V a U L T E D V P N : C O M P a R T M E N T E D V I R T U a L P R I V a T E N E T W O R K S O N T R U S T E D O P E R

Total Page:16

File Type:pdf, Size:1020Kb

V a U L T E D V P N : C O M P a R T M E N T E D V I R T U a L P R I V a T E N E T W O R K S O N T R U S T E D O P E R The following paper was originally published in the Proceedings of the 8th USENIX Security Symposium Washington, D.C., USA, August 23–26, 1999 V A U L T E D V P N : C O M P A R T M E N T E D V I R T U A L P R I V A T E N E T W O R K S O N T R U S T E D O P E R A T I N G S Y S T E M S Tse-Huong Choo THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Vaulted VPN: Compartmented Virtual Private Networks On Trusted Operating Systems Tse-Huong Choo Hewlett-Packard Laboratories, Bristol, United Kingdom Abstract be compromised if an error occurs in the network protocol stack. Virtual Private Networks for IPSec based on an intermediate packet-redirector in network-protocol This report attempts to describe another approach that stacks are becoming increasingly common for many seeks to avoid some of these issues by standard operating systems and represent a well- compartmentalizing the components of a traditional understood method for retro-fitting such systems with VPN into isolated, independent processes. In IPSec support. This report describes how a different particular, we aim to show how a more secure version design structured around a Trusted Operating System of a conventional VPN can be built to make use of the can offer better security, performance and robustness. security-features present in a trusted operating system We describe in detail an implementation of an IPSec and also satisfy the goals of high-performance and VPN consisting of a series of compartmented, robustness. concurrently executing IPSec stacks. The motivations and security-related benefits behind each design The techniques used in designing a more secure VPN decision are discussed. In addition, we show how a will typically introduce performance degradations that configuration of independent IPSec stacks based on are otherwise not present on a standard VPN-design. this design can be configured to execute in parallel For example, the general principle of reducing a for greater performance on single-threaded kernels, monolithic system to a series of smaller, trusted and how its design allows individual component- components involves added overhead in failures without affecting the system as a whole. synchronization between these components. Therefore, the issues of security and performance have 1 Introduction to be considered as inextricably linked. These two issues, together with robustness, is fundamental to There is an increasing prevalence of IPSec Virtual many of the topics presented here. Private Networks (VPNs) based around an approach of inserting a plug-in into the network protocol stack This report describes the design and operation of the of mainstream operating-systems. This plug-in Vaulted VPN, which is a software-based IPSec VPN typically redirects any incoming or outgoing network built on a slightly modified version of the HP-UX packet in order to perform IPSec-specific processing 10.24 Virtual Vault Operating System. We begin by such as encryption or decryption. This approach is describing briefly the security-features of HP-UX well understood and has been mentioned in many 10.24 relevant to the Vaulted VPN and continue by standard texts, most notably the IETF RFCs for IPSec describing the architecture and operation of the [2][3]. Vaulted VPN, followed by a security analysis of each aspect of VPN’s operation. However, this approach is not without its weaknesses. The important, but often conflicting design goals of We also show how compartmented VPNs such as the security, performance and robustness often leads to Vaulted VPN can take advantage of parallel cases where the development of one goal requires processing and how they can continue to function even trade-offs in the other. For example, placing IPSec- if some portions fail – not an unimaginable occurrence processing in the kernel or operating system level is given the many well-documented attacks using desirable performance-wise because of copy- malformed IP packets [19] [20]. This represents an avoidance of packets between kernel and user-mode unexpected level of robustness considering the spaces. However, the kernel or operating system can monolithic nature of most network protocol stacks. Although this report mentions the use of HP-UX 10.24 2.3 Least Privilege specifically as a target platform, the principles shown here could be applied to full-blown CMW platforms On a traditional UNIX system, the ability to override [9] such as HP-UX 10.26 or Sun Microsystems’ security controls rests entirely within the root-account. Trusted Solaris 2.5. On trusted systems, this all-powerful ability has been broken down into a large number of individual 2 Features of the HP-UX 10.24 Virtual privileges, each of which confers its holder the ability to perform a specific action. Every action that could Vault Operating System affect security is restricted with a named privilege, and only processes with the appropriate privileges are The target platform of the Vaulted VPN is the HP-UX allowed to perform these actions. Following the 10.24 Virtual Vault Operating System. The HP-UX principle of least privilege, this finer level of 10.24 operating system is a UNIX-style Multi-Level granularity allows specific programs to be assigned Secure (MLS) operating system that implements with the minimum-required set of privileges in order additional security-features beyond those normally for them to perform their assigned tasks. available on standard UNIX systems. It is a CMW- derived operating system [6] [9] and features the Mandatory Access Controls (MAC) and principles of 3 IPSec Protocol least-privilege found on full CMW-type systems, but differs in that it lacks the Trusted Windowing and A significant fraction of commercial VPNs are based Trusted Networking features of a full CMW-type on IPSec technology which defines the encoding of system. This section describes the security-features the encrypted IP packets. Normal unencrypted IP used by the Vaulted VPN. packets are made up of an IP-header followed by a variable length payload in clear-text which may itself 2.1 Mandatory Access Control include headers for higher-level protocols, e.g. TCP or UDP. In addition to the standard UNIX-style security features, HP-UX 10.24 also implements a Mandatory IPSec packets appear to be normal IP packets to Access Control policy based on the Bell-LaPadula switching and routing hardware, but feature internal formal model [11]. Mandatory Access Control (MAC) payloads which may be encrypted, authenticated or is a set of rules that govern how data may be accessed both. There are two formats used: the AH format [5] on the trusted system. The policy is called mandatory which allows data to be authenticated using a keyed because users cannot choose which data will be hash-function, and the ESP format [4] in which data is regulated under this policy – the trusted system encrypted and optionally authenticated, depending on enforces MAC consistently. In this model, all which encryption algorithm is selected. resources or objects in the system are given sensitivity labels, which consists of a classification and a number In addition, IPSec allows for two main modes of of compartments. Access to an object is controlled by operation, namely transport and tunnel modes. Tunnel- its sensitivity label. To have read-access, a process mode allows entire IP packets of arbitrary protocols to must have a sensitivity label which ‘dominates’ that of be encapsulated within another IP header to allow for the object being read. For write-access, the labels must authentication of the original IP packet’s header, and is match exactly. typically used in creating an encrypted tunnel between gateways. 2.2 Discretionary Access Control The IPSec protocol may be imagined to be operate at a HP-UX 10.24 has discretionary access controls (DAC) level below or at the IP-layer of network protocol which are similar to those found on standard UNIX stacks. The secret keys used to encrypt the payloads systems, specifically the read-write-execute mode-bits are derived earlier using some higher key-agreement based on user and group identities. It is most effective protocol (such as IKE [1]) or simply manually keyed. when used in conjunction with Mandatory Access Control, for example, when used to restrict access to everyone but a special pseudo-user used by specific trusted processes. 4 Vaulted VPN Architecture Since each process is placed at a given sensitivity level, and access to objects at different sensitivity- This section gives an overview of the architecture of levels is controlled strictly by the operating system the Vaulted VPN by describing the purpose and using MAC controls - one can imagine that a process function of each of its components. An explanation is at a given sensitivity-level to be in a separate given on how packets are routed in and out of the ‘compartment’ from other processes of differing kernel, where IPSec processing takes place and how levels. The term ‘compartment’ is used loosely here to Internet Key Exchange (IKE) [1] negotiations are refer to the segmentation that arises as a result of triggered to form IPSec Security-Associations. applying MAC controls to labeled objects, and does not refer explicitly to the term used in defining 4.1 Design of Conventional Bump-in-the- sensitivity-labels.
Recommended publications
  • Secure Shell Encrypt and Authenticate Remote Connections to Secure Applications and Data Across Open Networks
    Product overview OpenText Secure Shell Encrypt and authenticate remote connections to secure applications and data across open networks Comprehensive Data security is an ongoing concern for organizations. Sensitive, security across proprietary information must always be protected—at rest and networks in motion. The challenge for organizations that provide access to applications and data on host systems is keeping the data Support for Secure Shell (SSH) secure while enabling access from remote computers and devices, whether in a local or wide-area network. ™ Strong SSL/TLS OpenText Secure Shell is a comprehensive security solution that safeguards network ® encryption traffic, including internet communication, between host systems (mainframes, UNIX ™ servers and X Window System applications) and remote PCs and web browsers. When ™ ™ ™ ™ Powerful Kerberos included with OpenText Exceed or OpenText HostExplorer , it provides Secure Shell 2 (SSH-2), Secure Sockets Layer (SSL), LIPKEY and Kerberos security mechanisms to ensure authentication security for communication types, such as X11, NFS, terminal emulation (Telnet), FTP support and any TCP/IP protocol. Secure Shell encrypts data to meet the toughest standards and requirements, such as FIPS 140-2. ™ Secure Shell is an add-on product in the OpenText Connectivity suite, which encrypts application traffic across networks. It helps organizations achieve security compliance by providing Secure Shell (SSH) capabilities. Moreover, seamless integration with other products in the Connectivity suite means zero disruption to the users who remotely access data and applications from web browsers and desktop computers. Secure Shell provides support for the following standards-based security protocols: Secure Shell (SSH)—A transport protocol that allows users to log on to other computers over a network, execute commands on remote machines and securely move files from one machine to another.
    [Show full text]
  • Ipv6-Ipsec And
    IPSec and SSL Virtual Private Networks ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 29 June 2014 1 Acknowledgment p Content sourced from n Merike Kaeo of Double Shot Security n Contact: [email protected] Virtual Private Networks p Creates a secure tunnel over a public network p Any VPN is not automagically secure n You need to add security functionality to create secure VPNs n That means using firewalls for access control n And probably IPsec or SSL/TLS for confidentiality and data origin authentication 3 VPN Protocols p IPsec (Internet Protocol Security) n Open standard for VPN implementation n Operates on the network layer Other VPN Implementations p MPLS VPN n Used for large and small enterprises n Pseudowire, VPLS, VPRN p GRE Tunnel n Packet encapsulation protocol developed by Cisco n Not encrypted n Implemented with IPsec p L2TP IPsec n Uses L2TP protocol n Usually implemented along with IPsec n IPsec provides the secure channel, while L2TP provides the tunnel What is IPSec? Internet IPSec p IETF standard that enables encrypted communication between peers: n Consists of open standards for securing private communications n Network layer encryption ensuring data confidentiality, integrity, and authentication n Scales from small to very large networks What Does IPsec Provide ? p Confidentiality….many algorithms to choose from p Data integrity and source authentication n Data “signed” by sender and “signature” verified by the recipient n Modification of data can be detected by signature “verification”
    [Show full text]
  • Telnet Client 5.11 Ssh Support
    TELNET CLIENT 5.11 SSH SUPPORT This document provides This document describes how to install and configure SSH support in Wavelink Telnet Client 5.11. information on the SSH support available in Telnet Client 5.11 OVERVIEW OF SSH SUPPORT Secure Shell (SSH) is a protocol developed for transmitting private information over the Internet. SSH OVERVIEW encrypts data that is transferred over the Telnet session. • Overview of SSH The Telnet Client supports SSH version 1 and 2 and will automatically select the most secure protocol Support that the SSH server supports. • Installing Windows SSH Support This document describes the following: • Configuring the host • Installing Windows SSH support utility profile for SSH • Configuring the host profile for SSH support support • Deploying Windows • Deploying Windows SSH support to the device through Avalanche or ActiveSync SSH Support • Revision History INSTALLING WINDOWS SSH SUPPORT Installing SSH support is a two-step process. First, install SSH support on the PC from which you will deploy Telnet. Once you install SSH support on the PC, use Avalanche or ActiveSync to deploy the utility to the device. To install SSH support on your PC: 1. Obtain the installation executable for SSH support. NOTE: To obtain the Wavelink SSH support utility install, go to http://www.wavelink.com/downloads/ files/sshagreement.aspx. 2. Install SSH support on the PC from which you will deploy the Telnet Client. CONFIGURING THE HOST PROFILE FOR SSH SUPPORT SSH support is configured from the Host Profiles window of the configuration utility. NOTE: SSH is only an active option if SSH support has been installed on the PC running the Telnet Client configuration utility.
    [Show full text]
  • NSA Security-Enhanced Linux (Selinux)
    Integrating Flexible Support for Security Policies into the Linux Operating System http://www.nsa.gov/selinux Stephen D. Smalley [email protected] Information Assurance Research Group National Security Agency ■ Information Assurance Research Group ■ 1 Outline · Motivation and Background · What SELinux Provides · SELinux Status and Adoption · Ongoing and Future Development ■ Information Assurance Research Group ■ 2 Why Secure the Operating System? · Information attacks don't require a corrupt user. · Applications can be circumvented. · Must process in the clear. · Network is too far. · Hardware is too close. · End system security requires a secure OS. · Secure end-to-end transactions requires secure end systems. ■ Information Assurance Research Group ■ 3 Mandatory Access Control · A ªmissing linkº of security in current operating systems. · Defined by three major properties: ± Administratively-defined security policy. ± Control over all subjects (processes) and objects. ± Decisions based on all security-relevant information. ■ Information Assurance Research Group ■ 4 Discretionary Access Control · Existing access control mechanism of current OSes. · Limited to user identity / ownership. · Vulnerable to malicious or flawed software. · Subject to every user©s discretion (or whim). · Only distinguishes admin vs. non-admin for users. · Only supports coarse-grained privileges for programs. · Unbounded privilege escalation. ■ Information Assurance Research Group ■ 5 What can MAC offer? · Strong separation of security domains · System, application, and data integrity · Ability to limit program privileges · Processing pipeline guarantees · Authorization limits for legitimate users ■ Information Assurance Research Group ■ 6 MAC Implementation Issues · Must overcome limitations of traditional MAC ± More than just Multi-Level Security / BLP · Policy flexibility required ± One size does not fit all! · Maximize security transparency ± Compatibility for applications and existing usage.
    [Show full text]
  • Mist Teleworker ME
    MIST TELEWORKER GUIDE ​ ​ ​ ​ ​ Experience the corporate network @ home DOCUMENT OWNERS: ​ ​ ​ ​ Robert Young – [email protected] ​ Slava Dementyev – [email protected] ​ Jan Van de Laer – [email protected] ​ 1 Table of Contents Solution Overview 3 How it works 5 Configuration Steps 6 Setup Mist Edge 6 Configure and prepare the SSID 15 Enable Wired client connection via ETH1 / Module port of the AP 16 Enable Split Tunneling for the Corp SSID 17 Create a Site for Remote Office Workers 18 Claim an AP and ship it to Employee’s location 18 Troubleshooting 20 Packet Captures on the Mist Edge 23 2 Solution Overview Mist Teleworker solution leverages Mist Edge for extending a corporate network to remote office workers using an IPSEC secured L2TPv3 tunnel from a remote Mist AP. In addition, MistEdge provides an additional RadSec service to securely proxy authentication requests from remote APs to provide the same user experience as inside the office. WIth Mist Teleworker solution customers can extend their corporate WLAN to employee homes whenever they need to work remotely, providing the same level of security and access to corporate resources, while extending visibility into user network experience and streamlining IT operations even when employees are not in the office. What are the benefits of the Mist Teleworker solution with Mist Edge compared to all the other alternatives? Agility: ● Zero Touch Provisioning - no AP pre-staging required, support for flexible all home coverage with secure Mesh ● Exceptional support with minimal support - leverage Mist SLEs and Marvis Actions Security: ● Traffic Isolation - same level of traffic control as in the office.
    [Show full text]
  • Configuring Secure Shell
    Configuring Secure Shell The Secure Shell (SSH) feature is an application and a protocol that provides a secure replacement to the Berkeley r-tools. The protocol secures sessions using standard cryptographic mechanisms, and the application can be used similarly to the Berkeley rexec and rsh tools. Two versions of SSH are available: SSH Version 1 and SSH Version 2. • Finding Feature Information, page 1 • Prerequisites for Configuring Secure Shell, page 1 • Restrictions for Configuring Secure Shell, page 2 • Information about SSH, page 2 • How to Configure Secure Shell, page 5 • Configuration Examples for Secure Shell, page 16 • Additional References for Secure Shell, page 18 • Feature Information for SSH, page 18 Finding Feature Information Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required. Prerequisites for Configuring Secure Shell The following are the prerequisites for configuring the switch for secure shell (SSH): • For SSH to work, the switch needs an Rivest, Shamir, and Adleman (RSA) public/private key pair. This is the same with Secure Copy Protocol (SCP), which relies on SSH for its secure transport.
    [Show full text]
  • Networking Telnet
    IBM i Version 7.2 Networking Telnet IBM Note Before using this information and the product it supports, read the information in “Notices” on page 99. This edition applies to IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code. © Copyright International Business Machines Corporation 1998, 2013. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Telnet................................................................................................................... 1 What's new for IBM i 7.2..............................................................................................................................1 PDF file for Telnet........................................................................................................................................ 1 Telnet scenarios...........................................................................................................................................2 Telnet scenario: Telnet server configuration.........................................................................................2 Telnet scenario: Cascaded Telnet
    [Show full text]
  • Spf Based Selinux Operating System for Multimedia Applications
    International Journal of Reviews in Computing st 31 December 2011. Vol. 8 IJRIC © 2009 - 2011 IJRIC & LLS. All rights reserved. ISSN: 2076-3328 www.ijric.org E-ISSN: 2076-3336 SPF BASED SELINUX OPERATING SYSTEM FOR MULTIMEDIA APPLICATIONS 1NITISH PATHAK, 2NEELAM SHARMA 1BVICAM, GGSIPU, Delhi, India 2Department of Information Technology, Maharaja Agrasen Institute of Technology, Delhi, India E-mail: [email protected], [email protected] ABSTRACT Trusted Operating Systems, offer a number of security mechanisms that can help protect information, make a system difficult to break into, and confine attacks far better than traditional operating systems. However, this security will come at a cost, since it can degrade the performance of an operating system. This performance loss is one of the reasons why Trusted Operating Systems have not become popular. While Trusted Operating Systems offer an incredible amount of security, observations about computing workloads suggest that only some parts of the operating system security are actually necessary. Web servers are the best example. For many web servers, the majority of the information on the server is publicly readable and available on the Internet. Therefore, if a Trusted Operating System is used on a web server, any security used to secure the confidentiality of the server’s information is not necessary. Any security used to protect the confidentiality of web server data can be considered a waste of computational resources. The security needed in web servers is the security to protect the integrity of data, not the confidentiality of data. Other workloads such as multimedia or database workloads may also only need parts of the operating system security.
    [Show full text]
  • Looking Back: Addendum
    Looking Back: Addendum David Elliott Bell Abstract business environment produced by Steve Walker’s Com- puter Security Initiative.3 The picture of computer and network security painted in What we needed then and what we need now are “self- my 2005 ACSAC paper was bleak. I learned at the con- less acts of security” that lead to strong, secure commercial ference that the situation is even bleaker than it seemed. products.4 Market-driven self-interest does not result in al- We connect our most sensitive networks to less-secure net- truistic product decisions. Commercial and government ac- works using low-security products, creating high-value tar- quisitions with tight deadlines are the wrong place to ex- gets that are extremely vulnerable to sophisticated attack or pect broad-reaching initiatives for the common good. Gov- subversion. Only systems of the highest security are suffi- ernment must champion selfless acts of security separately cient to thwart such attacks and subversions. The environ- from acquisitions. ment for commercial security products can be made healthy again. 3 NSA Has the Mission In 1981, the Computer Security Evaluation Center was 1 Introduction established at the National Security Agency (NSA). It was charged with publishing technical standards for evaluating In the preparation of a recent ACSAC paper [1], I con- trusted computer systems, with evaluating commercial and firmed my opinion that computer and network security is in GOTS products, and with maintaining an Evaluated Prod- sad shape. I also made the editorial decision to soft-pedal ucts List (EPL) of products successfully evaluated. NSA criticism of my alma mater, the National Security Agency.
    [Show full text]
  • The State of the Authenticated Encryption 1
    Ø Ñ ÅØÑØÐ ÈÙ ÐØÓÒ× DOI: 10.1515/tmmp-2016-0038 Tatra Mt. Math. Publ. 67 (2016), 167–190 THE STATE OF THE AUTHENTICATED ENCRYPTION Damian Vizar´ ABSTRACT. Ensuring confidentiality and integrity of communication remains among the most important goals of cryptography. The notion of authenticated encryption marries these two security goals in a single symmetric-key, crypto- graphic primitive. A lot of effort has been invested in authenticated encryption during the fifteen years of its existence. The recent Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) has boosted the research activity in this area even more. As a result, the area of authenticated encryption boasts numerous results, both theoretically and practically oriented, and perhaps even greater number of constructions of authenticated encryption schemes. We explore the current landscape of results on authenticated encryption. We review the CEASAR competition and its candidates, the most popular con- struction principles, and various design goals for authenticated encryption, many of which appeared during the CAESAR competition. We also take a closer look at the candidate Offset Merkle-Damg˚ard (OMD). 1. Introduction Perhaps the two most fundamental goals of symmetric-key cryptography are providing confidentiality (privacy) and authenticity (together with integrity1) of messages that are being sent over an insecure channel. These two security properties of communication have traditionally been studied separately; they were formalized in separate notions [13], [14], and achieved by separate primitives (e.g., CBC mode for confidentiality and CBCMAC for authentication). c 2016 Mathematical Institute, Slovak Academy of Sciences. 2010 M a t h e m a t i c s Subject Classification: 94A60.
    [Show full text]
  • SOCKS Protocol Version 6
    SOCKS Protocol Version 6 draft-olteanu-intarea-socks-6-08 Vladimir Olteanu IETF 106 What’s new ● DNS provided by SOCKS ● Options for Happy Eyeballs at the proxy Clients need DNS-like features ● A and AAAA – LD_PRELOAD for non-SOCKS-aware apps: gedaddrinfo() separate from connect() – Happy Eyeballs: need to do queries separately ● TXT – ESNI ● MX, Service Binding, etc. – <Insert future use case here> Providing DNS-like features ● Individual SOCKS options (removed in -08) – Have to keep up with use cases – Duplicate DNS functionality – Until -07: A, AAAA, PTR ● Having the client use DNS – Hard to convey policies: resolver IPs, plaintext / over TLS / over HTTPS etc., maybe credentials, etc. – Provide a DNS proxy Why not separate DNS from SOCKS? Client Proxy Server HTTP/SOCKS :1080 HTTP :80 DNS :53 Why not separate DNS from SOCKS? Client Proxy Server HTTP/SOCKS :1080 HTTP :80 DNS :53 WHICH TOR CIRCUIT? ● Need context for DNS query – Otherwise: privacy leaks, suboptimal CDN use DNS provided by SOCKS ● Clients make CONNECT request to 0.0.0.0:53 – Proxy needn’t provide a valid bind address ● Plaintext DNS over SOCKS (opt. over TLS) – TCP by default: SOCKS + UDP more cumbersome to use ● Implementation in Sixtysocks – Run separate DNS proxy locally – Translate 0.0.0.0:53 to 127.0.0.1:53 Happy Eyeballs ● RFC 8305: resolve and connect to a server using both IPv4 and IPv6, keep only one connection – Failover from IPv6 to IPv4 – Better responsiveness if one is faster ● Clients can implement Happy Eyeballs locally – Have DNS + CONNECT Happy Eyeballs:
    [Show full text]
  • How Secure Is Textsecure?
    How Secure is TextSecure? Tilman Frosch∗y, Christian Mainkay, Christoph Badery, Florian Bergsmay,Jorg¨ Schwenky, Thorsten Holzy ∗G DATA Advanced Analytics GmbH firstname.lastname @gdata.de f g yHorst Gortz¨ Institute for IT-Security Ruhr University Bochum firstname.lastname @rub.de f g Abstract—Instant Messaging has gained popularity by users without providing any kind of authentication. Today, many for both private and business communication as low-cost clients implement only client-to-server encryption via TLS, short message replacement on mobile devices. However, until although security mechanisms like Off the Record (OTR) recently, most mobile messaging apps did not protect confi- communication [3] or SCIMP [4] providing end-to-end con- dentiality or integrity of the messages. fidentiality and integrity are available. Press releases about mass surveillance performed by intelli- With the advent of smartphones, low-cost short-message gence services such as NSA and GCHQ motivated many people alternatives that use the data channel to communicate, to use alternative messaging solutions to preserve the security gained popularity. However, in the context of mobile ap- and privacy of their communication on the Internet. Initially plications, the assumption of classical instant messaging, fueled by Facebook’s acquisition of the hugely popular mobile for instance, that both parties are online at the time the messaging app WHATSAPP, alternatives claiming to provide conversation takes place, is no longer necessarily valid. secure communication experienced a significant increase of new Instead, the mobile context requires solutions that allow for users. asynchronous communication, where a party may be offline A messaging app that claims to provide secure instant for a prolonged time.
    [Show full text]