13, 2015. Meijo University, Nagoya, Japan ����������������������������������������������������������� ������������������������������������������������������� P. Sharma, R. P. Joshi, R. A. Boby, S. K. Saha, Member, IEEE and T. Matsumaru, Member, IEEE � Abstract�An Image-projective Desktop Varnamala Trainer Indian �.3,00,000 or US $5000) and not easily transportable. (IDVT) called SAKSHAR has been designed to improve the These are important requirements for a system to be used in learning by children through an interactive audio visual fields like education in developing and underdeveloped feedback system. This device uses a projector to render a countries. With this purpose in mind "SAKSHAR: Image- virtual display, which permits production of large interactive projective Desktop Varnamala Trainer (IDVT)" has been ��������������������������������������������is recognized with the help of a Microsoft Kinect Version 2. The entire system is designed. The device has been named SAKSHAR which portable, i.e., it can be projected on any planar surface. Since means "Literacy" in Hindi (an Indian language). the Kinect does not give precise 3D coordinates of points for "Varnamala" is also a Hindi word which stands for complete detecting a touch, a model of recognition of a touch purely set of alphabets. We feel that devices like SAKSHAR will ��������������������������������������������������������������� give a boost to reading skills and improve literacy. not yield accurate results. We have instead modeled the touch SAKSHAR is based on SOI (step-on interface) concept, action by using multiple points along the trajectory of the ��������������������������������������������������������� with which uses the projected screen as a bidirectional interface. the surface. Fitting a curve through these points and analyzing Through this the information is transferred from a robot to the errors is used to make the detection of touch accurate.
    [Show full text]
  • The Questions Concerning Technology by WB Round 6
    The Questions Concerning Technology By WB Round 6 1. This being's servants include Alexander Adell and Bertram Lupov. This character goes by the alias Joe when helping Milton find a potential girlfriend, Charity Jones, but then this character has Milton arrested and plots to make Chastity his own lover. This character refuses to answer Todd Nemerson until Todd says “Please” in the story “Key Item.” This being conducts an interrogation of Norman Muller because Norman was the one person chosen to vote that year. He manipulates Joseph Manners' son Ben in an elaborate plot to commit suicide which takes place in “All the Troubles of the World.” This character is killed after Bakst distracts him with the problem of genetically engineering subservient humans. In one story, this being is succeeded by more powerful ACs, the eventual cosmic form of which learns to reverse entropy and then announces “ "LET THERE BE LIGHT!." For 10 points, name this very powerful computer that appears in many of Isaac Asimov's short stories. ANSWER: Multivac 2. In bone scaffold studies, these machines are fed Schelofix mix and MC3T3-E1 cells are added to the output. Two low cost examples of these machines available from the Internet are Wallace and Prusa Mendel. Airbus has an initiative to invent giant versions of these devices by 2050. CO2 lasers are fired on powders in the SLS type of these. RepRap is a project to produce an open source one. One of these products works through a stepstruder. Shapeways is an online service that allows users to use these machines.
    [Show full text]
  • Research Collection
    Research Collection Conference Paper Integrating Pointing Gesture Detection for enhancing Brainstorming Meetings using Kinect and PixelSense Author(s): Kunz, Andreas; Alavi, Ali; Sinn, Philipp Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010113556 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Integrating Pointing Gesture Detection for enhancing Brainstorming Meetings using Kinect and PixelSense Andreas Kunz1, Ali Alavi1, Philipp Sinn1 1 Innovation Center Virtual Reality (ICVR), ETH Zurich, 8092 Zurich, Switzerland, E-Mail: [email protected] Abstract Microsoft PixelSense is able to detect multitouch input and tagged objects as well, which makes it suitable to be used in net-based brainstorming sessions within small teams. However, any gestures above the table cannot be detected, which makes net-based brainstorming sessions less intuitive. Thus, we present a solution how Kinect can be used together with PixelSense to overcome this limitation without interference between the two devices. Keywords: Kinect; Deictic Gestures; Computer Supported Collaborative Work 1 INTRODUCTION elements, takes place in communication space. Nowadays, many big ideas incept from a team of individual For an efficient net-based brainstorming, we should decide on a designers, sitting together in a brainstorming meeting. This subset of these communication elements to be captured, aligned, collaborative approach uses the collective knowledge and creativity and correctly transferred to the remote side. of the team, and is beneficial to the major stakeholders of the While most EBSs are capable of transmitting the content of the task meeting (the designers, the organization, and the customers) [1].
    [Show full text]
  • Mott Washington 0250E 19538.Pdf (1.522Mb)
    © Copyright 2018 Martez Edward Mott Improving Touch Accuracy for People with Motor Impairments Martez Edward Mott A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2018 Reading Committee: Jacob O. Wobbrock, Chair Leah Findlater David Hendry Meredith Ringel Morris Program Authorized to Offer Degree: The Information School University of Washington Abstract Improving Touch Accuracy for People with Motor Impairments Martez Mott Chair of the Supervisory Committee: Professor Jacob O. Wobbrock Information School Touch-enabled devices such as smartphones, tablets, and interactive kiosks are some of the most pervasive technologies in the world today. Despite the overwhelming popularity of touch input, it presents significant accessibility challenges for millions of people with motor impairing conditions such as cerebral palsy and Parkinson’s disease, and for people who experience motor difficulties as the result of injury or old age. This dissertation presents an ability-based design approach towards creating touch models that can improve the accuracy of touch input for people with motor impairments. I conducted two exploratory studies to understand the touch behaviors of people with motor impairments when interacting on an interactive tabletop computer and a smartphone. These exploratory studies led to the design of two new ability-based touch models: Smart Touch, a user- specific template matching algorithm designed initially for tabletops; and Cluster Touch, a combined user-specific and user-independent touch model that improves touch accuracy on smartphones. I also conducted an exploration of using convolutional neural networks to model a user’s touch behavior to predict intended target locations.
    [Show full text]
  • Samsung Sur40 Mit Objekterkennung Ausgabe 16
    Digital Signage & Digital out of Home Ausgabe 16 SAMSUNG SUR40 mit Objekterkennung ANZEIGE Touch me! Das Samsung SUR40 Multitouch-Display mit Objekterkennung. Hier ist Anfassen nicht nur erlaubt, sondern ausdrücklich erwünscht! Das Offen für Interaktion Multitouch-Display Samsung SUR40 zieht Ihre Kunden magisch an – und Ob Hotellobby, Beratungsbereich einer verführt sie zum interaktiven Kennenlernen Ihrer Produkte und Angebote. Bank, Verkaufs- oder Seminarraum: Lassen Sie Ihre Kunden mit nur einem Fingerdruck in Ihr Angebot eintauchen. Der Samsung SUR40 reagiert auf Berührungen, Gesten und sogar spezielle Gegenstände, die auf dem 40 Zoll großen Display platziert wer- den. Digitale Inhalte lassen sich per Finger, Hand oder Stift auswählen, verschieben, Reagiert auf Berührungen, drehen, vergrößern oder verkleinern. Und Gesten und sogar spezielle das durch mehrere Anwender gleichzeitig. Gegenstände. Exklusive Partnerschaft mit Microsoft Möglich macht dies die auf Infrarot ba- sierende Microsoft PixelSense™-Techno- logie, bei der jeder einzelne Bildpunkt einen Infrarotsensor besetzt und auf Lichtreflexion reagiert. Dadurch kann der Bildschirm bis zu 50 Berührungen auf einmal erfassen. Maßgeschneiderte Software Lösungen Neben zahlreichen bereits vorhandenen Programmen, Spielen und Anwendungen sind Ihren individuellen Wünschen so gut Samsung SUR40 mit Microsoft®wie keinePixelSense™ Grenzen gesetzt. Anwendungen speziell für Ihre geschäftlichen Bedürfnisse lassen sich jederzeit passgenau für Ihren SUR40 erstellen. Unverbindliche Preisempfehlung:
    [Show full text]
  • Microsoft Pixelsense - Interactive Surface Computing
    IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 MICROSOFT PIXELSENSE - INTERACTIVE SURFACE COMPUTING PLATFORM FOR SAMSUNG SUR40 Madhura Mhatre1, Siddhi Choudhari2, Nishtha Chourasia3 1, 2,3 L.T.C.O.E, Navi Mumbai [email protected], [email protected] Abstract: Microsoft PixelSense is an interactive surface computing platform that allows a richer visual experience and provides a radical new way to manipulate data by introducing multi-touch gestures. It allows users to interact with GUI without the use of mouse and a keyboard, providing a natural user interface. It contains the features of both PC and a tablet. It recognizes touch and non- digital objects on the screen’s surface and is designed to sync instantly with any device that touches its from toothbrush to cell phones, thus merging the real and the virtual world. It is built with wireless transceivers, Bluetooth and Wi-Fi. It utilizes raw vision data and has the ability to recognize fingers, tags and blobs. It provides a new area of business opportunities which can be used in grand hotels, airports, gaming zones, bing maps, real estate, colossal casino’s and in restaurants. It is a creative way to break down the old traditional barriers to technology Keywords: Blobs-Binary large object, colossal-large,Bing maps-interactive map. --------------------------------------------------------------------***---------------------------------------------------------------------- 1. INTRODUCTION horizontally or mounted
    [Show full text]
  • Design of an Interactive GUI for Multimedia Data Exchange Using SUR40 Multi-Touch Panel
    Design of an interactive GUI for multimedia data exchange using SUR40 multi-touch panel Rafał Kłoda1, Jan Piwiński1, Aleksandra Nowak2 1Industrial Research Institute for Automation and Measurements PIAP Al. Jerozolimskie 202, 02-486 Warsaw, Poland {rkloda, jpiwinski}@piap.pl 2Institute of Metrology and Biomedical Engineering, Warsaw University of Technology Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland [email protected] Abstract. Designed interface is a proposed solution for the FP7 CARRE project. The project focuses on the development of medical experts supporting technologies. The most important part of this paper is the evolution of the de- veloped interface, which allows to present and exchange multimedia data to the external devices. The design has been developed to ensure the convenience of usage for both, medical expert and the patient. The paper also presents basic design guidelines, as well as tools that are availa- ble for developers. Overview of components for application development gives an idea of the possibilities and is a good starting point for further exploration of issues associated with the selected multi-touch panel. Keywords: Graphical User Interface, GUI, design, SUR40, multi-touch panel 1 Introduction Graphical User Interface (GUI) plays a key role in interaction between human and device. For a common user the quality of the interface is equivalent to quality of the whole product. He uses the interface without thinking about the complicated applica- tion architecture. Ergonomy of the interface is the main factor that determines wheth- er the application is seen as useful. Designing the interface should be the first thing that is done while creating a program, since it is the most important element for the user.
    [Show full text]