Vulnerability to Tropical Cyclone Related Mortalities Temporal Analysis 88 6 Applications of Findings

Total Page:16

File Type:pdf, Size:1020Kb

Vulnerability to Tropical Cyclone Related Mortalities Temporal Analysis 88 6 Applications of Findings VULNERABILITY TO TROPICAL CYCLONE RELATED MORTALITIES ON HISPANIOLA A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Masters of Arts By Bryce Kastelein December 2014 © Copyright All rights reserved Except for previously published materials Thesis written by Bryce Kastelein B.S., Southern Illinois University Edwardsville, 2011 M.A., Kent State University, 2014 Approved by Thomas Schmidlin, Professor, Ph.D., Geography, Masters Advisor Mandy Munro-Stasiuk, Professor, Ph.D., Chair, Department of Geography James L. Blank, Ph.D. Dean, College of Arts and Science Table of Contents TABLE OF CONTENTS.......................................................................................................... III LIST OF FIGURES .................................................................................................................. V LIST OF TABLES ................................................................................................................... VI PREFACE ............................................................................................................................ VII 1 INTRODUCTION ........................................................................................................... 1 2 LITERATURE REVIEW ................................................................................................... 3 2.1 GEOGRAPHY OF THE HISPANIOLA ........................................................................ 3 2.2 TROPICAL CYCLONES ............................................................................................ 6 2.3 VULNERABILITY................................................................................................... 10 2.3.1 SOCIAL VULNERABILITY ............................................................................... 11 2.3.2 PHYSICAL VULNERABILITY ........................................................................... 13 3 RESEARCH DESIGN .................................................................................................... 15 3.1 DATA COLLECTION ............................................................................................. 15 3.1.1 VULNERABILITY DATA ................................................................................. 18 3.1.1.1 SELECTION OF MEASURES OF SOCIAL AND PHYSICAL VULNERABILITY .. 18 3.1.1.2 DESCRIPTION OF VARIABLES ................................................................... 21 3.1.1.3 REDUCTION OF CORRELATED OR COLINEAR VARIABLES ........................ 30 3.1.2 TROPICAL CYCLONE EVENT DATA ............................................................... 31 3.1.3 TROPICAL CYCLONE HUMAN FATALITY DATA ............................................ 31 3.2 METHODS ........................................................................................................... 36 3.2.1 STORM EVENT SEVERITY SCORING ............................................................. 36 3.2.2 INCLUSION CRITERIA ................................................................................... 39 3.2.3 CORRELATING VULNERABILITY FACTORS AND STORM CLUSTER GROUPS TO HUMAN FATALITY IMPACT ......................................................................... 41 3.2.4 RESULTING CORRELATIONS TO HUMAN FATALITY DATA ........................... 41 3.2.5 ANALYZE CHANGES IN VULNERABILITY OVER TIME ................................... 42 4 RESULTS..................................................................................................................... 43 4.1 TROPICAL CYCLONE RESULTS ............................................................................. 43 4.2 VULNERABILITY RESULTS .................................................................................... 47 4.3 STATISTICAL RESULTS ......................................................................................... 52 5 DISCUSSION ............................................................................................................... 60 5.1 TROPICAL CYCLONE FINDINGS ........................................................................... 60 5.2 VULNERABILITY VARIABLES ................................................................................ 64 5.2.1 PHYSICAL VARIABLES .................................................................................. 64 5.2.1.1 SLOPE ....................................................................................................... 64 5.2.2 SOCIAL VARIABLES ...................................................................................... 66 5.2.2.1 POPULATION ........................................................................................... 66 5.2.2.2 POVERTY .................................................................................................. 68 5.2.2.3 PERCENT OF URBAN POPULATION ......................................................... 71 5.2.2.4 UNEMPLOYMENT RATE ........................................................................... 73 5.2.2.5 PERCENT OF WOMEN IN THE WORKFORCE ............................................ 75 5.2.2.6 HOUSING MATERIALS: EARTHEN OR SCRAP MATERIALS........................ 77 iii 5.2.2.7 HOUSING MATERIALS: UPPER SCALE ...................................................... 79 5.2.2.8 HEALTH CENTERS PER 10,000 ................................................................. 81 5.3 WITH HURRICANE JEANNE ................................................................................. 82 5.3.1 PERCENT OF FOREST COVERAGE ................................................................ 83 5.3.2 DENSITY ....................................................................................................... 85 5.3.3 PERCENT OF POPULATION WITH VULNERABLE AGE .................................. 87 5.4 VULNERABILITY TO TROPICAL CYCLONE RELATED MORTALITIES TEMPORAL ANALYSIS 88 6 APPLICATIONS OF FINDINGS ..................................................................................... 91 6.1 DANGEROUS TROPICAL CYCLONES .................................................................... 91 6.2 VULNERABILITY VARIABLE FINDINGS ................................................................. 92 6.2.1 PHYSICAL VARIABLE FINDINGS.................................................................... 93 6.2.2 SOCIAL VARIABLE FINDINGS ....................................................................... 93 7 CONCLUSION ............................................................................................................. 97 7.1 SUMMARY .......................................................................................................... 97 7.2 RESEARCH QUESTIONS ....................................................................................... 98 7.3 RELATIONSHIP TO LITERATURE ........................................................................ 100 7.4 ACTIONS FOR OFFICIALS ................................................................................... 101 7.5 LIMITATIONS OF THE STUDY ............................................................................ 103 7.6 FUTURE CONSIDERATIONS ............................................................................... 104 LITERATURE CITED .......................................................................................................... 105 APPENDIX A- HURRICANE MORTALITY SOURCES CITED ................................................. 112 SOCIAL AND PHYSICAL SOURCES CITED .......................................................................... 123 HURRICANE DATA ........................................................................................................... 124 iv List of Figures Figure 1 - Caribbean Basin .................................................................................................. 3 Figure 2 - Population Distribution on Hispaniola ................................................................ 4 Figure 3 - Topography of Hispaniola ................................................................................... 5 Figure 4 - Saffir Simpson Scale of Hurricane Intensity ........................................................ 6 Figure 5 - Caribbean Island Grouping ................................................................................. 7 Figure 6 - Region of Cyclogenesis ....................................................................................... 8 Figure 7 - Research Design ................................................................................................ 15 Figure 8 - Map of Hispaniola ............................................................................................. 17 Figure 9 - Statistical Analysis of Factors Found in Hazard Literature ............................... 20 Figure 10 - Hispaniola Land Use ........................................................................................ 22 Figure 11 - Hispaniola Slope .............................................................................................. 24 Figure 12 - Tropical Cyclone Mortality Map ..................................................................... 34 Figure 13 - Tropical Cyclone Mortality Rate Map ............................................................. 35 Figure 14 - Tropical Cyclones Impacting Hispaniola (1994-2012)..................................... 38 Figure 15 - Inclusion Criteria ............................................................................................. 40 Figure 16 - Storm Cluster Analysis ...................................................................................
Recommended publications
  • Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development
    FINAL REPORT ON WASTE MANAGEMENT WASTE CHARACTERISATION STRATEGY FOR THE BRITISH J U L Y 2 0 1 9 VIRGIN ISLANDS Ref. 32-BV-2018Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development TABLE OF CONTENTS LIST OF ACRONYMS..............................................................................2 1 INTRODUCTION.........................................................3 1.1 BACKGROUND OF THE STUDY..........................................................3 1.2 SUBJECT OF THE PRESENT REPORT..................................................3 1.3 OBJECTIVE OF THE WASTE CHARACTERISATION................................3 2 METHODOLOGY.........................................................4 2.1 ORGANISATION AND IMPLEMENTATION OF THE WASTE CHARACTERISATION....................................................................4 2.2 LIMITATIONS AND DIFFICULTIES......................................................6 3 RESULTS...................................................................7 3.1 GRANULOMETRY.............................................................................7 3.2 GRANULOMETRY.............................................................................8 3.2.1 Overall waste composition..................................................................8 3.2.2 Development of waste composition over the years..........................11 3.2.3 Waste composition per fraction........................................................12 3.3 STATISTICAL ANALYSIS.................................................................17
    [Show full text]
  • 17C.7 Atlantic Intense Hurricanes, 1995-2003 – Characteristics Based on Best Track, Aircraft, and Ir Images
    17C.7 ATLANTIC INTENSE HURRICANES, 1995-2003 – CHARACTERISTICS BASED ON BEST TRACK, AIRCRAFT, AND IR IMAGES Raymond Zehr* NOAA/NESDIS, Fort Collins, CO 1. INTRODUCTION 2. INTENSITY During the nine-year period 1995-2003, there Hurricane intensity is expressed as the have been 32 intense hurricanes in the Atlantic basin. associated maximum surface wind speed or as the Intense hurricanes are those that attain Saffir-Simpson minimum sea level pressure, which is inversely related Category 3 or higher (i.e. >100 kt wind maximum). A to the wind speed. The lowest minimum sea level distinct upturn in the frequency of intense hurricanes pressure (MSLP) is given in Table 1 along with the has occurred since 1995., with an annual average of 3.6 highest maximum surface wind speed (Vmax) in both intense hurricanes, compared with the long-term (1950- knots and standard units of m/s. It should be noted that 2000) average of 2.3. This change has been Best Track files give intensity measurements at 6-hour documented and discussed by Goldenberg, et al, intervals, which may not capture the maximum intensity. (2001). However, Tropical Prediction Center archives also Using “Best Track” data (Jarvinen and include an estimate of maximum intensity and its time of Neumann, 1979), ordered lists of various parameters occurrence. Hurricane Mitch (1998) was clearly the associated with each of the 32 intense hurricanes have most intense Atlantic hurricane since 1995 with 905 hPa been compiled. For example, the lowest minimum sea- and 155 kt, while the more typical Atlantic intense level pressure (MSLP) with each hurricane ranges from hurricane has MSLP and Vmax of about 940 hPa and 905 hPa with Mitch (1998) to 968 hPa with Erin (2001).
    [Show full text]
  • Verification of National Hurricane Center Forecasts of Extratropical Transition
    10C.2 Verification of National Hurricane Center Forecasts of Extratropical Transition John L. Beven II NOAA/NWS/NCEP/National Hurricane Center I. Introduction become TCs in a process known as tropical transition (Davis and Bosart 2004). More A great variety of cyclonic circulations commonly, TCs leaving the tropical environment exist in the atmosphere, each with its characteristic interact with baroclinic systems in the westerlies. structure and driving energy (Beven 1997, Figure This causes the TCs to become frontal or 1). Of particular interest is the tropical cyclone extratropical cyclones with the driving energy (TC), which has a warm-core non-frontal thermal derived from air mass contrast and the strongest structure generated by diabatic heat release from winds typically more than 100 km from the center, convective activity near the center. The strongest accompanied by significantly changed winds and heaviest rains in a tropical cyclone are precipitation patterns. This process is known as typically within 100 km of the center with extratropical transition (ET). maximum sustained winds sometimes as high as 90 ms-1. There are several studies of ET which highlight the many ways a TC can interact with a baroclinic environment and the variety of resulting structures. These include the Thorncroft and Jones (2000) study of Hurricane Iris which became a powerful baroclinic cyclone with a warm-core structure, the Abraham et al. (2004) study of Hurricane Michael, and the Beven (2002) study of interrupted and failed transitions. These studies show the complexity of the process, which can pose a significant challenge to TC forecasters trying to predict ET.
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]
  • The Whispering Trades
    The Whispering Trades VOLUME 1, ISSUE 1 National Weather Service | San Juan, Puerto Rico J U N E | 2 0 1 3 From the Desk of the Meteorologist In Charge By: Roberto García Since a very early age I have close coordination with the forecasters information on always been interested in National Hurricane Center. In precipitation intensity and weather, especially Miami, I had the experience of movement. Dual-polarization I N S I D E thunderstorms and hurricanes. forecasting weather conditions technology adds new T H I S My career in the National other than tropical weather, such information about the size and ISSUE: Weather Service started as a as winter freezes, severe shape of airborne objects, which part time employee at the thunderstorms and even will improve flash flood Fire Weather 2 Agricultural Weather Station in tornadoes. After more than 13 detection and warnings. “This College Station, Texas. This years in Miami, the Meteorologist radar upgrade will help us Summer 2 office was located within the In Charge position in San Juan provide better forecasts and Weather Texas A&M campus where I became available. warnings of flooding and was studying for my master’s severe weather for the Spanish 3 degree. I began working for the After applying and residents and visitors of Puerto Translators National Weather Service just being selected, I was Rico and the U.S. Virgin before finishing my master’s back in San Juan by Islands,” said Roberto García, Portugués 4 degree and have grown within September 2013. I Meteorologist-In-Charge (MIC) Dam Project the agency through the past 23 was born and raised of the National Weather Service office in San Juan, LANTEX 5 years to reach the position I R.García, SJU in Santurce, PR.
    [Show full text]
  • Remote Sensing-Based Flood Mapping and Flood Hazard Assessment in Haiti
    www.dartmouth.edu/~floods/ csdms.colorado.edu Remote Sensing-based Flood Mapping and Flood Hazard Assessment in Haiti “Rebuilding for Resilience: How Science and Engineering Can Inform Haiti's Reconstruction, March 22 - March 23, 2010, University of Miami - Coral Gables, FL Prof. G. Robert Brakenridge Dartmouth Flood Observatory, Dartmouth College, and Visiting Scientist, Community Surface Dynamics Modeling System, University of Colorado Dr. Scott D. Peckham (Presenter) Community Surface Dynamics Modeling System, University of Colorado 1) Floods commonly produce catastrophic damage in Haiti 2) Not all such floods are from tropical cyclones On May 18-25, 2004, a low-pressure system originating from Central America brought exceptionally heavy showers and thunderstorms to Haiti and the Dominican Republic. Rainfall amounts exceeded 500 mm (19.7 inches) across the border areas of Haiti and the Dominican Republic At the town of Jimani, DR, 250 mm (10 inches) of rain fell in just 24 hours. NASA Tropical Rainfall Measuring Mission (TRMM) data. Lethal Major Floods in the Dominican Republic / Haiti are a Near-Annual Event The Dartmouth Flood Observatory data archive dates back to 1985. Between 1986 and early 2004 (prior to Hurricane Jeanne in November), at least, fourteen lethal events impacted the island, including: Year Month Casualties 1986 early June >39 1986 late October 40 1988 early September - Hurricane Gilbert 237 1993 late May 20 1994 early November – Hurricane Gordon >1000 1996 mid November 18 1998 Late August – Hurricane Gustaf >22 1998 late September - Hurricane Georges >400 1999 late October - Hurricane Jose 4 2001 mid-May 15 2002 late May 30 2003 early December - Tropical Storm Odette 8 2003 mid-November 10 2004 late May >2000 NASA’s two MODIS sensors, Aqua and Terra, are an important flood mapping tool: • Visible and near IR spectral bands provide excellent land/water discrimination over wide areas.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]
  • Downloaded 09/25/21 11:52 PM UTC 948 MONTHLY WEATHER REVIEW VOLUME 128 Was Based Mainly on Surface Data (E.G., Sekioka 1956, Extratropical Weather Systems
    APRIL 2000 THORNCROFT AND JONES 947 The Extratropical Transitions of Hurricanes Felix and Iris in 1995 CHRIS THORNCROFT Department of Meteorology, University of Reading, Reading, United Kingdom SARAH C. JONES Meteorologisches Institut, UniversitaÈt MuÈnchen, Munich, Germany (Manuscript received 28 October 1998, in ®nal form 19 March 1999) ABSTRACT The extratropical transitions of Hurricanes Felix and Iris in 1995 are examined and compared. Both systems affected northwest Europe but only Iris developed signi®cantly as an extratropical system. In both cases the hurricane interacts with a preexisting extratropical system over the western Atlantic. The remnants of the exhurricanes can be identi®ed and tracked across the Atlantic as separate low-level potential vorticity (PV) anomalies. The nature of the baroclinic wave involved in the extratropical transition is described from a PV perspective and shown to differ signi®cantly between the two cases. The role of vertical shear in modifying the hurricane structure during the early phase of the transition is investigated. Iris moved into a region of strong shear. The high PV tower of Iris developed a marked downshear tilt. Felix moved into a vertically sheared environment also but the shear was weaker than for Iris and the PV tower of Felix did not tilt much. Iris maintained its warm-core structure as it tracked across relatively warm water. It moved into the center of a large-scale baroclinic cyclone. The superposition of the two systems gave rise to strong low-level winds. The resulting strong surface latent heat ¯uxes helped to keep the boundary layer equivalent potential temperature (ue) close to the saturated equivalent potential temperature of the underlying sea surface temperature.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction 1.1 General Background Semi-engineered buildings are often considered to be those built in an organized fashion with materials which are processed or engineered for the most part, but which include little or no formal structural engineering input during the design and construction stages. These structures along with non-engineered buildings are thought to constitute the majority of buildings typically built on an annual basis, particularly in developing countries. Even in developed countries such as the United States of America, semi-engineered residential buildings are very prevalent and often fare the worst after experiencing the effects of hurricanes. This is evidenced in the aftermath of the numerous storms that have ravaged the southern coast of the United States over the years. Hurricane Katrina was one of the strongest and most expensive storms to make landfall in the United States of America in recent history. The storm killed over 1,300 people and caused the destruction of thousands of homes in the states of Mississippi and Louisiana (FEMA April 2006). Of the buildings destroyed, the great majority was determined to be single family dwellings. Similarly, Hurricane Georges made landfall in Puerto Rico on September 21, 1998 and caused substantial damages to residential buildings. During this storm, it is reported that the majority of building losses were in \all-wood" residential buildings. The structural performance of buildings constructed of concrete and masonry, however, performed well, while those with
    [Show full text]
  • 10.7 Positive Feedback Regimes During Tropical Cyclone Passage
    10.7 POSITIVE FEEDBACK REGIMES DURING TROPICAL CYCLONE PASSAGE Lynn K. Shay Division of Meteorology and Physical Oceanography Rosenstiel School of Marine and Atmospheric Science University of Miami 1. INTRODUCTION Coupled oceanic and atmospheric models to accurately predict hurricane intensity and structure change will eventually be used to issue forecasts to the public who increasingly rely on the most advanced weather forecasting systems to prepare for landfall. Early ocean-atmosphere studies have emphasized the negative feedback between tropical cyclones and the ocean due to the cold wake beginning in back of the eye (Chang and Anthes 1978; Price 1981; Shay et al. 1992). The extent of this cooling in the cold wake is a function of vertical current shears (known as entrainment heat flux) that reduce the Richardson numbers to below criticality and subsequently cools and deepens the oceanic mixed layer (OML) through vigorous mixing. Notwithstanding, early studies did not consider the relative importance of deep, warm OML associated with Caribbean Current, Loop Current, Florida Current, Gulf Stream and the warm eddy field. Since pre-existing ocean current structure advects deep, warm thermal layers, cooling induced by these physical Figure 1: a) Hurricane image and b) a cartoon showing processes (Fig.~1) is considerably less (e.g. less physical processes forced by hurricane winds. negative feedback) as more turbulent-induced mixing is required to cool and deepen the OML. Central to the and Airborne eXpendable Bathythermographs deployed atmospheric response is the amount of heat in the OML during a joint NSF/NOAA experiment from several or ocean heat content (OHC) relative to the depth of the aircraft flights in hurricanes Isidore and Lili (2002) are o 26 C isotherm (Leipper and Volgenau 1972).
    [Show full text]
  • Programme Update No.2
    CARIBBEAN 20 November 20001 This Programme Update is intended for reporting on Annual Appeals. Appeal No. 01.32/2001 Appeal Target CHF 3,958,408 Programme Update No. 2 Period covered: 1 April - 30 September, 2001 (last Programme Update issued 28 May 2001 “At a Glance” Appeal coverage: 51.3% Related Appeals: 33/01 Belize: Hurricane Iris Outstanding needs: CHF 2,403,932 Update: A regional disaster preparedness delegate, a regional information and reporting delegate and a regional finance and administration delegate reinforced the delegation in Santo Domingo during the reporting period. Significant progress was achieved in the area of organizational development as several National Societies undertook the formulation of national development plans and the revision of Statutes. Work on the development of the HIV/AIDS strategy in the region continued and initiatives were taken to further the integration of overseas chapters and branches in Federation programming. Lack of funding for both the regional delegation and the regional programmes may affect implementation of activities in the fourth quarter. Operational Developments: Like the rest of the world, the Caribbean was seriously affected by the impact of the terrorist attacks in the United States on 11 September and their aftermath. An as yet unknown number of citizens of Caribbean states died in the attacks - unknown, because some of those who were killed were undocumented immigrants whose presence in the United States was illegal and unrecorded. The disaster spread grief and shock throughout the region, and Caribbean National Societies (NSs), assisted by the Federation Regional Delegation (RD), rushed to activate tracing mechanisms. The long-term impact on the region of the 11 September events is expected to be negative.
    [Show full text]