April 20]  “It Is Easier to Write an Team with Code for the Still- Incorrect Program Than April 1St Unfinished Computer

Total Page:16

File Type:pdf, Size:1020Kb

April 20]  “It Is Easier to Write an Team with Code for the Still- Incorrect Program Than April 1St Unfinished Computer Project Whirlwind [April 20] “It is easier to write an team with code for the still- incorrect program than April 1st unfinished computer. understand a correct one.” “You think you KNOW when you learn, are more sure when Léon-Auguste- you can write, even more when you can teach, but Antoine Bollée certain when you can Born: April 1, 1870; Le program.” Mans, France Died: Dec. 16, 1913 Bollée’s Multiplier was the Norman Abramson second (or third) direct- multiplying calculator, which Born: April 1, 1932; (like the others) met with Boston, Massachusetts limited commercial success, Died: Dec. 1, 2020 although it did win a gold medal At the University of Hawaii, at the 1889 Paris Exposition. Alan J. Perlis. (c) 2019 ACM. Abramson led the team that The first commercially developed the ALOHAnet successful direct multiplication In early 1955, Perlis’ team at wireless computer calculator was the Millionaire Purdue began work on the IT communication system. The goal [May 7]. language ("Internal Translator"), was to use low-cost commercial The Multiplier’s main advantage a very early machine- radio equipment to connect was its speed. In 1892, Bollée independent language. This led users on Oahu and the other calculated the square root of an to him becoming the chairman Hawaiian islands with a central 18 digit number in about 30 of the ACM Programming time-sharing computer at the seconds. The same calculation Languages Committee in 1957, main Oahu campus. and a delegate to the Zurich with a more conventional ALOHAnet became operational conference [May 27] where calculator (that used repeated in June 1971, providing the first ALGOL 58 was defined. addition to implement public demonstration of a multiplication) was at least five He was the first editor of the wireless packet data network. minutes. “Communications of the ACM” ALOHA originally stood for In his later years Bollée was (CACM) journal, and president of “Additive Links On-line Hawaii more interested in designing, the ACM [Sept 15] in 1962. The Area.” ACM Curriculum Committee on building, and racing light Unlike the ARPANET [Oct 29] Computer Science was formed automobiles. He founded the where each node could only talk during Perlis’ term [March 00]. racetrack at Le Mans, and the Le directly to a node at the other Mans 24 hour race. His 1982 article, “Epigrams on end of a wire or satellite circuit, Bollée’s long career as an Programming,” consists of witty ALOHAnet let all the client inventor began at the age of short sentences about nodes communicated with a hub thirteen when he patented an programming. A sample: node on the same frequency. This was possible by employing unsinkable aquatic bicycle (Le “A year spent in artificial Vélocipède nautique). On Sept. an acknowledgment / intelligence is enough to make retransmission scheme to deal 18, 1921 an Englishman, Harold one believe in God.” Ashton Rigby (1885 - 1945), with packet loss and collisions. successfully rode it across the “Computer Science is This approach radically reduced Channel from Folkestone to embarrassed by the the complexity of the protocol Calais. computer.” and the networking hardware, “A language that doesn’t affect and was subsequently adopted the way you think about by other network protocols Alan Jay Perlis programming is not worth including Ethernet [May 22], and knowing.” Wi-Fi networks. Born: April 1, 1922; Pittsburgh, Pennsylvania “Lisp programmers know the value of everything and the Died: Feb. 7, 1990 cost of nothing.” Norman Hugh Nie Perlis' work in programming languages resulting in his being “Fools ignore complexity; Born: April 1, 1943; awarded the first ever Turing pragmatists suffer it; experts St. Louis, Missouri Award [June 23] in 1966. avoid it; geniuses remove it.” Died: April 2, 2015 During the summers of 1948 Nie was one of the co- and 1949 Perlis assisted the MIT developers of the “Statistical 1 Package for the Social Sciences” record's grooves, and (SPSS) with C. Hadlai (“Tex”) Apple Computer soundhog09 had to employ PVA Hull and Dale Bent. glue and a mix of audio filters to Founded retrieve the data. While a graduate student at Stanford, Nie was faced with the April 1, 1976 daunting task of analyzing data Prev: [June 29] Next: [July 00] from thousands of responses to a questionnaire. The routines he Steve Jobs [Feb 24], Steve wrote to automate that process, Wozniak [Aug 11], and Ron became part of SPSS. Wayne [May 17] signed a partnership agreement that The first SPSS manual (Nie, Bent established the Apple Computer and Hull, 1970) has been Company. The intention was to Chris Sievey: Camouflage described as one of “sociology’s sell Wozniak’s Apple I [June 29]. most influential books” because Animation. 1983 it allowed a much wider group Around 12 days later, Wayne of researchers to perform dropped out, handed back his The credits include "Recorded - statistical analysis on their data. 10% share of the company in Strawberry - April 1 C.V", which exchange for $800. He had is why I've placed this entry decided that the financial risks here; "Strawberrry" is a were too great. reference to Strawberry Studios Planning and in Stockport, UK. In an interview in the mid- Coding Problems 1980s, Wozniak and Jobs A contemporary record recalled how they chose the (released in May) with a similar April 1, 1947 Apple name: feature is "XL1", the second solo album by Pete Shelley. The lead- Herman Goldstine [Sept 13] and Wozniak: “I remember driving out groove of the B-side includes John von Neumann [Dec 28] down Highway 85, and Steve a program for the ZX Spectrum released the report, “Planning mentions, ‘I’ve got a name: [April 23] coded by Joey Headen. and Coding Problems for an Apple Computer.’ We kept It has 10 parts, one for each Electronic Computing thinking of other alternatives to song, combining that song's Instrument. Vol. 1”. The second that name, and we couldn’t think lyrics with simple graphics made and third parts were published a of anything better.” up of lines, circles, and blocks of year later, on April 15 and color. Screenshots can be found August 16 1948, respectively. Jobs: “And also remember that I worked at Atari, and it got us at Vol. 1 covers a wide range of ahead of Atari in the http://www.headen.com/newp age11.htm programming techniques, from phonebook.” flowcharts to numerical analysis. Perhaps the best known use of This was the first use of code in music is on the "OK flowcharts for programming Computer" album by Radiohead although the employment of Camoflage [July 12] from 1997. flow diagrams for describing processes dates back to the April 1, 1983 1920s to the “flow process "Camouflage" was a single chart” of Frank and Lillian released by the musician Chris Kremvax Gilbreth. Sievey in 1983, who would April 1, 1984 Vol. 2 deals with sorting and become better known later for merging in detail, and Vol. 3 his comic character Frank A message was sent to multiple briefly looks at the usefulness of Sidebottom. newsgroups on USENET from Konstantin Chernenko subroutines. This notion had The B-side is notable for being ([email protected]). been floating around since the the first example of code ENIAC days [Feb 15]. released on a record: three At the time, Chernenko (1911 – The [June 28] 1946 report, programs written by Sievey for 1985) was the General Secretary “Preliminary Discussion of the the Sinclair ZX81 [March 5]. of the Communist Party, and led the Soviet Union from Feb. 13, Logical Design of an Electronic Two of them are versions of a 1984 until his death thirteen Computing Instrument.” by game called "Flying Train" for months later, on March 10, Arthur W. Burks [Oct 13], the 1K and 16K ZX81's, and the 1985. Goldstine, and von Neumann is third is a simple animation for often paired with these volumes. the song on Side A. YouTuber Chernenko explained that the That report focusses on machine soundhog09 has kindly Soviet Union wanted to join the architecture. uploaded a copy at network to “have a means of https://www.youtube.com/wa having an open discussion forum tch?v=8u9ZyV-BHFA. The code with the American and is stored as audio tones in the European people.” 2 The message created a flood of conference had a host, guiding responses, but two weeks later and monitoring discussions. IP over Avian its true author, a European man PicoSpan pioneered the named Piet Beertema, revealed Carriers “clothesline model” of it was a hoax. It is now credited conferencing: put up a new April 1, 1990 with being the Internet's first topic, and users would post April Fool’s joke. The "IP over Avian Carriers" responses to it. Also a user was (IPoAC) proposal argued for a Six years later, when Moscow unable to erase their previous radical new hardware level for really did link up with the posts, and posts never expired. transporting Internet Protocol Internet, it adopted the domain Everyone’s real name was (IP) traffic. David Waitzman was name ‘kremvax’ in honor of the available on the system, linked responsible for this hoax. to his or her login. revolutionary concept, as The founders of the Electronic detailed in RFC 1149 Frontier Foundation [July 6], (https://tools.ietf.org/html/rfc1 Soybean Disks John Perry Barlow [Oct 3], John 149). Gilmore [Aug 00], and Mitch On April 28, 2001, IPoAC was April 1, 1985 Kapor [Nov 1], first met on the successfully implemented by the WELL. Also, Howard Rheingold, Byte Magazine featured a Bergen Linux user group in an early and active member, was section called “What’s Not,” Norway, as the “Carrier Pigeon inspired to write “The Virtual instead of its usual “What’s Hot” Internet Protocol” (CPIP).
Recommended publications
  • IMS/ISC: .Org Proposal Form
    TOP THE .ORG TLD IS A PUBLIC TRUST » « A Joint Effort of the INTERNET MULTICASTING SERVICE and eorg INTERNET SOFTWARE CONSORTIUM » TRANSMITTAL » FITNESS DISCLOSURE » « VOICE YOUR SUPPORT » PROPOSAL » SUPPLEMENTARY MATERIALS » « SPREAD THE DOT » CONFIDENTIAL INFORMATION » SUPPLEMENTAL QUESTIONS » .org Proposal Form Executive Summary This is a joint bid between the Internet Multicasting Service (IMS) and the Internet Software Consortium (ISC). We are both public benefit corporations with a long history of operating public works and creating freely available software for key infrastructure services on the Internet. The .org Top Level Domain (TLD) is the home for the noncommercial organizations of the world, and we would operate the .org registry service as a public trust: ● We have designed a rock-solid service in strategic exchange points throughout the world. We will build this service on our existing infrastructure and operate a stable, high-performance, high-availability registry service for the .org TLD. ● We will operate this service with strong support for registrars, the registrants in the .org TLD, the general Internet community, ICANN, and our other constituencies. ● We will build on our deep familiarity with the subject area and our extensive experience in provisioning complex Internet services. We will provide a smooth transition with no break in service. ● The .org TLD registry service will support all IETF recommended protocols. Our software, including packages for registry servers, registrar clients, Whois, namespace management, and secure DNS solutions will be freely available with no restrictions in source and binary form. ● We will work with our extensive network of partners throughout the world to provide substantial input to the standards process and advances in core technologies.
    [Show full text]
  • Overlaymeter: Robust System-Wide Monitoring and Capacity-Based Search in Peer-To-Peer Networks
    OverlayMeter: Robust System-wide Monitoring and Capacity-based Search in Peer-to-Peer Networks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Andreas Disterhöft aus Duschanbe in Tadschikistan Düsseldorf, März 2018 aus dem Institut für Informatik der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Jun.-Prof. Dr.-Ing. Kalman Graffi 2. Prof. Dr. Michael Schöttner Tag der mündlichen Prüfung: 24.09.2018 Abstract In the last decade many peer-to-peer research activities have taken place. Applications using the peer-to-peer paradigm are present and their traffic, depending on the region, accounts fora significant proportion of the total traffic on the Internet. The defined goal of the systemsisto deliver a certain quality of service, which is a challenge in decentralized systems. This is due to the fact that participants have to make decisions based on their locally available information. In order to make the best decisions, a solid and extensive data basis is indispensable. For this purpose the literature on the field of p2p networks proposes monitoring the system, an approach that we follow in this work. Monitoring refers to the gathering and dissemination of system- and peer-specific data. This dissertation deals with open research questions for the improvement and extension of monitoring approaches. Furthermore, issues to simplify procedures for putting such peer-to-peer systems into operation are addressed in this work. In the first part we deal with monitoring procedures in the system-specific context.
    [Show full text]
  • Adaptive Distributed Firewall Using Intrusion Detection Lars Strand
    UNIVERSITY OF OSLO Department of Informatics Adaptive distributed firewall using intrusion detection Lars Strand UniK University Graduate Center University of Oslo lars (at) unik no 1. November 2004 ABSTRACT Conventional firewalls rely on a strict outside/inside topology where the gateway(s) enforce some sort of traffic filtering. Some claims that with the evolving connectivity of the Internet, the tradi- tional firewall has been obsolete. High speed links, dynamic topology, end-to-end encryption, threat from internal users are all issues that must be addressed. Steven M. Bellovin was the first to propose a “distributed firewall” that addresses these shortcomings. In this master thesis, the design and implementation of a “distributed firewall” with an intrusion detection mechanism is presented using Python and a scriptable firewall (IPTables, IPFW, netsh). PREFACE This thesis is written as a part of my master degree in Computer Science at the University of Oslo, Department of Informatics. The thesis is written at the Norwegian Defence Research Establishment (FFI). Scripting has been one of my favourite activities since I first learned it. Combined with the art of Computer Security, which I find fascinating and non-exhaustive, it had to be an explosive combina- tion. My problem next was to find someone to supervise me. This is where Professor Hans Petter Langtangen at Simula Research Laboratory and Geir Hallingstad, researcher at FFI, stepped in. Hans Petter Langtangen is a masterful scripting guru and truly deserves the title “Hacker”. Geir Hallingstad is expert in the field of computer/network security and gave valuable input and support when designing this prototype.
    [Show full text]
  • Addressing Contents
    IPv4 - Wikipedia, the free encyclopedia Página 1 de 12 IPv4 From Wikipedia, the free encyclopedia The five-layer TCP/IP model Internet Protocol version 4 is the fourth iteration of 5. Application layer the Internet Protocol (IP) and it is the first version of the protocol to be widely deployed. IPv4 is the dominant DHCP · DNS · FTP · Gopher · HTTP · network layer protocol on the Internet and apart from IMAP4 · IRC · NNTP · XMPP · POP3 · IPv6 it is the only standard internetwork-layer protocol SIP · SMTP · SNMP · SSH · TELNET · used on the Internet. RPC · RTCP · RTSP · TLS · SDP · It is described in IETF RFC 791 (September 1981) SOAP · GTP · STUN · NTP · (more) which made obsolete RFC 760 (January 1980). The 4. Transport layer United States Department of Defense also standardized TCP · UDP · DCCP · SCTP · RTP · it as MIL-STD-1777. RSVP · IGMP · (more) 3. Network/Internet layer IPv4 is a data-oriented protocol to be used on a packet IP (IPv4 · IPv6) · OSPF · IS-IS · BGP · switched internetwork (e.g., Ethernet). It is a best effort IPsec · ARP · RARP · RIP · ICMP · protocol in that it does not guarantee delivery. It does ICMPv6 · (more) not make any guarantees on the correctness of the data; 2. Data link layer It may result in duplicated packets and/or packets out- 802.11 · 802.16 · Wi-Fi · WiMAX · of-order. These aspects are addressed by an upper layer ATM · DTM · Token ring · Ethernet · protocol (e.g., TCP, and partly by UDP). FDDI · Frame Relay · GPRS · EVDO · HSPA · HDLC · PPP · PPTP · L2TP · Contents ISDN · (more) 1. Physical layer
    [Show full text]
  • MTU and Datagram Fragmentation If Datagram Size > MTU, Perform Fragmentation
    2G1305 Internetworking/Internetteknik Spring 2006, Period 4 Lecture notes of G. Q. Maguire Jr. For use in conjunction with TCP/IP Protocol Suite, by Behrouz A. Forouzan, 3rd Edition, McGraw-Hill, 2006 KTH Information and Communication Technology © 1998, 1999, 2000,2002, 2003, 2005, 2006 G.Q.Maguire Jr. All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the author. Last modified: 2006.03.13:09:07 Maguire Cover.fm5 Total pages: 1 [email protected] 2006.03.13 2G1305 Internetworking/Internetteknik Spring 2006, Period 4 Module 1: Introduction Lecture notes of G. Q. Maguire Jr. For use in conjunction with TCP/IP Protocol Suite, by Behrouz A. Forouzan, 3rd Edition, McGraw-Hill, 2006. KTH Information and Communication Technology For this lecture: Chapters 1-5 © 1998, 1999, 2000,2002, 2003, 2005, 2006 G.Q.Maguire Jr. All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the author. Last modified: 2006.03.13:10:46 Maguire Introduction.fm5 Total pages: 74 [email protected] 2006.03.13 Welcome to the Internetworking course! The course should be fun. We will dig deeper into the TCP/IP protocols and protocols built upon them. Information about the course is available from the course web page: http://www.it.kth.se/courses/2G1305/ Note that the above URL will change - due to the reoganization of KTH to: http://www.cos.ict.kth.se/education/msc/ccs/courses/2G1305/ Maguire Welcome to the Internetworking course! Introduction 3 of 74 [email protected] 2006.03.13 Internetworking/Internetteknik Staff Associated with the Course Instructor (Kursansvarig) prof.
    [Show full text]
  • From Delay-Tolerant Networks to Vehicular Delay-Tolerant Networks Paulo Rog´Erio Pereira, Member, IEEE, Augusto Casaca, Senior Member, IEEE, Joel J
    IEEE COMMUNICATIONS SURVEYS & TUTORIALS 1 From Delay-Tolerant Networks to Vehicular Delay-Tolerant Networks Paulo Rog´erio Pereira, Member, IEEE, Augusto Casaca, Senior Member, IEEE, Joel J. P. C. Rodrigues, Senior Member, IEEE, Vasco N. G. J. Soares, Student Member, IEEE, Joan Triay, Student Member, IEEE, and Cristina Cervell´o-Pastor Abstract—This paper provides an introductory overview of Bergen Linux User Group [3] with the results presented in Vehicular Delay-Tolerant Networks. First, an introduction to Fig. 1. Nine packets were sent over a distance of approximately Delay-Tolerant Networks and Vehicular Delay-Tolerant Networks 5 Km, each carried by an individual pigeon and containing one is given. Delay-Tolerant schemes and protocols can help in situations where network connectivity is sparse or with large ping (ICMP Echo Request) packet. The session log shows variations in density, or even when there is no end-to-end that four responses were received with largely variable round- connectivity by providing a communications solution for non real- trip times, averaging about 1.5 hours, and a packet loss ratio of time applications. Some special issues like routing are addressed 55%. Naturally, with these unusually high and largely variable in the paper and an introductory description of applications delays and packet loss ratios, the Internet protocols would not and the most important projects is given. Finally, some research challenges are discussed and conclusions are detailed. work properly, resulting in timeouts and cancellations. The DTN Research Group (DTNRG) [4], which was char- Index Terms—Vehicular Delay-Tolerant Networks, Delay/Disruption-Tolerant Networks, Vehicular Ad Hoc tered as part of the Internet Research Task Force (IRTF), has Networks, Intelligent Transport Systems.
    [Show full text]
  • Ethernet and TCP/IP Presentation
    TCP/IP & LAN Oct 2007 - H. Sailer A C B D E 10/19/2017 TCP/IP & Ethernet LAN Page 1 TCP/IP illustrated, Vol 1 • Muddle though the book, chapter by chap • General Internet backbone design • Domain Name System • IXIA box demonstration • Configuration of Cisco 2950 Lan switch • IP Subnetwork address • Autonomous System, BGP • IP L3 Routers • TCP layer 4 10/19/2017 TCP/IP & Ethernet LAN Page 2 Where to go for more info • IETF - Internet Engineering Task Force - www.ietf.org • Wikipedia - an online encylopedia – www.wikipedia.org http://en.wikipedia.org/wiki/Tcp/ip • ATM, Frame Relay, MPLS - http://www.mfaforum.org/ • http://www.cisco.com/univercd/cc/td/doc/cisintwk/ • http://www.cisco.com/univercd/home/home.htm • http://www.bgp4.as/ Border Gateway Protocol Stuff • http://www.iol.unh.edu/ University of New Hampshire • http://williamstallings.com/ Great author of TCP books • http://lw.pennnet.com/home.cfm Lightwave Magazine • http://www.ethernetalliance.org/home • http://www.kegel.com Dan Kegel Networking Guru • http://www.ethermanage.com/ethernet/ethernet.html • http://www.tcpipguide.com/index.htm 10/19/2017 TCP/IP & Ethernet LAN Page 3 47% of adults have broadband at home 10/19/2017 TCP/IP & Ethernet LAN Page 4 10/19/2017 TCP/IP & Ethernet LAN Page 5 10/19/2017 TCP/IP & Ethernet LAN Page 6 10/19/2017 TCP/IP & Ethernet LAN Page 7 The Internet Where do IP address Society come from? ( non-profit ) www.isoc.org Internet Internet Internet Architecture Engineering Corporation Board Task Force Assigned IAB IETF Names & Numbers www.iab.org www.ietf.org www.icann.org 10/19/2017 TCP/IP & Ethernet LAN Page 8 • Internet Society - provides a corporate governance to oversee the operation of individual groups, to accept input from outside, and delegate on policy issues.
    [Show full text]
  • Introduction to Networks in DAQ
    Introduction Protocols Networks for Data Acquisition Introduction to Networks in DAQ Niko Neufeld [email protected] CERN ISOTDAQ 2010, Ankara Niko Neufeld [email protected] Introduction to Networks in DAQ Introduction Protocols Networks for Data Acquisition Acknowledgments & Disclaimer I Thanks to B. Martin for material on the ATLAS network I Thanks to G. Liu and J.C. Garnier for comments and suggestions for an earlier draft of these lecture-notes I Most of the material will be in parts familiar to at least some of you - I hope you discover some new angle I In the same spirit I hope you can cope with a few \forward" references Niko Neufeld [email protected] Introduction to Networks in DAQ Introduction Protocols Networks for Data Acquisition Outline Introduction General Network technologies Moving the data around Protocols IP TCP/IP networking Networks for Data Acquisition Efficiency Networking at the host side DAQ networks Further Reading Niko Neufeld [email protected] Introduction to Networks in DAQ Introduction General Protocols Network technologies Networks for Data Acquisition Moving the data around Definition of a network A network is a collection of independent devices, which can communicate as peers with each other 1 I peer: There are no masters nor slaves on a network I independent:The network exists as long as there are at least two connected devices 1Networks are for democrats! Niko Neufeld [email protected] Introduction to Networks in DAQ Introduction General Protocols Network technologies Networks for Data Acquisition
    [Show full text]
  • Circumventing Invasive Internet Surveillance with “Carrier Pigeons”
    Circumventing Invasive Internet Surveillance with “Carrier Pigeons” Rewilding the endangered world wide web of avian migration pathways By Anthony Judge Theme: Police State & Civil Rights Global Research, July 01, 2013 laetusinpraesens.org Introduction Recent disclosures have revealed the extreme level of surveillance of telephone and internet communications, as discussed separately with respect to the US National Security Agency, the UK GCHQ, and other members of theFive Eyes Anglosphere agreement (Vigorous Application of Derivative Thinking to Derivative Problems, 2013). There is therefore a case for exploring how such surveillance can be avoided, if that is considered desirable. The situation can be compared to that in any wilderness where predators deliberately create zones of fear through the manner of their engagement with potential prey — prior to any attack, as recently noted (Scared to death: how predators really kill, New Scientist, 5 June 2013, pp. 36-39). Extensive use has been made in the past ofcarrier pigeons for secure communications, notably in arenas of threat, and most notably in World War I, continuing into World War II, but to a lesser degree. The founder of the news agency Reuters made use of carrier pigeons for the delivery of vital financial data in parallel with introduction of the telegraph. Other little-known examples are cited in what follows. With the current development in the insecurity of computer and internet technology, there is a case for exploring alternative possibilities in the light of the threat of internet surveillance and the need for secure communications. Security agencies are effectively framing the “war on terrorism” as a global war in which independent governments and institutions are a source of potential security threat — as well as the world population at large.
    [Show full text]
  • Pathspider Documentation Release 2.0
    PATHspider Documentation Release 2.0 the pathspider authors Jan 19, 2018 Contents 1 Table of Contents 3 1.1 Introduction...............................................3 1.2 Installation................................................5 1.3 Command Line Usage Overview....................................6 1.4 Active Measurement Plugins.......................................9 1.5 Passive Observation........................................... 18 1.6 Resolving Target Lists.......................................... 30 1.7 Developing Plugins............................................ 31 1.8 PATHspider Internals........................................... 40 1.9 References................................................ 45 2 Citing PATHspider 47 3 Acknowledgements 49 Bibliography 51 Python Module Index 53 i ii PATHspider Documentation, Release 2.0 In today’s Internet we see an increasing deployment of middleboxes. While middleboxes provide in-network func- tionality that is necessary to keep networks manageable and economically viable, any packet mangling — whether essential for the needed functionality or accidental as an unwanted side effect — makes it more and more difficult to deploy new protocols or extensions of existing protocols. For the evolution of the protocol stack, it is important to know which network impairments exist and potentially need to be worked around. While classical network measurement tools are often focused on absolute performance values, PATHspider performs A/B testing between two different protocols or different protocol
    [Show full text]
  • Nessus, Snort, & Ethereal Power Tools
    332_NSE_FM.qxd 7/14/05 1:51 PM Page i Register for Free Membership to [email protected] Over the last few years, Syngress has published many best-selling and critically acclaimed books, including Tom Shinder’s Configuring ISA Server 2004, Brian Caswell and Jay Beale’s Snort 2.1 Intrusion Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal Packet Sniffing. One of the reasons for the success of these books has been our unique [email protected] program. Through this site, we’ve been able to provide readers a real time extension to the printed book. As a registered owner of this book, you will qualify for free access to our members-only [email protected] program. Once you have registered, you will enjoy several benefits, including: ■ Four downloadable e-booklets on topics related to the book. Each booklet is approximately 20-30 pages in Adobe PDF format. They have been selected by our editors from other best-selling Syngress books as providing topic coverage that is directly related to the coverage in this book. ■ A comprehensive FAQ page that consolidates all of the key points of this book into an easy-to-search web page, pro- viding you with the concise, easy-to-access data you need to perform your job. ■ A “From the Author” Forum that allows the authors of this book to post timely updates links to related sites, or addi- tional topic coverage that may have been requested by readers. Just visit us at www.syngress.com/solutions and follow the simple registration process.
    [Show full text]
  • Feral Ecologies: a Foray Into the Worlds of Animals and Media Sara
    Feral Ecologies: A Foray into the Worlds of Animals and Media Sara A. Swain A Dissertation Submitted to The Faculty of Graduate Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Graduate Program in Communication and Culture York University Toronto, ON September 2016 Sara Swain 2016 ii Abstract This dissertation wonders what non-human animals can illuminate about media in the visible contact zones where they meet. It treats these zones as rich field sites from which to excavate neglected material-discursive-semiotic relationships between animals and media. What these encounters demonstrate is that animals are historically and theoretically implicated in the imagination and materialization of media and their attendant processes of communication. Chapter 1 addresses how animals have been excluded from the cultural production of knowledge as a result of an anthropocentric perspective that renders them invisible or reduces them to ciphers for human meanings. It combines ethology and cinematic realism to craft a reparative, non-anthropocentric way of looking that is able to accommodate the plenitude of animals and their traces, and grant them the ontological heft required to exert productive traction in the visual field. Chapter 2 identifies an octopus’s encounter with a digital camera and its chance cinematic inscription as part of a larger phenomenon of “accidental animal videos.” Because non-humans are the catalysts for their production, these videos offer welcome realist counterpoints to traditional wildlife imagery, and affirm cinema’s ability to intercede non-anthropocentrically between humans and the world. Realism is essential to cinematic communication, and that realism is ultimately an achievement of non- human intervention.
    [Show full text]