Antiproton Accumulator Complex (Aac) Performance
614 ANTIPROTON ACCUMULATOR COMPLEX (AAC) PERFORMANCE B. Autin, G. Carron, F. Caspers, V. Chohan, C.D. Johnson, E. Jonest,G. Le Dallic, S. Maury, C. Metzger, D. M6h1, Y. Orlov, F. Pedersen, A. Poncet, J.C. Schnuriger, T.R. Sherwood, C.S. Taylor, L. Thomdahl, S. van der Meer, and D.J. Williams CERN, PS Division, CH-1211 Geneva 23 idied the 2nd March 1990 Abstract Antiproton Production Antiprotons are produced in the target area, debunched and The production beam is focused on the target with 2 pulsed stochastically cooled in the Antiproton Collector (AC) and then quadrupoles. A high density target [11,12] made of iridium (8 transferred to the Antiproton Accumulator (AA) for final cooling ‘and 3 x 5.5 mm) embedded in graphite and enclosed in a sealed, water accumulation into a stack from which bunches are extracted and cooled, titanium container performs well. Despite the higher intensi- transferred IO the differeilt users. During Sp$S runs, the tics of the primary proton beam, no yield degradation due to target performance of the AAC is of crucial importance for the collider damage has been observed, although an irradiated target assembly luminosity. The stacking rate evolved from 1.2 X 1010jijh in early cut open 113,141showed that the iridium is damaged by the thermal 1988 to 5.X X 10’” ij/h in May 1989. A maximum stack intensity of shock, but sufficiently contained to maintain initial yield. 1.3 I x lO’* fj has been obtained. This is comparable to or exceeds Antiprotons emerging from the target are focused and matched into the ACOL project design performance.
[Show full text]