Einstein's Clocks: the Place of Time Author(S): Peter Galison Source: Critical Inquiry, Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abraham-Solution to Schwarzschild Metric Implies That CERN Miniblack Holes Pose a Planetary Risk
Abraham-Solution to Schwarzschild Metric Implies That CERN Miniblack Holes Pose a Planetary Risk O.E. Rössler Division of Theoretical Chemistry, University of Tübingen, 72076 F.R.G. Abstract A recent mathematical re-interpretation of the Schwarzschild solution to the Einstein equations implies global constancy of the speed of light c in fulfilment of a 1912 proposal of Max Abraham. As a consequence, the horizon lies at the end of an infinitely long funnel in spacetime. Hence black holes lack evaporation and charge. Both features affect the behavior of miniblack holes as are expected to be produced soon at the Large Hadron Collider at CERN. The implied nonlinearity enables the “quasar-scaling conjecture.“ The latter implies that an earthbound minihole turns into a planet-eating attractor much earlier than previously calculated – not after millions of years of linear growth but after months of nonlinear growth. A way to turn the almost disaster into a planetary bonus is suggested. (September 27, 2007) “Mont blanc and black holes: a winter fairy-tale.“ What is being referred to is the greatest and most expensive and potentially most important experiment of history: to create miniblack holes [1]. The hoped-for miniholes are only 10–32 cm large – as small compared to an atom (10–8 cm) as the latter is to the whole solar system (1016 cm) – and are expected to “evaporate“ within less than a picosecond while leaving behind a much hoped-for “signature“ of secondary particles [1]. The first (and then one per second and a million per year) miniblack hole is expected to be produced in 2008 at the Large Hadron Collider of CERN near Geneva on the lake not far from the white mountain. -
Philosophy of Social Science
Philosophy of Social Science Philosophy of Social Science A New Introduction Edited by Nancy Cartwright and Eleonora Montuschi 1 1 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © The several contributors 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2014938929 ISBN 978–0–19–964509–1 (hbk.) ISBN 978–0–19–964510–7 (pbk.) Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation
JOHN D. NORTON EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE OF SCALAR, LORENTZ COVARIANT THEORIES OF GRAVITATION 1. INTRODUCTION The advent of the special theory of relativity in 1905 brought many problems for the physics community. One, it seemed, would not be a great source of trouble. It was the problem of reconciling Newtonian gravitation theory with the new theory of space and time. Indeed it seemed that Newtonian theory could be rendered compatible with special relativity by any number of small modifications, each of which would be unlikely to lead to any significant deviations from the empirically testable conse- quences of Newtonian theory.1 Einstein’s response to this problem is now legend. He decided almost immediately to abandon the search for a Lorentz covariant gravitation theory, for he had failed to construct such a theory that was compatible with the equality of inertial and gravitational mass. Positing what he later called the principle of equivalence, he decided that gravitation theory held the key to repairing what he perceived as the defect of the special theory of relativity—its relativity principle failed to apply to accelerated motion. He advanced a novel gravitation theory in which the gravitational potential was the now variable speed of light and in which special relativity held only as a limiting case. It is almost impossible for modern readers to view this story with their vision unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to his greatest scientific success, the general theory of relativity. Yet, as we shall see, in 1 In the historical period under consideration, there was no single label for a gravitation theory compat- ible with special relativity. -
Reason and Representation in Scientific Simulation
Reason and Representation in Scientific Simulation Matthew Spencer | PhD Thesis Centre for Cultural Studies, Goldsmiths, University of London Declaration The work presented in this thesis is the candidate's own. - 2 - Abstract This thesis is a study of scientific practice in computational physics. It is based on an 18 month period of ethnographic research at the Imperial College Applied Modelling and Computation Group. Using a theoretical framework drawn from practice theory, science studies, and historical epistemology, I study how simulations are developed and used in science. Emphasising modelling as a process, I explore how software provides a distinctive kind of material for doing science on computers and how images and writings of various kinds are folded into the research process. Through concrete examples the thesis charts how projects are devised and evolve and how they draw together materials and technologies into semi-stable configurations that crystallise around the objects of their concern, what Hans-Jorg Rheinberger dubbed “epistemic things”. The main pivot of the research, however, is the connection of practice-theoretical science studies with the philosophy of Gaston Bachelard, whose concept of “phenomenotechnique” facilitates a rationalist reading of scientific practice. Rather than treating reason as a singular logic or method, or as a faculty of the mind, Bachelard points us towards processes of change within actual scientific research, a dynamic reason immanent to processes of skilled engagement. Combining this study of reason with the more recent attention to things within research from materialist and semiotic traditions, I also revive a new sense for the term “representation”, tracing the multiple relationships and shifting identities and differences that are involved in representing. -
Max Abraham's and Tullio Levi-Civita's Approach to Einstein
Alma Mater Studiorum Universita` di · Bologna DOTTORATO DI RICERCA IN Matematica Ciclo XXV Settore concorsuale di afferenza: 01/A4 Settore Scientifico disciplinare: MAT/07 Max Abraham’s and Tullio Levi-Civita’s approach to Einstein Theory of Relativity Presentata da: Michele Mattia Valentini Coordinatore Dottorato: Relatore: Chiar.ma Prof.ssa Chiar.mo Prof. Giovanna Citti Sandro Graffi Esame finale anno 2014 Introduction This thesis deals with the theory of relativity and its diffusion in Italy in the first decades of the XX century. Albert Einstein’s theory of Special and General relativity is deeply linked with Italy and Italian scientists. Not many scientists really involved themselves in that theory understanding, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark in the theory development. Max Abraham engaged a real battle against Ein- stein between 1912 and 1914 about electromagnetic theories and gravitation theories, while Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the general relativity formulation since 1915. Many studies have already been done to explain their role in the develop- ment of Einstein theory from both a historical and a scientific point of view. This work, which doesn’t have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives. 1. Abraham’s objections against Einstein focused on three important con- ceptual kernels of theory of relativity: the constancy of light speed, the relativity principle and the equivalence hypothesis. Einstein was forced by Abraham to explain scientific and epistemological reasons of the formulation of his theory. -
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes by Zvi Biener M.A. in Philosophy, University of Pittsburgh, 2004 B.A. in Physics, Rutgers University, 1995 B.A. in Philosophy, Rutgers University, 1995 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Zvi Biener It was defended on April 3, 2008 and approved by Peter Machamer J.E. McGuire Daniel Garber James G. Lennox Paolo Palmieri Dissertation Advisors: Peter Machamer, J.E. McGuire ii Copyright c by Zvi Biener 2008 iii The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes Zvi Biener, PhD University of Pittsburgh, 2008 The project of constructing a complete system of knowledge—a system capable of integrating all that is and could possibly be known—was common to many early-modern philosophers and was championed with particular alacrity by Ren´eDescartes. The inspiration for this project often came from mathematics in general and from geometry in particular: Just as propositions were ordered in a geometrical demonstration, the argument went, so should propositions be ordered in an overall system of knowledge. Science, it was thought, had to proceed more geometrico. I offer a new interpretation of ‘science more geometrico’ based on an analysis of the explanatory forms used in certain branches of geometry. These branches were optics, as- tronomy, and mechanics; the so-called subalternate, subordinate, or mixed-mathematical sciences. -
Let's Not Talk About Objectivity
Chapter 2 Let’s Not Talk About Objectivity Ian Hacking The first landmark event in twenty-first-century thinking about objectivity was, as is well known, Lorraine Daston and Peter Galison’s Objectivity (2007). It is a magisterial historical study of an epistemological concept, namely “objectivity”. Hence I call it a contribution to what I call (if it wants a name) meta-epistemology, although other prefer the less apt but better sounding historical epistemology. You will find more food for thought, not to mention headaches, in their book, than in any other body of work about objectivity. It will seem that Objectivity rejects the injunction stated in my title, for what is the book about, but objectivity? The authors are talking about objectivity if anyone is! Analytic philosopherslike myself make what others regard as too many distinctions, and I shall illustrate that here. Objectivity is about the concept of objectivity, its past uses, and the practices associated with it. For me, a concept is a word in its sites (Hacking 1984). In this context, that means the sites in which words cognate with “objective” were used over the past three centuries, the practices within which they were deployed, who had authority when using them, the actual modes of inscription, which in this case is closely associated with the use of pictures and other types of images. For me, as for a builder, a site is a rich field of activity to be described from many points of view, almost innumerable perspectives. Objectivity is a triumph of that type of analysis; it is not talking about objectivity but about the concept of objectivity (a distinction we most clearly owe to Gottlob Frege writing about number). -
Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether. -
The Two Cultures” and the Historical Perspective on Science As a Culture Francesca Rochberg, Professor of History, University of California, Riverside
Forum on Public Policy “The Two Cultures” and the Historical Perspective on Science as a Culture Francesca Rochberg, Professor of History, University of California, Riverside Abstract In the Rede lecture of 1959, C.P.Snow speaks in terms of two cultures, one of science, the other of literary intellectuals. Snow’s discussion presupposes that science represents a culture of its own, independent of and superior to the arts and humanities, and unified within itself. At our present distance from this claim, Snow’s point of view can be seen as a product of the philosophical orientation to science as an embodiment of universal truths about nature as well as cold war pressures on the West to improve educational standards in science. As the terms in which science is discussed have changed in the last nearly half-century, so has our response to the terms of Snow’s “Two Cultures”altered with time. The fields of history and sociology of science have shown the degree to which science is both fully enmeshed in society and conditioned by history, making it more difficult to support the idea of a separate “culture” of science immune from the effects of society and history. That the viability of a culture of science as an independent entity is contested in contemporary academic circles furthermore affects the mode in which students of science and the humanities are inculcated. This paper discusses the historical perspective on science as a culture and considers the impact of changing views about the nature, aims, and methods of science on the teaching of science and its history. -
On the Shoulders of Giants: a Brief History of Physics in Göttingen
1 6 ON THE SHO UL DERS OF G I A NTS : A B RIEF HISTORY OF P HYSI C S IN G Ö TTIN G EN On the Shoulders of Giants: a brief History of Physics in Göttingen 18th and 19th centuries Georg Ch. Lichtenberg (1742-1799) may be considered the fore- under Emil Wiechert (1861-1928), where seismic methods for father of experimental physics in Göttingen. His lectures were the study of the Earth's interior were developed. An institute accompanied by many experiments with equipment which he for applied mathematics and mechanics under the joint direc- had bought privately. To the general public, he is better known torship of the mathematician Carl Runge (1856-1927) (Runge- for his thoughtful and witty aphorisms. Following Lichtenberg, Kutta method) and the pioneer of aerodynamics, or boundary the next physicist of world renown would be Wilhelm Weber layers, Ludwig Prandtl (1875-1953) complemented the range of (1804-1891), a student, coworker and colleague of the „prince institutions related to physics proper. In 1925, Prandtl became of mathematics“ C. F. Gauss, who not only excelled in electro- the director of a newly established Kaiser-Wilhelm-Institute dynamics but fought for his constitutional rights against the for Fluid Dynamics. king of Hannover (1830). After his re-installment as a profes- A new and well-equipped physics building opened at the end sor in 1849, the two Göttingen physics chairs , W. Weber and B. of 1905. After the turn to the 20th century, Walter Kaufmann Listing, approximately corresponded to chairs of experimen- (1871-1947) did precision measurements on the velocity depen- tal and mathematical physics. -
Let's Not Talk About Objectivity
Chapter 2 Let’s Not Talk About Objectivity Ian Hacking The first landmark event in twenty-first-century thinking about objectivity was, as is well known, Lorraine Daston and Peter Galison’s Objectivity (2007). It is a magisterial historical study of an epistemological concept, namely “objectivity”. Hence I call it a contribution to what I call (if it wants a name) meta-epistemology, although other prefer the less apt but better sounding historical epistemology. You will find more food for thought, not to mention headaches, in their book, than in any other body of work about objectivity. It will seem that Objectivity rejects the injunction stated in my title, for what is the book about, but objectivity? The authors are talking about objectivity if anyone is! Analytic philosophers like myself make what others regard as too many distinctions, and I shall illustrate that here. Objectivity is about the concept of objectivity, its past uses, and the practices associated with it. For me, a concept is a word in its sites (Hacking 1984). In this context, that means the sites in which words cognate with “objective” were used over the past three centuries, the practices within which they were deployed, who had authority when using them, the actual modes of inscription, which in this case is closely associated with the use of pictures and other types of images. For me, as for a builder, a site is a rich field of activity to be described from many points of view, almost innumerable perspectives. Objectivity is a triumph of that type of analysis; it is not talking about objectivity but about the concept of objectivity (a distinction we most clearly owe to Gottlob Frege writing about number). -
New Light on the Einstein-Hilbert Priority Question
J. Astrophys. Astr. (1999) 20, 91–101 New Light on the Einstein-Hilbert Priority Question John Stachel, Department of Physics and Center for Einstein Studies, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 USA. email:[email protected] 1. Introduction This talk is based on the joint work with Leo Corry and Jürgen Renn.1 The develop- ment of general relativity may be compared to a traditional three-act play: I (1907-1908): The formulation of the equivalence principle; II (1912-1913): The choice of the metric tensor field as the appropriate relativistic generalization of the scalar Newtonian gravitational potential; III (1913-1915): The search for the correct field equations for the metric tensor field. The first two acts were essentially monologues starring Albert Einstein. The third act was a dialogue between Einstein and David Hilbert, the leading Göttingen mathe- matician. I have told the story of all three acts from Einstein's point of view elsewhere in some detail,2 so I shall be brief in reviewing the first two acts. But I must say more about the third act, since this is where Hilbert entered the story and the priority question between them arose. Acts I and II. In 1907, Einstein prepared a review article on the principle of relativity and its consequences for the various branches of physics.3 In the course of the review, he discussed the question of a relativistic theory of gravitation.4 It was clear from the outset that the Newtonian theory would have to be modified, since it is based on the concept of a force between pairs of particles that depends on the distance between them at some moment of time.