Stonyc 1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Stonyc 1.Pdf Development and Application of Next-Generation Sequencing Methods to Profile Cellular Translational Dynamics by Sang Young Chun A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2018 Doctoral Committee: Assistant Professor Ryan E. Mills, Chair Assistant Professor Jeffrey M. Kidd Professor Mats Ljungman Professor Alexey I. Nesvizhskii Associate Professor Peter K. Todd Sang Young Chun [email protected] ORCID id: 0000-0002-4954-9446 © Sang Young Chun 2018 All Rights Reserved For my family. ii ACKNOWLEDGEMENTS Foremost, I would like to thank my advisor Ryan Mills whose guidance, support and mentorship were instrumental to my professional development. Moreover, I am deeply appreciative of his enthusiasm for video games and other esotery that provided needed respite from the stresses of research. I am especially grateful for the advice and insight provided by my committee members, Jeff Kidd, Mats Ljungman, Alexey Nesvizhskii, and Peter Todd. In addition, I would like to express my deepest gratitude to my former graduate advisors, Arul Chinnaiyan and John Kim, whose guidance and advice were critical to my early development as a graduate student. Finally, I am thankful for my past mentors, Hye Sook Kim, Susan Lyons, Duyen Dang, and Long Dang, their advice and support helped spark my interest in bioinformatics. I am indebted to the many colleagues and collaborators that I have had the privilege to work with over my graduate research career. From the Todd lab, I am grateful for the insight and expertise provided by Caitlin Rodriguez, her collaboration has informed much of my thesis. From the Chinnaiyan lab, I am especially thankful for the guidance provided by Catie Grasso, she helped me understand that efficient programming and lazy programming are often the same. I am also thankful to Mallory Freeberg from the Kim lab for her peer mentorship and support early in my graduate student career; in many ways, she served as a model for what I had aspired to achieve as a bioinformatician and student. I am also grateful for the guidance and support of Kim lab members Amelia Alessi, Allison Billi, Amanda Day, Vishal Khivansara, Arun Manoharan, Natasha Weiser, and Danny Yang. From the Mills lab, I had the distinct privilege to work alongside great iii researchers, compatriots, and friends. I would like to thank Gargi Dayama and Arthur Zhou for making clear the importance of learning to plot outside of Excel. I am thankful to Xuefang Zhao for leading the way as the first student to graduate from the lab, and her ever-present humor. I am grateful to Yifan Wang for being an inferior D.va main, and for establishing the tail end of the distribution for Mills lab time-to-doctorate. I would also like to thank Marcus Sherman for his guidance on all things Python, Alex Weber for her good-natured patience at my jokes, and Catherine Barnier for absolutely not being a Fire Noodles challenge cheater. Finally, I am thankful to have worked alongside Akima George, Nan Lin, Chen Sun, Fan Zhang, and Zhenning Zhang. I am extremely grateful for Brian Athey and his enthusiastic support over the years, as well as Margit Burmeister and Dan Burns; as a longtime student, I was able to experience firsthand how their devotion to the success of their students, like myself, led to the growth of the department to what it is today. In addition, I would like to thank Jeff de Wet for guiding my first steps as a programmer, and Julia Eussen for her tireless advocacy and enthusiasm. I would also like to take a moment to acknowledge the many friends that I made through my time at Michigan. I am especially grateful for the support of my friends Craig Biwer, Mallory Freeberg, Kathryn Iverson, Sunit Jain, Marianne Juarez, Andy Kong, Lisa LaPointe, Datta Mellacheruvu, Bryan Moyers, Arji Mufti, Lee Sam, Conner Sandefur, Avinash Shanmugam, Kraig Stevenson, Brendan Veeneman, Artur Veloso, Amanda Wilkinson, John Wilkinson, and Casey Wright. Finally, I would like to thank my friends and family, without whose love and support none of this journey would have been possible. My partners in crime, Aash Bhatt, Matthew Jonovich, Jeff Keeler, Rod Rahimi, and Andrew Woodrow. My parents John and Keum Chun, my sister Jamie Chun, and my brother Danny Chun and his wife Brandie. Most importantly, my family Erin Chun, Elijah Chun, and Eleanor Chun: thank you. iv TABLE OF CONTENTS DEDICATION ................................................................................................................................ ii ACKNOWLEDGEMENTS ........................................................................................................... iii LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES ....................................................................................................................... viii LIST OF APPENDICES ................................................................................................................ ix LIST OF ABBREVIATIONS ..........................................................................................................x ABSTRACT ................................................................................................................................. xiii CHAPTER 1: INTRODUCTION ....................................................................................................1 CHAPTER 2: SPECTRAL PROFILING OF UORF TRANSLATION IN NON- DIFFERENTIATED AND DIFFERENTIATED NEUROBLASTOMA CELLS ..................22 CHAPTER 3: TRANSLATIONAL PROFILING OF UORFS IN A CELLULAR MODEL OF NEURONAL DIFFERENTIATION .......................................................................................35 CHAPTER 4: INTEGRATED PROFILING OF CHIMERIC JUNCTIONS WITH RIBOSOME ASSOCIATED TRANSLATION IN PROSTATE CANCER ................................................72 CHAPTER 5: CONCLUDING REMARKS AND FUTURE DIRECTIONS ..............................95 APPENDICES ............................................................................................................................103 LITERATURE CITED ................................................................................................................142 v LIST OF FIGURES Figure 1.1 Gene expression and protein synthesis regulation ...................................................... 20 Figure 1.2 Adjustment of RPF alignment position ...................................................................... 21 Figure 2.1 SPECtre pipeline and tri-nucleotide periodicity ......................................................... 31 Figure 2.2 Comparative analysis of SPECtre against previously published methods ................. 32 Figure 2.3 Examples of SPECtre results and runtime comparison to RiboTaper ........................ 34 Figure 3.1 Retinoic acid treatment induces neuronal differentiation of SH-SY5Y cells ............. 59 Figure 3.2 Differential translation and translational efficiency in SH-SY5Y cells ..................... 61 Figure 3.3 Computational prediction and filtering of upstream-initiated ORFs .......................... 64 Figure 3.4 Characterization of predicted ORFs ........................................................................... 65 Figure 3.5 Validation of SPECtre scored upstream-initiated ORFs ............................................ 66 Figure 3.6 Translational efficiency of CDS with predicted uORFs ............................................. 68 Figure 3.7 Characterization of predicted ORF regulation and downstream CDS ....................... 70 Figure 4.1 Schematic of the juncRAT alignment and analytical pipeline. .................................. 86 Figure 4.2 Integrative chimeric gene fusion breakpoint alignment ............................................. 87 Figure 4.3 Paired-end library support of STAR-FUSION events ................................................ 88 Figure 4.4 Number of spanning reads by breakpoint source and profiling method ..................... 89 Figure 4.5 Coverage over the ETV1-HNRNPA2B1 breakpoint junction ................................... 90 Figure 4.6 Coverage over the TXRND1-UTP20 breakpoint junction ......................................... 91 Figure 4.7 Coverage over the ETV1-ACSL3 breakpoint junction .............................................. 92 Figure 4.8 Coverage over the CCT7-DYNC1H1 breakpoint junction ........................................ 93 Figure 4.9 Ribosome profiling validation of junction translation ................................................ 94 Figure A.1. Read length distribution of RPFs aligned to ACTB in mESC................................ 118 Figure A.2. Distribution of SPECtre scores over ACTB after weighted re-sampling ............... 119 Figure B.1 Molecular function gene set enrichment based on mRNA rank-change analysis ... 125 Figure B.2 Cellular component gene set enrichment based on mRNA rank-change analysis ... 126 Figure B.3 Enrichment of up-regulated gene sets based on DE analysis of RPF counts........... 127 Figure B.4 Enrichment of down-regulated gene sets based on DE analysis of RPF counts ...... 128 vi Figure B.5 Molecular function gene set enrichment based on translational efficiency ............. 129 Figure B.6 Cellular component gene set enrichment based on translational efficiency ............ 130 vii LIST OF TABLES Table A.1. Number of reads remaining at each stage of
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Neurogenic Decisions Require a Cell Cycle Independent Function of The
    RESEARCH ARTICLE Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase Fre´ de´ ric Bonnet1†, Angie Molina1†, Me´ lanie Roussat1, Manon Azais2, Sophie Bel-Vialar1, Jacques Gautrais2, Fabienne Pituello1*, Eric Agius1* 1Centre de Biologie du De´veloppement, Centre de Biologie Inte´grative, Universite´ de Toulouse, CNRS, UPS, Toulouse, France; 2Centre de Recherches sur la Cognition Animale, Centre de Biologie Inte´grative., Universite´ de Toulouse, CNRS, UPS, Toulouse, France Abstract A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent *For correspondence: of its action on the cell cycle. [email protected] (FP); [email protected] (EA) †These authors contributed equally to this work Introduction In multicellular organisms, managing the development, homeostasis and regeneration of tissues Competing interests: The requires the tight control of self-renewal and differentiation of stem/progenitor cells.
    [Show full text]
  • On Cellular Automaton Approaches to Modeling Biological Cells
    ON CELLULAR AUTOMATON APPROACHES TO MODELING BIOLOGICAL CELLS MARK S. ALBER∗, MARIA A. KISKOWSKIy , JAMES A. GLAZIERz , AND YI JIANGx Abstract. We discuss two different types of Cellular Automata (CA): lattice-gas- based cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling. LGCA were originally developed for modeling ideal gases and fluids. We describe several extensions of the classical LGCA model to self-driven biological cells. In partic- ular, we review recent models for rippling in myxobacteria, cell aggregation, swarming, and limb bud formation. These LGCA-based models show the versatility of CA in modeling and their utility in addressing basic biological questions. The CPM is a more sophisticated CA, which describes individual cells as extended objects of variable shape. We review various extensions to the original Potts model and describe their application to morphogenesis; the development of a complex spatial struc- ture by a collection of cells. We focus on three phenomena: cell sorting in aggregates of embryonic chicken cells, morphological development of the slime mold Dictyostelium discoideum and avascular tumor growth. These models include intercellular and extra- cellular interactions, as well as cell growth and death. 1. Introduction. Cellular automata (CA) consist of discrete agents or particles, which occupy some or all sites of a regular lattice. These par- ticles have one or more internal state variables (which may be discrete or continuous) and a set of rules describing the evolution of their state and position (in older models, particles usually occupied all lattice sites, one particle per node, and did not move).
    [Show full text]
  • Proteomic and Bioinformatic Investigation of Altered Pathways in Neuroglobin-Deficient Breast Cancer Cells
    molecules Article Proteomic and Bioinformatic Investigation of Altered Pathways in Neuroglobin-Deficient Breast Cancer Cells Michele Costanzo 1,2 , Marco Fiocchetti 3 , Paolo Ascenzi 3, Maria Marino 3 , Marianna Caterino 1,2,* and Margherita Ruoppolo 1,2,* 1 Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; [email protected] 2 CEINGE—Biotecnologie Avanzate S.C.Ar.L., 80145 Naples, Italy 3 Department of Science, University Roma Tre, 00146 Rome, Italy; marco.fi[email protected] (M.F.); [email protected] (P.A.); [email protected] (M.M.) * Correspondence: [email protected] (M.C.); [email protected] (M.R.) Abstract: Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17β-estradiol (E2) and H2O2. However, the molecular bases of NGB’s functions remain undefined, mainly in non- neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography–tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification Citation: Costanzo, M.; Fiocchetti, of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was M.; Ascenzi, P.; Marino, M.; Caterino, M.; Ruoppolo, M.
    [Show full text]
  • Increased Processing of SINE B2 Ncrnas Unveils a Novel Type Of
    RESEARCH ARTICLE Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology Yubo Cheng1,2,3,4†, Luke Saville1,2,3,4†, Babita Gollen1,2,3,4†, Christopher Isaac1,2,3,4†, Abel Belay1,2,3,4, Jogender Mehla3, Kush Patel1,2,3, Nehal Thakor1,2,3, Majid H Mohajerani3, Athanasios Zovoilis1,2,3,4* 1Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada; 2Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Canada; 3Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada; 4Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Canada Abstract The functional importance of many non-coding RNAs (ncRNAs) generated by repetitive elements and their connection with pathologic processes remains elusive. B2 RNAs, a class of ncRNAs of the B2 family of SINE repeats, mediate through their processing the transcriptional activation of various genes in response to stress. Here, we show that this response is dysfunctional during amyloid beta toxicity and pathology in the mouse hippocampus due to increased levels of B2 RNA processing, leading to constitutively elevated B2 RNA target gene expression and high Trp53 levels. Evidence indicates that Hsf1, a master regulator of stress response, mediates B2 RNA *For correspondence: processing in hippocampal cells and is activated during amyloid toxicity, accelerating the [email protected] processing of SINE RNAs and gene hyper-activation. Our study reveals that in mouse, SINE RNAs † constitute a novel pathway deregulated in amyloid beta pathology, with potential implications for These authors contributed equally to this work similar cases in the human brain, such as Alzheimer’s disease (AD).
    [Show full text]
  • Genetic Algorithms and Their Application to In-Silico Evolution of Genetic Regulatory Networks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Hertfordshire Research Archive Genetic Algorithms and their Application to in-silico Evolution of Genetic Regulatory Networks Johannes F. Knabe‡†, Katja Wegner†, Chrystopher L. Nehaniv‡†, and Maria J. Schilstra†* †Biological and Neural Computation Laboratory, and ‡Adaptive Systems Research Group, STRI, University of Hertfordshire, Hatfield, AL10 9AB United Kingdom *To whom correspondence should be addressed ([email protected]) i. Abstract A genetic algorithm (GA) is a procedure that mimics processes occurring in Darwinian evolution to solve computational problems. A GA introduces variation through “mutation” and “recombination” in a “population” of possible solutions to a problem, encoded as strings of characters in “genomes”, and allows this population to evolve, using selection procedures that favor the gradual enrichment of the gene pool with the genomes of the “fitter” individuals. GA’s are particularly suitable for optimization problems in which an effective system design or set of parameter values is sought. In nature, genetic regulatory networks (GRN’s) form the basic control layer in the regulation of gene expression levels. GRN’s are composed of regulatory interactions between genes and their gene products, and are, inter alia, at the basis of the development of single fertilized cells into fully grown organisms. This paper describes how GA’s may be applied to find functional regulatory schemes and parameter values for models that capture the fundamental GRN characteristics. The central ideas behind evolutionary computation and GRN modeling, and the considerations in GA design and use are discussed, and illustrated with an extended example.
    [Show full text]
  • Self-Reproduction Based on Turing Machines
    MEASURES OF ORGANIZATION IN A MODEL OF CELLULAR SELF-REPRODUCTION BASED ON TURING MACHINES WALTER R. STAHL OREGON REGIONAL PRIMATE RESEARCH CENTER BEAVERTON, OREGON 1. Introductory summary The late John von Neumann first realized that self-reproduction, as observed in biological systems, was a legitimate problem of mathematics, specifically of automata and algorithm theory. He founded the study of self-reproduction in systems of "natural automata." This report deals with the self-organizing prop- erties of a new type of cellular self-reproduction model. The action of enzymes is simulated by Turing machines acting as molecular automata or computers, with their highly standardized coding corresponding to genes of the cell. Com- puter experiments have been done to test the stability and logical homeostatic properties of a 36 gene cell model. It is shown that the system will continue to organize itself and reproduce in spite of a variety of environmental deficiencies and disturbances, and also to repair itself after certain kinds of injury. The most pertinent organizational criteria for the described model are amounts of "energy" and "time cycles" needed to reach maturity and reproduce. Comparisons are drawn between these organizational measures and thermodynamic informa- tional parameters such as Gibbsean chemical potential and entropy. The total amount of genetic and cellular information can be quantified in the cell model and this helps clarify some confusing aspects of genetic information measures. The model is highly idealized. It bears somewhat the same relationship to real cells as computer circuits do to the brain, but shows that automata theory can be applied to molecular biology in a meaningful way.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Metabolic Network Modeling with Model Organisms
    Available online at www.sciencedirect.com ScienceDirect Metabolic network modeling with model organisms L Safak Yilmaz and Albertha JM Walhout Flux balance analysis (FBA) with genome-scale metabolic reconstruct a genome-scale metabolic network model network models (GSMNM) allows systems level predictions of (GSMNM), which is then used to calculate the flux metabolism in a variety of organisms. Different types of distribution over the entire network in any defined con- predictions with different accuracy levels can be made dition for the organism (see below). For model organisms, depending on the applied experimental constraints ranging high-quality genomic annotations allow the reconstruc- from measurement of exchange fluxes to the integration of tion of comprehensive GSMNMs that can be parame- gene expression data. Metabolic network modeling with model terized and validated with publically available experi- organisms has pioneered method development in this field. In mental datasets. In addition, since many properties of addition, model organism GSMNMs are useful for basic metabolic networks are conserved across taxa, model understanding of metabolism, and in the case of animal organism GSMNMs can be used to study human disease models, for the study of metabolic human diseases. Here, we with animal models, while plant models can instruct discuss GSMNMs of most highly used model organisms with agriculture. the emphasis on recent reconstructions. Here, we first summarize the basics of genome-scale meta- Address bolic network modeling, and then explore GSMNMs Program in Systems Biology, Program in Molecular Medicine, University and their applications in common model organisms [3] of Massachusetts Medical School, Worcester, MA, United States (Figure 1).
    [Show full text]
  • Multicellular Models Bridging Intracellular Signaling and Gene Transcription to Population Dynamics
    processes Article Multicellular Models Bridging Intracellular Signaling and Gene Transcription to Population Dynamics Mohammad Aminul Islam 1,† , Satyaki Roy 2,†, Sajal K. Das 2 and Dipak Barua 1,* 1 Department of Chemical and Biochemial Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA; [email protected] 2 Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409, USA; [email protected] (S.R.); [email protected] (S.K.D.) * Correspondence: [email protected]; Tel.: +1-573-341-7560 † These authors contributed equally to this work. Received: 26 July 2018; Accepted: 31 October 2018; Published: 4 Novemeber 2018 Abstract: Cell signaling and gene transcription occur at faster time scales compared to cellular death, division, and evolution. Bridging these multiscale events in a model is computationally challenging. We introduce a framework for the systematic development of multiscale cell population models. Using message passing interface (MPI) parallelism, the framework creates a population model from a single-cell biochemical network model. It launches parallel simulations on a single-cell model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and cell-to-environment communications in a server-client fashion. In the framework, model-specific higher level rules link the intracellular molecular events to cellular functions, such as death, division, or phenotype change. Cell death is implemented by terminating a parallel process, while cell division is carried out by creating a new process (daughter cell) from an existing one (mother cell). We first demonstrate these capabilities by creating two simple example models. In one model, we consider a relatively simple scenario where cells can evolve independently.
    [Show full text]
  • Multisite Mechanisms for Ultrasensitivity in Signal Transduction
    Noname manuscript No. (will be inserted by the editor) Multisite Mechanisms for Ultrasensitivity in Signal Transduction Germ´an A. Enciso the date of receipt and acceptance should be inserted later Abstract One of the key aspects in the study of cellular communication is understanding how cells receive a continuous input and transform it into a discrete, all-or-none output. Such so-called ultrasensitive dose responses can also be used in a variety of other contexts, from the efficient transport of oxygen in the blood to the regulation of the cell cycle and gene expression. This chapter provides a self contained mathematical review of the most important molecular models of ultrasensitivity in the literature, with an emphasis on mechanisms involving multisite modifications. The models described include two deeply influential systems based on allosteric behavior, the MWC and the KNF models. Also included is a description of more recent work by the author and colleagues of novel mechanisms using alternative hypotheses to create ultrasensitive behavior. Keywords Systems Biology · Ultrasensitivity · Allostery · Cooperativity · Signal Transduction 1 Introduction: Ultrasensitive Dose Responses Chemical reaction networks (CRN) lie at the heart of many biochemical pro- cesses inside the cell. They have been extensively modeled to understand the behavior of specific systems, and they have also been systematically studied at the theoretical level [5,14,21]. Although often implicitly assumed to con- verge globally towards a unique equilibrium in chemical engineering and other applications, CRNs can have exceedingly complex dynamical behavior. More- over, many biological systems have arguably evolved towards precisely such relatively rare complex examples, driven by a need to exhibit behaviors such as oscillations (e.g.
    [Show full text]
  • Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults
    Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults Audrey E. Fischer, Emily P. English, Julia B. Patrone, Kathlyn Santos, Jody B. G. Proescher, Rachel S. Quizon, Kelly A. Van Houten, Robert S. Pilato, Eric J. Van Gieson, and Lucy M. Carruth e performed a pilot study to characterize the molecular, cellular, and whole-organism response to nonlethal chemical agent exposure in the central nervous system. Multiple methodologies were applied to measure in vitro enzyme inhibition, neuronal cell pathway signaling, and in vivo zebrafish neural development in response to challenge with two different classes of chemical compounds. While all compounds tested exhibited expected enzyme inhibitory activity against acetylcholinesterase (AChE), a well-characterized target of chemical agents, distinct differences between chemical exposures were detected in cellular toxicity and pathway target responses and were tested in a zebrafish model. Some of these differences have not been detected using conventional chemical toxicity screening methods. Taken together, the data demonstrate the potential value of an integrated, multimethodological approach for improved target and pathway identification for subsequent diagnostic and therapeutic biomarker development. INTRODUCTION To build capability and leverage new and growing cell models to complete living organisms. Regardless of biology and chemistry expertise at APL, a collabora- the model selected, challenges exist in sample collection, tive, cross-departmental effort was established through a dose determination, and biases inherent in each assay/ series of related independent research and development technology. Therefore, multiple experimental methodol- (IR&D) projects. The focus of this effort was on mitiga- ogies brought to bear on a particular biological question tion of chemical and biological threat agents.
    [Show full text]