Trig Without Tears
Total Page:16
File Type:pdf, Size:1020Kb
Contents: Trig without Tears Trig without Tears or, How to Remember Those Trig Identities.................................................................1 About This PDF Version.........................................................................................................................1 Part 1 of Trig without Tears.............................................................................................................................2 Introduction..............................................................................................................................................2 Other math sites..........................................................................................................................2 About this document...................................................................................................................2 The Basic Two: Sine and Cosine.............................................................................................................3 Expressions for lengths of sides..................................................................................................4 Negative angles and supplementary angles................................................................................4 The Other Four:Tangent, Cotangent, Secant, Cosecant...........................................................................5 Part 2 of Trig without Tears..............................................................................................................................8 Trig Functions of Special Angles............................................................................................................8 The "Squared" Identities..........................................................................................................................9 Sums and Differences of Angles............................................................................................................10 Euler's formula..........................................................................................................................11 Sine and cosine of a sum...........................................................................................................11 Sine and cosine of a difference.................................................................................................12 Some geometric proofs.............................................................................................................12 Tangent of a sum or difference.................................................................................................12 Part 3 of Trig without Tears...........................................................................................................................14 Double Angles and Half Angles............................................................................................................14 Sine and cosine of a double angle.............................................................................................14 Tangent of a double angle.........................................................................................................14 Sine and cosine of half angles...................................................................................................15 Tangent of a half angle.............................................................................................................15 Part 4 of Trig without Tears............................................................................................................................17 Solving Triangles...................................................................................................................................17 Law of sines..............................................................................................................................18 Law of cosines..........................................................................................................................20 Detective work: solving all types of triangles..........................................................................22 Part 5 of Trig without Tears............................................................................................................................25 Inverse Functions...................................................................................................................................25 Principal values.........................................................................................................................25 Functions of arc functions.........................................................................................................26 Arc functions of functions........................................................................................................28 Notes to Trig without Tears.............................................................................................................................31 Notation.................................................................................................................................................31 Interval Notation.......................................................................................................................31 The Problem with Memorizing..............................................................................................................31 Proof of Euler's Formula........................................................................................................................32 Roots of a Complex Number.................................................................................................................33 Logarithm of a Negative Number..........................................................................................................34 Cool Proof of Double−Angle Formulas.................................................................................................35 Contents: Trig without Tears Great Book on Problem Solving............................................................................................................35 Musings on the Law of Cosines.............................................................................................................36 Revision History....................................................................................................................................36 Trig without Tears or, How to Remember Those Trig Identities revised 18 Dec 2000 Copyright © 1997−2000 Stan Brown, Oak Road Systems You're welcome to print copies of this page for your own use, and to link from your own Web pages to this page. But please don't make any electronic copies and publish them on your Web page or elsewhere. About This PDF Version This document is the PDF version of the HTML one published at http://oakroadsystems.com/math/. Please check there to see whether there is a newer version of this document. The HTML==>PDF conversion was done using the free HTMLDOC program available at http://www.easysw.com/htmldoc/. One nice feature of HTMLDOC is that it preserves all the hyperlinks in this document. Though I make these pages available in this form without charge, I still retain copyright in them and you may not sell them or distribute them without my permission. this page: http://oakroadsystems.com/math/trig0.htm Was this page useful? You might want to look at my other math pages. 1 Part 1 of Trig without Tears revised 18 Dec 2000 Copyright © 1997−2000 Stan Brown, Oak Road Systems Introduction Trigonometry is a fascinating subject −− or, at least, it can be. It has lots of obvious practical uses, some of which are actually taught in the usual trig course. And the computations aren't difficult, now that we have calculators. Would you believe that when I studied trig, back when dinosaurs ruled the earth (actually, in the 1960s), to solve any problem we had to look up function values in long tables in the back of the book, and then multiply or divide those five−place decimals by hand? The "better" books even included tables of logs of the trig functions, so that we could save work by adding and subtracting five−place decimals instead of multiplying and dividing them. My College Outline Series trig book covered all of plane and spherical trigonometry in 188 pages −− but then needed an additional 138 pages for the necessary tables! So calculators have freed us from tedious computation. But there's still one big stumbling block in the way many trig courses are taught: all those identities. They're just too much to memorize. (Many students despair of understanding what's going on, so they just try to memorize everything and hope for the best at exam time.) Is it tan²A + sec²A = 1 or tan²A = sec ²A + 1? (Actually, it's neither −− see (14)!) Fortunately, you don't have to memorize them. This paper shows you the few that you do need to memorize, and how you can produce the others as needed. I'll present some ideas of my own, and a wonderful insight by W.W. Sawyer. (You can read some ideas of mine on the pros and cons of memorizing, if you like.) Other math sites There are a number of math sites out there: some are good, some less good. I've collected a dozen or so that you may find useful. About this document I believe my notation should be self explanatory. But if you're puzzled, please take a look at my notes on notation. By the way, I love explaining things but sometimes I go on a bit too long. So I've put some