Rubisco Biogenesis and Assembly in Chlamydomonas Reinhardtii Wojciech Wietrzynski

Total Page:16

File Type:pdf, Size:1020Kb

Rubisco Biogenesis and Assembly in Chlamydomonas Reinhardtii Wojciech Wietrzynski Rubisco biogenesis and assembly in Chlamydomonas reinhardtii Wojciech Wietrzynski To cite this version: Wojciech Wietrzynski. Rubisco biogenesis and assembly in Chlamydomonas reinhardtii. Molecular biology. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066336. tel- 01770412 HAL Id: tel-01770412 https://tel.archives-ouvertes.fr/tel-01770412 Submitted on 19 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PhD Thesis of the Pierre and Marie Curie University (UPMC) Prepared in the Laboratory of Molecular and Membrane Physiology of the Chloroplast, UMR7141, CNRS/UPMC Doctoral school: Life Science Complexity, ED515 Presented by Wojciech Wietrzynski for the grade of Doctor of the Pierre and Marie Curie University Rubisco biogenesis and assembly in Chlamydomonas reinhardtii Defended on the 17th of October 2017 at the Institut of Physico-Chemical Biology in Paris, France Phd Jury: Angela Falciatore, CNRS/UPMC, president Michel Goldschmidt-Clermont, Univeristy of Geneva, reviewer Michael Schroda, University of Kaiserslautern, reviewer Cecile Raynaud, CNRS/IPS2, examinator Steven Ball, University of Lille, examinator Francis-André Wollman, CNRS/UPMC, supervisor Katia Wostrikoff, CNRS/UPMC, supervisor 2 Acknowledgements You all already know that I’m not very good at it but I’ll try… Thanks to Mama and Papa for always letting me choose whatever I want to do, going to France included; To Francis-André for letting me stay in France in his laboratory, but foremost for all advices and critical comments and for making the lab above all, a place of discussion (not only scientific); The biggest thanks to Katia for having me work with her for those 4 years! For defending me, and in general being patient despite me being difficult at times (most of the time); Thanks to all that shared the bureau with me: Loreto, Han-yi, Domitille, Benjamin, Sandrine and the Ficus. Especially, to Sheriff Sandrine for keeping me in line and for all the food she shared with me! I’d like to thank all the members: past and present of Franics-André’s lab, everyone was special and memorable. I would be too long to evoke all the good memories I have with you. Just a special mention to The Axis: Stefania, Marina and Felix for trying to win this time. And Stephan, especially at the beginning, for always having time for a beer and talk; To follow, thanks to all the colleagues I have found in the Institute: Marcello, Max, Justin and all the others; Thanks to my friends Larissa and Wojtek for all the support. Wojtek in particular, for being my adversary for such a long time! And last but not least, for my special little cat, Nathalie: for teaching me French, how to take care of cats, how to be more social and for being there for me! It was a pleasure. 3 Table of contents Abbreviations 8 Opening words 9 1. General Introduction 11 1.1. Part I - Photosynthesis, endosymbiosis and consequences 11 1.1.1. Chloroplasts-a specialized organelle for oxygenic photosynthesis 11 1.1.2. Chloroplast genome organization 13 1.1.3. Endosymbiotic gene transfer: facts and hypotheses 15 1.1.4. Protein rerouting to the chloroplast 17 1.2. Part II Nucleus and chloroplast crosstalk 18 1.2.1. Chloroplast transcription and translation apparatus and regulation 19 1.2.1.1. Transcription in chloroplast 19 1.2.1.2. mRNA degradation in chloroplast 19 1.2.1.3. Translation machinery 20 1.2.1.4. Organization of translation 21 1.2.2. Nucleus-encoded regulators of chloroplast gene expression 22 1.2.2.1. TPR 22 1.2.2.2. PPR 23 1.2.2.3. OPR 24 1.2.2.4. mTERF 25 1.2.2.5. Convergent evolution- convergent role? 26 1.2.2.6. OTAFs in chloroplast 27 1.2.3. Retrograde signaling 28 1.3. Part III: Regulatory processes involved in photosynthetic complex assembly 31 1.3.1. Concerted accumulation of subunits 31 1.3.2. Proteolysis 31 1.3.3. The CES process 32 1.3.3.1. Mechanism 33 1.3.3.2. Special case of ATPsynthase 35 1.3.3.3. CES as a regulatory process 36 1.3.3.4. CES in higher plants 36 1.3.3.5. CES and anterograde regulation 37 1.3.3.6. Additional remarks 38 2. Rubisco 39 2.1. Rubisco evolution and clades 39 4 2.2. Subunits and structure (Rubisco Type I) 40 2.3. Rubisco reaction 43 2.3.1. Oxygenation 44 2.3.2. Unproductivity 45 2.3.3. Efficiency 45 2.4. Rubisco biogenesis 46 2.4.1. Expression and regulation 46 2.4.2. Folding and assembly 51 2.4.2.1. CPN60 complex 52 2.4.2.2. BSD2 53 2.4.2.3. Rubisco assembly chaperones 53 2.4.2.4. RBCX 54 2.4.2.5. RAF1 56 2.4.2.6. Comparison 58 2.4.2.7. RAF2 58 2.4.2.8. SSU folding 60 3. Interlude 60 4. Chapter I : MRL1 role in rbcL translation regulation 62 4.1. Introduction 62 4.2. Part I - Searching for new OTAFs involved in rbcL gene expression 63 4.2.1. Genetic approach: Mutagenesis 63 4.2.1.1. Negative selection screen 63 4.2.1.2. rbcL regulatory sequence drives cytosine deaminase expression 65 4.2.1.3. Mutagenesis of CRE1 66 4.2.2. Biochemical approach: Co-immunoprecipitation of MRL-HA 68 4.2.2.1. Generation of a tagged MRL1 strain 68 4.2.2.2. ImmunoPrecipitation and Mass-spectrometry 70 4.3. Part II - Is MRL1 alone? 72 4.3.1. MRL1 level limits rbcL mRNA accumulation and is required for LSU 72 4.3.2. MRL1 is a stable protein 73 4.3.3. MRL1 is required for rbcL translation 74 4.4. Discussion and perspectives 77 4.4.1. In a search of rbcL T-factor 77 4.4.2. M-factor’s dual function? 79 4.4.3. Insight in MRL1 mode of action? 79 4.4.4. MRL1, a regulator of Rubisco accumulation? 80 5 5. Chapter II - Rubisco LSU synthesis depends on its oligomerization state in Chlamydomonas reinhardtii 82 5.1. Abstract 83 5.2. Introduction 84 5.3. Results 86 5.3.1. rbcL downregulation of synthesis in Chlamydomonas RBCS mutant. 86 5.3.2. LSU initiation of translation is impaired in absence of SSU 86 5.3.3. Translation initiation is inhibited by unassembled LSU 87 5.3.4. Assembly intermediates accumulate in absence of SSU 88 5.3.5. CES regulation no longer occurs in Rubisco oligomerization mutants 89 5.3.6. Rubisco assembly intermediates in the LSU8mut oligomerization mutant reveal the LSU CES repressor 91 5.4. Discussion 92 5.4.1. LSU CES results from a negative autoregulation on translation initiation 92 5.4.2. Fate of unassembled LSU 94 5.4.3. Insights into Rubisco assembly pathway 94 5.4.4. Tentative identification of the repressor form 96 5.4.5. Evolutionary conservation of Rubisco CES process 97 5.5. Materials and Methods 98 5.6. Figure legends 101 5.6.1. Fig. 1 LSU synthesis rate and accumulation in absence of its assembly partner 101 5.6.2. Fig. 2 Swapping of rbcL regulatory sequences impairs the CES regulation 101 5.6.3. Fig. 3 Expression of cyt. f is inhibited in the absence of Rubisco small subunit 101 5.6.4. Fig. 4 CES regulation no longer occurs in the absence of LSU accumulation 102 5.6.5. Fig. 5 LSU assembly intermediates accumulate in the SSU-lacking strain 102 5.6.6. Fig. 6 LSU2 mutations alter LSU accumulation and CES regulation 102 5.6.7. Fig. 7 Disruption of LSU oligomerization alters LSU CES regulation 103 5.6.8. Sup. Fig. 1 Anti-RAF1 antibody 103 5.6.9. Sup. Fig. 2 RAF1 accumulates in the absence of LSU 103 5.6.10. Sup. Fig. 3 Close-up of the mutated residues in LSU structure 103 5.7. Bibliography 104 5.8. Figure list 107 6. Chapter III - Further exploration of limitations in Rubisco biosynthesis – Supplementary results and discussion 113 6.1. Additional results for: “Rubisco LSU synthesis depends on its oligomerization state in Chlamydomonas reinhardtii” 114 6 6.1.1. Generation of ΔRBCS;5’UTRpsaA:rbcL strain and its additional phenotype 114 6.1.2. Reporter gene accumulation is altered in ΔRBCS;5’UTRpsaA:rbcL 115 6.1.3. What happens with LSU when Rubisco assembly is perturbed? 117 6.1.4. Stability of LSU 117 6.1.5. Fractionation 118 6.1.6. EPYC1 accumulation is decreased in Rubisco deficient strains 121 6.1.7. Quantification of LSU and RAF1 levels 121 6.2. Discussion 124 6.2.1. LSU is relatively stable when chaperone-bound 124 6.2.2. Limiting steps of LSU assembly 124 6.2.3. Mutated LSU is directed to aggregates 125 6.2.4. EPYC1 accumulates in coordination with Rubisco 126 6.2.5. Conclusions from LSU and RAF1 quantifications 127 6.3. Additional comments 127 7. General discussion 129 8. Conclusions 134 9. Materials 135 10. Methods 137 10.1. Cultures 137 10.2.
Recommended publications
  • Structural Basis for the Sheddase Function of Human Meprin Β Metalloproteinase at the Plasma Membrane
    Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane Joan L. Arolasa, Claudia Broderb, Tamara Jeffersonb, Tibisay Guevaraa, Erwin E. Sterchic, Wolfram Boded, Walter Stöckere, Christoph Becker-Paulyb, and F. Xavier Gomis-Rütha,1 aProteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona Science Park, E-08028 Barcelona, Spain; bInstitute of Biochemistry, Unit for Degradomics of the Protease Web, University of Kiel, D-24118 Kiel, Germany; cInstitute of Biochemistry and Molecular Medicine, University of Berne, CH-3012 Berne, Switzerland; dArbeitsgruppe Proteinaseforschung, Max-Planck-Institute für Biochemie, D-82152 Planegg-Martinsried, Germany; and eInstitute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, D-55128 Mainz, Germany Edited by Brian W. Matthews, University of Oregon, Eugene, OR, and approved August 22, 2012 (received for review June 29, 2012) Ectodomain shedding at the cell surface is a major mechanism to proteolysis” step within the membrane (1). This is the case for the regulate the extracellular and circulatory concentration or the processing of Notch ligand Delta1 and of APP, both carried out by activities of signaling proteins at the plasma membrane. Human γ-secretase after action of an α/β-secretase (11), and for signal- meprin β is a 145-kDa disulfide-linked homodimeric multidomain peptide peptidase, which removes remnants of the secretory pro- type-I membrane metallopeptidase that sheds membrane-bound tein translocation from the endoplasmic membrane (13). cytokines and growth factors, thereby contributing to inflammatory Recently, human meprin β (Mβ) was found to specifically pro- diseases, angiogenesis, and tumor progression.
    [Show full text]
  • Protein Family Classification with Neural Networks
    Protein Family Classification with Neural Networks Timothy K. Lee Tuan Nguyen Program in Biomedical Informatics Department of Statistics Stanford University Stanford University [email protected] [email protected] Abstract Understanding protein function from amino acid sequence is a fundamental prob- lem in biology. In this project, we explore how well we can represent biological function through examination of raw sequence alone. Using a large corpus of protein sequences and their annotated protein families, we learn dense vector rep- resentations for amino acid sequences using the co-occurrence statistics of short fragments. Then, using this representation, we experiment with several neural net- work architectures to train classifiers for protein family identification. We show good performance for a multi-class prediction problem with 589 protein family classes. 1 Introduction Next-generation sequencing technologies generate large amounts of biological sequence informa- tion in the form of DNA/RNA sequences. From DNA sequences we also know the amino acid sequences of proteins, which are the fundamental molecules that perform most biological functions. The functionality of a protein is thus encoded in the amino acid sequence and understanding the sequence-function relationship is a major challenge in bioinformatics. Investigating protein func- tional often involves structural studies (crystallography) or biochemical studies, which require time consuming efforts. Protein families are defined to group together proteins that share similar function, and the aim of our project is to predict protein family from raw sequence. We focus on training infor- mative vector representations for protein sequences and investigate various neural network models for the task of predicting a protein’s family.
    [Show full text]
  • Pyruvate-Phosphate Dikinase of Oxymonads and Parabasalia and the Evolution of Pyrophosphate-Dependent Glycolysis in Anaerobic Eukaryotes† Claudio H
    EUKARYOTIC CELL, Jan. 2006, p. 148–154 Vol. 5, No. 1 1535-9778/06/$08.00ϩ0 doi:10.1128/EC.5.1.148–154.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Pyruvate-Phosphate Dikinase of Oxymonads and Parabasalia and the Evolution of Pyrophosphate-Dependent Glycolysis in Anaerobic Eukaryotes† Claudio H. Slamovits and Patrick J. Keeling* Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada Received 29 September 2005/Accepted 8 November 2005 In pyrophosphate-dependent glycolysis, the ATP/ADP-dependent enzymes phosphofructokinase (PFK) and pyruvate kinase are replaced by the pyrophosphate-dependent PFK and pyruvate phosphate dikinase (PPDK), respectively. This variant of glycolysis is widespread among bacteria, but it also occurs in a few parasitic anaerobic eukaryotes such as Giardia and Entamoeba spp. We sequenced two genes for PPDK from the amitochondriate oxymonad Streblomastix strix and found evidence for PPDK in Trichomonas vaginalis and other parabasalia, where this enzyme was thought to be absent. The Streblomastix and Giardia genes may be related to one another, but those of Entamoeba and perhaps Trichomonas are distinct and more closely related to bacterial homologues. These findings suggest that pyrophosphate-dependent glycolysis is more widespread in eukaryotes than previously thought, enzymes from the pathway coexists with ATP-dependent more often than previously thought and may be spread by lateral transfer of genes for pyrophosphate-dependent enzymes from bacteria. Adaptation to anaerobic metabolism is a complex process (PPDK), respectively (for a comparison of these reactions, see involving changes to many proteins and pathways of critical reference 21).
    [Show full text]
  • Gent Forms of Metalloproteinases in Hydra
    Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin.
    [Show full text]
  • Annotation of Glycolysis and Gluconeogenesis Pathways
    A metabolic insight into the Asian citrus psyllid: Annotation of glycolysis and gluconeogenesis pathways Blessy Tamayo, Kyle Kercher, Tom D’Elia, Helen Wiersma-Koch, Surya Saha, Teresa Shippy, Susan J. Brown, and Prashant Hosmani Introduction Glycolysis, as in other animals, is the major metabolic pathway that insects use to extract energy from carbohydrates [1]. This process consists of ten reactions that convert one molecule of glucose into two molecules of pyruvate within the cytosol, generating a net gain of two molecules of ATP. Simple carbohydrates are acquired through the insect diet and processed through glycolysis and the central carbohydrate metabolic steps. Comparative genomic analysis of Apis mellifera, Drosophila melanogaster, and Anopheles gambiae has revealed the presence of genes for metabolic pathways that support dietary habits dependent on sugar-rich substrates ([2]; [3]; [4]; [5]). In addition to processing sugars for energy, glycolysis also serves as a central pathway that serves as both a source of important precursors and destination for key intermediates from many metabolic pathways. Gluconeogenesis is the process through which glucose is synthesized from non- carbohydrate substrates, and is closely associated with glycolysis. Eleven enzymatic reactions occur during gluconeogenesis. Eight of the enzymes involved in the steps also catalyze the reverse reactions in glycolysis and the three remaining enzymes are specific to gluconeogenesis. 1 Gluconeogenesis generated carbohydrates are required as substrate for anaerobic glycolysis, synthesis of chitin, glycoproteins, polyols and glycoside detoxication products [1]. Gluconeogenesis is essential in insects to maintain sugar homeostasis and serves as the initial process towards the generation of glucose disaccharide trehalose, which is the main circulating sugar in the insect hemolymph ([6]; [7]).
    [Show full text]
  • Protein Family Classification Using Shallow and Deep Networks ABSTRACT 1 INTRODUCTION
    DeepProteomics: Protein family classification using Shallow and Deep Networks Anu Vazhayil, Vinayakumar R and Soman KP Center for Computational Engineering and Networking (CEN),Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India Email: [email protected], [email protected], kp [email protected] ABSTRACT The knowledge regarding the function of proteins is necessary as it gives a clear picture of biological processes. Nevertheless, there are many protein sequences found and added to the databases but lacks functional annotation. The laboratory experiments take a considerable amount of time for annotation of the sequences. This arises the need to use computational techniques to classify proteins based on their functions. In our work, we have collected the data from Swiss-Prot containing 40433 proteins which is grouped into 30 families. We pass it to recurrent neural network(RNN), long short term memory(LSTM) and gated recurrent unit(GRU) model and compare it by applying trigram with deep neural network and shallow neural network on the same dataset. Through this approach, we could achieve maximum of around 78% accuracy for the classification of protein families. Keywords Proteins, amino-acid sequences, machine learning, deep learning, recurrent neural network(RNN), long short term memory(LSTM), gated recurrent unit(GRU), deep neural networks 1 INTRODUCTION Proteins are considered to be essentials of life because it performs a variety of functions to sustain life. It performs DNA replication, transportation of molecules from one cell to another cell, accelerates metabolic reactions and several other important functions carried out within an organism. Proteins carry out these functions as specified by the informations encoded in the genes.
    [Show full text]
  • An Aminoacyl-Trna Synthetase Paralog with a Catalytic Role in Histidine Biosynthesis
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8985–8990, August 1999 Biochemistry An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis MARIE SISSLER*†,CHRISTINE DELORME†‡,JEFF BOND§,S.DUSKO EHRLICH‡,PIERRE RENAULT‡, AND CHRISTOPHER FRANCKLYN*§¶ *Department of Biochemistry, College of Medicine, Given Building, University of Vermont, Burlington, VT 05405; ‡Laboratoire de Ge´ne´tique Microbienne, INRA-CRJ, 78352 Jouy-en-Josas, France; and §Department of Microbiology and Molecular Genetics, Vermont Cancer Center, University of Vermont, Burlington, VT 05405 Edited by Paul R. Schimmel, The Scripps Research Institute, La Jolla, CA, and approved June 14, 1999 (received for review April 7, 1999) ABSTRACT In addition to their essential catalytic role in The further involvement of aaRS or aaRS-like proteins in protein biosynthesis, aminoacyl-tRNA synthetases participate amino acid biosynthesis is also suggested by the existence of in numerous other functions, including regulation of gene proteins that are based on the catalytic domains of an aaRS yet expression and amino acid biosynthesis via transamidation do not catalyze the aminoacylation reaction. A striking illus- pathways. Herein, we describe a class of aminoacyl-tRNA tration is the asparagine synthetase A (AsnA), whose recently synthetase-like (HisZ) proteins based on the catalytic core of solved structure contains a class II aaRS catalytic domain the contemporary class II histidyl-tRNA synthetase whose (closely related to AspRS and AsnRS). The role of AsnA is to members lack aminoacylation activity but are instead essen- convert aspartate to asparagine via an amidation reaction tial components of the first enzyme in histidine biosynthesis involving a transient aspartyl-adenylate (10).
    [Show full text]
  • Bioinformatic Protein Family Characterisation
    Linköping studies in science and technology Dissertation No. 1343 Bioinformatic protein family characterisation Joel Hedlund Department of Physics, Chemistry and Biology Linköping, 2010 1 The front cover shows a tree diagram of the relations between proteins in the MDR superfamily (papers III–IV), excluding non-eukaryotic sequences as well as four fifths of the remainder for clarity. In total, 518 out of the 16667 known members are shown, and 1.5 cm in the dendrogram represents 10 % sequence differences. The bottom bar diagram shows conservation in these sequences using the CScore algorithm from the MSAView program (papers II and V), with infrequent insertions omitted for brevity. This example illustrates the size and complexity of the MDR superfamily, and it also serves as an illuminating example of the intricacies of the field of bioinformatics as a whole, where, after scaling down and removing layer after layer of complexity, there is still always ample size and complexity left to go around. The back cover shows a schematic view of the three-dimensional structure of human class III alcohol dehydrogenase, indicating the positions of the zinc ion and NAD cofactors, as well as the Rossmann fold cofactor binding domain (red) and the GroES-like folding core of the catalytic domain (green). This thesis was typeset using LYX. Inkscape was used for figure layout. During the course of research underlying this thesis, Joel Hedlund was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. Copyright © 2010 Joel Hedlund, unless otherwise noted. All rights reserved. Joel Hedlund Bioinformatic protein family characterisation ISBN: 978-91-7393-297-4 ISSN: 0345-7524 Linköping studies in science and technology, dissertation No.
    [Show full text]
  • Independent Evolution of Polymerization in the Actin Atpase Clan Regulates Hexokinase Activity
    bioRxiv preprint doi: https://doi.org/10.1101/686915; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Independent evolution of polymerization in the Actin ATPase clan regulates hexokinase activity Patrick R Stoddard1,2, Eric M. Lynch3, Daniel P. Farrell3,4, Quincey A. Justman1,2, Annie M. Dosey3, Frank DiMaio3,4, Tom A. Williams5, Justin M. Kollman3, Andrew W. Murray1,2*, Ethan C. Garner1,2* 1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA 2 Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA 3 Department of Biochemistry, University of Washington, Seattle, WA 98195, USA 4 Institute for Protein Design, University of Washington, Seattle, WA 98195, USA 5 School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK * co-corresponding authors. Correspondence should be addressed to [email protected] (AWM) and [email protected] (ECG). One-sentence summary Yeast glucokinase activity is limited by its polymerization, which is critical for cell viability during glucose refeeding. bioRxiv preprint doi: https://doi.org/10.1101/686915; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The actin protein fold is found in cytoskeletal polymers, chaperones, and various metabolic enzymes.
    [Show full text]
  • The Mechanism of Rubisco Catalyzed Carboxylation Reaction: Chemical Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine
    catalysts Review The Mechanism of Rubisco Catalyzed Carboxylation Reaction: Chemical Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine Immacolata C. Tommasi Dipartimento di Chimica, Università di Bari Aldo Moro, 70126 Bari, Italy; [email protected] Abstract: In recent years, a great deal of attention has been paid by the scientific community to improving the efficiency of photosynthetic carbon assimilation, plant growth and biomass production in order to achieve a higher crop productivity. Therefore, the primary carboxylase enzyme of the photosynthetic process Rubisco has received considerable attention focused on many aspects of the enzyme function including protein structure, protein engineering and assembly, enzyme activation and kinetics. Based on its fundamental role in carbon assimilation Rubisco is also targeted by the CO2-fertilization effect, which is the increased rate of photosynthesis due to increasing atmospheric CO2-concentration. The aim of this review is to provide a framework, as complete as possible, of the mechanism of the RuBP carboxylation/hydration reaction including description of chemical events occurring at the enzyme “activating” and “catalytic” sites (which involve Broensted acid- base reactions) and the functioning of the complex molecular machine. Important research results achieved over the last few years providing substantial advancement in understanding the enzyme functioning will be discussed. Citation: Tommasi, I.C. The Mechanism of Rubisco Catalyzed Keywords: enzyme carboxylation reactions; enzyme acid-base catalysis; CO2-fixation; enzyme Carboxylation Reaction: Chemical reaction mechanism; potential energy profiles Aspects Involving Acid-Base Chemistry and Functioning of the Molecular Machine. Catalysts 2021, 11, 813. https://doi.org/10.3390/ 1. Introduction catal11070813 The increased amount of anthropogenic CO2 emissions since the beginning of the industrial era (starting around 1750) has significantly affected the natural biogeochemical Academic Editor: Arnaud Travert carbon cycle.
    [Show full text]
  • Members of the Rusc Protein Family Interact with Sufu and Inhibit
    © 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 3944-3955 doi:10.1242/dev.138917 RESEARCH ARTICLE Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling Zhigang Jin1, Tyler Schwend1,*, Jia Fu1, Zehua Bao2, Jing Liang2,‡, Huimin Zhao2, Wenyan Mei1 and Jing Yang1,§ ABSTRACT et al., 2004). The proper response of cells to Shh is crucial for these Hedgehog (Hh) signaling is fundamentally important for development developmental processes. and adult tissue homeostasis. It is well established that in vertebrates At the molecular level, the zinc-finger transcription factor Sufu directly binds and inhibits Gli proteins, the downstream Cubitus interruptus (Ci) and its vertebrate homologs, the mediators of Hh signaling. However, it is unclear how the inhibitory Gli proteins, act at the downstream end of the pathway to mediate function of Sufu towards Gli is regulated. Here we report that the Rusc Hh signaling in Drosophila and vertebrates, respectively. In family of proteins, the biological functions of which are poorly unstimulated cells, multiple inhibitory mechanisms act in understood, form a heterotrimeric complex with Sufu and Gli. Upon coordination to keep Ci/Gli in check. The Hh family of proteins Hh signaling, Rusc is displaced from this complex, followed by operates the pathway by relieving these inhibitory mechanisms, dissociation of Gli from Sufu. In mammalian fibroblast cells, which ultimately converts Ci and Gli into transcriptional activators knockdown of Rusc2 potentiates Hh signaling by accelerating and induces expression of Hh target genes. Interfering with these Hh signaling-induced dissociation of the Sufu-Gli protein complexes.
    [Show full text]
  • Functional Discovery and Promiscuity in the Rubisco Superfamily
    FUNCTIONAL DISCOVERY AND PROMISCUITY IN THE RUBISCO SUPERFAMILY BY BENJAMIN PAUL EHLING WARLICK DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Doctoral Committee: Professor John A. Gerlt, Chair Professor John Cronan Associate Professor Satish Nair Assistant Professor Douglas A. Mitchell i Abstract To keep pace with large scale sequencing projects that are filling sequence databases with misannotated sequences, a new method of functional annotation is necessary. The new method is called “genomic enzymology” and utilizes bioinformatics, molecular docking, microbiology, and enzymology. For a superfamily to benefit from this new strategy there must exist a set of solved functions and crystal structures. D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the carboxylation of D-ribulose 1,5-bisphosphate to yield two molecules of 3-phosphoglycerate. Currently, there are four forms of RuBisCO, three of which catalyze the canonical carboxylation reaction. Form IV RuBisCOs (also known as RuBisCO-like proteins (RLPs)) do not catalyze the carboxylation reaction and are of interest because they can provide a wealth of information on structure/function relationships of the superfamily. The work here focuses on identification of novel functions as well as determination of promiscuity in the (RuBisCO) superfamily. To identify novel functions, novel sequences were targeted for cloning, purification, and assaying. This approach was used on sequences in the family homologous to R. rubrum RLP that has a published function of 5-methylthio-D- ribulose 1-phosphate 1,3-isomerase.
    [Show full text]