Chapter 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Introduction Chapter 1 Introduction 1.1 General Background Semi-engineered buildings are often considered to be those built in an organized fashion with materials which are processed or engineered for the most part, but which include little or no formal structural engineering input during the design and construction stages. These structures along with non-engineered buildings are thought to constitute the majority of buildings typically built on an annual basis, particularly in developing countries. Even in developed countries such as the United States of America, semi-engineered residential buildings are very prevalent and often fare the worst after experiencing the effects of hurricanes. This is evidenced in the aftermath of the numerous storms that have ravaged the southern coast of the United States over the years. Hurricane Katrina was one of the strongest and most expensive storms to make landfall in the United States of America in recent history. The storm killed over 1,300 people and caused the destruction of thousands of homes in the states of Mississippi and Louisiana (FEMA April 2006). Of the buildings destroyed, the great majority was determined to be single family dwellings. Similarly, Hurricane Georges made landfall in Puerto Rico on September 21, 1998 and caused substantial damages to residential buildings. During this storm, it is reported that the majority of building losses were in \all-wood" residential buildings. The structural performance of buildings constructed of concrete and masonry, however, performed well, while those with timber framed roofs saw substantial failures (FEMA March 1999). Contrary to this, properly built \semi-engineered buildings" have often survived the effects of significant hurricanes, including many that were observed by the au- thor after major wind events such Hurricane Keith of 2000, Hurricane Iris of 2001, Hurricane Richard of 2010, Hurricane Earl of 2016 and most recently Hurricanes 1 (a) Semi-engineered roofs intact after a (b) Entire building shifted from its original major hurricane position as a result of a moderate hurricane Figure 1.1: Semi-Engineered Buildings After Extreme Windstorms (Hurricane Hattie of 1961 and Hurricane Iris of 2001) Photos by D. Dawson and C. Johnson taken from thinkquest.org Irma and Maria of 2017. Noteworthy is the fact that many of the observed failures are as a result of the breakdown of connections of the roof framing systems more so than actual failure of the main framing components themselves. Such behaviors have reinforced the belief that one of the key to the successful performance of such roof structures subjected to extreme wind storms is indeed the configuration and makeup of the joints more so than the general member sizes and arrangements of the main structural components of the roof. With this fundamental premise, it is rea- sonable to assume that data can be gathered from a particular area that represents typical roof construction details; and be combined with engineering principles to develop an analytical tool that can be used to estimate the structural vulnerability of a particular semi-engineered roof system to extreme wind loads. While it is appreciated that such a tool would not replace rigorous engineering methods to perform structural analysis, such a tool could indeed replace or sup- plement current risk assessment methods that are probability based or those that are based on field experiences of local engineers. Additionally it is also appreciated that semi-engineered buildings are not constructed with any rigorous quality control processes that would guarantee a certain level of quality or consistency. Nonethe- less, the development of such a protocol, that can assist in the rapid evaluation of semi-engineered roof systems is the aim of the research. In Figure 1.1 the image to the left shows semiengineered roofs intact after a major hurricane. The image to 2 (a) Significant roof damage caused by (b) Total roof failure along with collapse of extreme winds the reinforced masonry and concrete building frame as a result of extreme winds Figure 1.2: Semi-Engineered Buildings After Hurricane Irma of 2017 (Photo by Author in September 2017 British Virgin Islands ,Tortola) the right shows the entire building shifted from its original position as a result of a moderate hurricane. Figure 1.2 shows Semi-Engineered Buildings After Hurricane Irma of 2017. The image on the left shows significant roof damage caused by extreme winds. The image to the right shows total roof failure along with collapse of the reinforced ma- sonry and concrete building frame as a result of extreme winds. These photos were taken by the author in September 2017 at British Virgin Islands (Tortola) after the on field post storm damage assessment. Material types and techniques utilized in the construction of semi-engineered buildings are typically dependent on factors such as local availability, construction traditions, and economic considerations. In many parts of the United States for instance, residential buildings are often mass produced timber framed structures which are clad with various forms of facades such as stucco and other non-structural systems. In Mumbai on the other hand, the more substantial residential buildings are predominantly of multi leveled rein- forced concrete structures with reinforced concrete roofs; while in the Caribbean and much of Central America, a combination of reinforced concrete and concrete masonry structures with timber framed roof is often the system of choice for semi- engineered and engineered residential buildings. Nonetheless, the east coast and to a lesser extent the west coast of India, the south-east coast of the United States, and virtually the entire Caribbean and Central American regions are all highly pop- ulated with semi-engineered residential buildings which are all susceptible to the 3 effects of extreme wind storms. The fundamental problem that must be address is the fact that the millions of people that do occupy these non-engineered and semi- engineered buildings are vulnerable and are affected by the effects of wind storms on an annual basis, yet with proper evaluation and moderate modifications to the detailing of many of these structures, their abilities to resist extreme wind storms can be enhanced significantly. This will ultimately save lives and properties. 1.2 Nature of Windstorms In the East Pacific Ocean, Atlantic Ocean, and Caribbean Sea, tropical cyclones are generally referred to as hurricanes. In the Western Pacific region they are more often referred to as typhoons, and simply cyclones in the areas surrounding the In- dian Ocean. Wind flow in hurricane and cyclone systems follows a counter clockwise rotational pattern in the Northern Hemisphere and a clockwise rotational pattern in the Southern Hemisphere. Due to their nature, the life spans of tropical cyclones range from as little as several hours to as much as several weeks, and are often more predictable in intensity and path than other natural hazards such as tornadoes and earthquakes. Nevertheless, even with the availability of fairly accurate path predic- tion computer models and reasonable knowledge of their damage potential, scores of towns and villages across the globe are still adversely affected by these events on an annual basis. Table 1.1, illustrates the severity of the impact of some of the most Table 1.1: Dangerous Cyclones of The Past Year Location Casualties 7 October, 1737 Bengal, India Over 300,000 10 October, 1780 Caribbean Islands 20,000 to 30,000 5 October, 1864 Calcutta, India 50,000 to 70,000 1876 Bengal India 200,000 1881 Haiphong, Vietnam 300,000 6 June 1882 Bombay, India Over 100,000 16 October 1942 Bengal, India Over 35,000 28 May, 1963 Bangladesh 22,000 May 1965 Bangladesh 35,000 to 40,000 13 November 1970 Bangladesh 500,000 to 1,000,000 (taken from Thinkquest.org) 4 damaging cyclones of the past. Notable is the fact that the great majority of these listed events have developed in the Indian Ocean near very significant population centers. Tropical cyclones are classified by various scales such as the Saffir-Simpson Scale, the Beaufort's Scale and Japan's Meteorological Agency's Scale. Table 1.2 illustrates the Saffir-Simpson Scale which was originally developed in the 1970's by Herbert Saffir and Robert Simpson (FEMA, July 2000 [2]). The wind velocities shown in the table are based on an averaging time of 1 minute at 33 feet above open water and typically referred to as \Sustained Wind Speeds". It is important to note that 1 [mph 1.609 km/hr] (1 minute average) is approximately equivalent to 1.25 mph [2.011 km/hr] (3 seconds average). Table 1.3, illustrates an approximate relationship Table 1.2: Saffir Simpson Scale Hurricane Sustained Wind Damage Category Velocities Potential 1 74-95 mph Minimal (33-42.5 mps) 2 I 96-110 mph Moderate (43 - 49 mps) 3 I 111-130 mph Extensive (49- 58 mps) 4 I 131-155 mph Extreme (58 - 69 mps) 5 I 155 mph Catastrophic (69 mps) between the scale utilized by the Regional Specialized Meteorological Center in New Dehli and the Saffir-Simpson Scale. Adjustments have been made to account for the fact that one scale allows for a 1 minute averaging time while the other is based on a 10 minute averaging time. The averaging time adjustment is based on the Krayer-Marshall correlation curve developed in 1992. Unlike tropical cyclones, tornados are essentially violent cyclonic events that typically span from thunderstorm systems to the ground and produce wind loads similar to that of tropical cyclones with the exception that load levels can be much more significant, load duration shorter and the wind patterns may differ due to the much smaller diameter of the system. Another key difference between the tropical cyclones and tornadoes is the source of their power.
Recommended publications
  • Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development
    FINAL REPORT ON WASTE MANAGEMENT WASTE CHARACTERISATION STRATEGY FOR THE BRITISH J U L Y 2 0 1 9 VIRGIN ISLANDS Ref. 32-BV-2018Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development TABLE OF CONTENTS LIST OF ACRONYMS..............................................................................2 1 INTRODUCTION.........................................................3 1.1 BACKGROUND OF THE STUDY..........................................................3 1.2 SUBJECT OF THE PRESENT REPORT..................................................3 1.3 OBJECTIVE OF THE WASTE CHARACTERISATION................................3 2 METHODOLOGY.........................................................4 2.1 ORGANISATION AND IMPLEMENTATION OF THE WASTE CHARACTERISATION....................................................................4 2.2 LIMITATIONS AND DIFFICULTIES......................................................6 3 RESULTS...................................................................7 3.1 GRANULOMETRY.............................................................................7 3.2 GRANULOMETRY.............................................................................8 3.2.1 Overall waste composition..................................................................8 3.2.2 Development of waste composition over the years..........................11 3.2.3 Waste composition per fraction........................................................12 3.3 STATISTICAL ANALYSIS.................................................................17
    [Show full text]
  • 17C.7 Atlantic Intense Hurricanes, 1995-2003 – Characteristics Based on Best Track, Aircraft, and Ir Images
    17C.7 ATLANTIC INTENSE HURRICANES, 1995-2003 – CHARACTERISTICS BASED ON BEST TRACK, AIRCRAFT, AND IR IMAGES Raymond Zehr* NOAA/NESDIS, Fort Collins, CO 1. INTRODUCTION 2. INTENSITY During the nine-year period 1995-2003, there Hurricane intensity is expressed as the have been 32 intense hurricanes in the Atlantic basin. associated maximum surface wind speed or as the Intense hurricanes are those that attain Saffir-Simpson minimum sea level pressure, which is inversely related Category 3 or higher (i.e. >100 kt wind maximum). A to the wind speed. The lowest minimum sea level distinct upturn in the frequency of intense hurricanes pressure (MSLP) is given in Table 1 along with the has occurred since 1995., with an annual average of 3.6 highest maximum surface wind speed (Vmax) in both intense hurricanes, compared with the long-term (1950- knots and standard units of m/s. It should be noted that 2000) average of 2.3. This change has been Best Track files give intensity measurements at 6-hour documented and discussed by Goldenberg, et al, intervals, which may not capture the maximum intensity. (2001). However, Tropical Prediction Center archives also Using “Best Track” data (Jarvinen and include an estimate of maximum intensity and its time of Neumann, 1979), ordered lists of various parameters occurrence. Hurricane Mitch (1998) was clearly the associated with each of the 32 intense hurricanes have most intense Atlantic hurricane since 1995 with 905 hPa been compiled. For example, the lowest minimum sea- and 155 kt, while the more typical Atlantic intense level pressure (MSLP) with each hurricane ranges from hurricane has MSLP and Vmax of about 940 hPa and 905 hPa with Mitch (1998) to 968 hPa with Erin (2001).
    [Show full text]
  • Belize), and Distribution in Yucatan
    University of Neuchâtel, Switzerland Institut of Zoology Ecology of the Black Catbird, Melanoptila glabrirostris, at Shipstern Nature Reserve (Belize), and distribution in Yucatan. J.Laesser Annick Morgenthaler May 2003 Master thesis supervised by Prof. Claude Mermod and Dr. Louis-Félix Bersier CONTENTS INTRODUCTION 1. Aim and description of the study 2. Geographic setting 2.1. Yucatan peninsula 2.2. Belize 2.3. Shipstern Nature Reserve 2.3.1. History and previous studies 2.3.2. Climate 2.3.3. Geology and soils 2.3.4. Vegetation 2.3.5. Fauna 3. The Black Catbird 3.1. Taxonomy 3.2. Description 3.3. Breeding 3.4. Ecology and biology 3.5. Distribution and threats 3.6. Current protection measures FIRST PART: BIOLOGY, HABITAT AND DENSITY AT SHIPSTERN 4. Materials and methods 4.1. Census 4.1.1. Territory mapping 4.1.2. Transect point-count 4.2. Sizing and ringing 4.3. Nest survey (from hide) 5. Results 5.1. Biology 5.1.1. Morphometry 5.1.2. Nesting 5.1.3. Diet 5.1.4. Competition and predation 5.2. Habitat use and population density 5.2.1. Population density 5.2.2. Habitat use 5.2.3. Banded individuals monitoring 5.2.4. Distribution through the Reserve 6. Discussion 6.1. Biology 6.2. Habitat use and population density SECOND PART: DISTRIBUTION AND HABITATS THROUGHOUT THE RANGE 7. Materials and methods 7.1. Data collection 7.2. Visit to others sites 8. Results 8.1. Data compilation 8.2. Visited places 8.2.1. Corozalito (south of Shipstern lagoon) 8.2.2.
    [Show full text]
  • Verification of National Hurricane Center Forecasts of Extratropical Transition
    10C.2 Verification of National Hurricane Center Forecasts of Extratropical Transition John L. Beven II NOAA/NWS/NCEP/National Hurricane Center I. Introduction become TCs in a process known as tropical transition (Davis and Bosart 2004). More A great variety of cyclonic circulations commonly, TCs leaving the tropical environment exist in the atmosphere, each with its characteristic interact with baroclinic systems in the westerlies. structure and driving energy (Beven 1997, Figure This causes the TCs to become frontal or 1). Of particular interest is the tropical cyclone extratropical cyclones with the driving energy (TC), which has a warm-core non-frontal thermal derived from air mass contrast and the strongest structure generated by diabatic heat release from winds typically more than 100 km from the center, convective activity near the center. The strongest accompanied by significantly changed winds and heaviest rains in a tropical cyclone are precipitation patterns. This process is known as typically within 100 km of the center with extratropical transition (ET). maximum sustained winds sometimes as high as 90 ms-1. There are several studies of ET which highlight the many ways a TC can interact with a baroclinic environment and the variety of resulting structures. These include the Thorncroft and Jones (2000) study of Hurricane Iris which became a powerful baroclinic cyclone with a warm-core structure, the Abraham et al. (2004) study of Hurricane Michael, and the Beven (2002) study of interrupted and failed transitions. These studies show the complexity of the process, which can pose a significant challenge to TC forecasters trying to predict ET.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • 5000 Year Sedimentary Record of Hurricane Strikes on the Central Coast of Belize
    ARTICLE IN PRESS Quaternary International 195 (2009) 53–68 5000 year sedimentary record of hurricane strikes on the central coast of Belize T.A. McCloskeyÃ, G. Keller Department of Geosciences, Princeton University, Princeton, NJ 08544, USA Available online 14 March 2008 Abstract The central coast of Belize has been subject to hurricane strikes throughout recorded history with immense human and material cost to the Belizean people. What remains unknown is the long-term frequency of hurricane strikes and the effects such storms may have had on the ancient Maya civilization. Our sedimentary study of major hurricane strikes over the past 5000 years provides preliminary insights. We calculate that over the past 500 years major hurricanes have struck the Belize coast on average once every decade. One giant hurricane with probably particularly catastrophic consequences struck Belize sometime before AD 1500. A temporal clustering of hurricanes suggests two periods of hyperactivity between 4500 and 2500 14C yr BP, which supports a regional model of latitudinal migration of hurricane strike zones. Our preliminary hurricane data, including the extreme apparent size of the giant event, suggest that prehistoric hurricanes were capable of having exerted significant environmental stress in Maya antiquity. r 2008 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction (2001) (Fig. 1). All of these hurricanes devastated coastal towns, except for Iris (2001), which made landfall in a Hurricanes are capable of exerting tremendous societal relatively unpopulated area near Monkey River and stress. In the North Atlantic Basin, which includes the Gulf devastated the tropical forest. The immense human and of Mexico and Caribbean Sea, hurricanes have killed material costs to the Belizean people are well documented.
    [Show full text]
  • Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team
    SUMMARY OF 2000 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHORS' SEASONAL ACTIVITY FORECAST A Successful Forecast of an Active Hurricane Season - But (Fortunately) Below Average Cyclone Landfall and Destruction (as of 21 November 2000) By William M. Gray,* Christopher W. Landsea**, Paul W. Mielke, Jr., Kenneth J. Berry***, and Eric Blake**** [with advice and assistance from Todd Kimberlain and William Thorson*****] * Professor of Atmospheric Science ** Meteorologist with NOAA?AOML HRD Lab., Miami, Fl. *** Professor of Statistics **** Graduate Student ***** Dept. of Atmospheric Science [David Weymiller and Thomas Milligan, Colorado State University Media Representatives (970-491- 6432) are available to answer questions about this forecast.] Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Phone Number: 970-491-8681 Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team Front Row - left to right: John Knaff, Ken Berry, Paul Mielke, John Scheaffer, Rick Taft. Back Row - left to right: Bill Thorson, Bill Gray, and Chris Landsea. SUMMARY OF 2000 SEASONAL FORECASTS AND VERIFICATION Sequence of Forecast Updates Tropical Cyclone Seasonal 8 Dec 99 7 Apr 00 7 Jun 00 4 Aug 00 Observed Parameters (1950-90 Ave.) Forecast Forecast Forecast Forecast 2000 Totals* Named Storms (NS) (9.3) 11 11 12 11 14 Named Storm Days (NSD) (46.9) 55 55 65 55 66 Hurricanes (H)(5.8) 7 7 8 7 8 Hurricane Days (HD)(23.7) 25 25 35 30 32 Intense Hurricanes (IH) (2.2) 3 3 4 3 3 Intense Hurricane Days (IHD)(4.7) 6 6 8 6 5.25 Hurricane Destruction Potential (HDP) (70.6) 85 85 100 90 85 Maximum Potential Destruction (MPD) (61.7) 70 70 75 70 78 Net Tropical Cyclone Activity (NTC)(100%) 125 125 160 130 134 *A few of the numbers may change slightly in the National Hurricane Center's final tabulation VERIFICATION OF 2000 MAJOR HURRICANE LANDFALL Forecast Probability and Climatology for last Observed 100 years (in parentheses) 1.
    [Show full text]
  • Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
    3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8.
    [Show full text]
  • Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SKILL OF SYNTHETIC SUPERENSEMBLE HURRICANE FORECASTS FOR THE CANADIAN MARITIME PROVINCES By HEATHER LYNN SZYMCZAK A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2004 The members of the Committee approve the Thesis of Heather Szymczak defended on 26 October 2004. _________________________________ T.N. Krishnamurti Professor Directing Thesis _________________________________ Philip Cunningham Committee Member _________________________________ Robert Hart Committee Member Approved: ____________________________________________ Robert Ellingson, Chair, Department of Meteorology ____________________________________________ Donald Foss, Dean, College of Arts and Science The Office of Graduate Studies has verified and approved the above named committee members. ii I would like to dedicate my work to my parents, Tom and Linda Szymczak, for their unending love and support throughout my long academic career. iii ACKNOWLEDGEMENTS First and foremost, I would like to extend my deepest gratitude to my major professor, Dr. T.N. Krishnamurti, for all his ideas, support, and guidance during my time here at Florida State. I would like to thank my committee members, Drs. Philip Cunningham and Robert Hart for all of their valuable help and suggestions. I would also like to extend my gratitude to Peter Bowyer at the Canadian Hurricane Centre for his help with the Canadian Hurricane Climatology.
    [Show full text]
  • Spatial and Temporal Variability of Tropical Storm and Hurricane Strikes
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2007 Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles Alexa Jo Andrews Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Andrews, Alexa Jo, "Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles" (2007). LSU Master's Theses. 3558. https://digitalcommons.lsu.edu/gradschool_theses/3558 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SPATIAL AND TEMPORAL VARIABILITY OF TROPICAL STORM AND HURRICANE STRIKES IN THE BAHAMAS, AND THE GREATER AND LESSER ANTILLES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Alexa Jo Andrews B.S., Louisiana State University, 2004 December, 2007 Table of Contents List of Tables.........................................................................................................................iii
    [Show full text]
  • Belize: Hurricane Iris
    BELIZE: HURRICANE IRIS 30 August 2002 This Final Report is intended for reporting on emergency appeals The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in 178 countries. For more information: www.ifrc.org Appeal No. 33/01; Launched on: 12 October 2001 for three months for CHF 655,000 to assist 4,350 beneficiaries. Extended by four months to 31 May 2002. Disaster Relief Emergency Fund (DREF) Allocated: None IN BRIEF Appeal coverage: 100.6% Related Appeals 01.32/2001; 01.23/2002 Caribbean Summary w Hurricane Iris, a category 4 hurricane, struck the southern coast of Belize on 8 October 2001, tearing apart houses and community buildings, ripping up trees and electricity lines, and flattening standing crops across an arc of coastal plain some sixty kilometres long and thirty kilometres wide throughout Toledo district. The southern area of Stann Creek district was also affected. An airborne and ground assessment was carried out on 10 October 2001 by Federation and Belize Red Cross Society (BRCS) staff. Subsequently, a detailed village-by-village assessment of the impacted areas was carried out by BRCS personnel from the Toledo branch in Punta Gorda. Based upon assessments and coordination with different organizations, 14 villages in the Toledo district were selected for assistance by the Toledo BRCS branch, for which the Federation launched an appeal on 12 October 2001, to assist 4,800 beneficiaries for three months. Remaining areas not covered by the Toledo branch were assisted by the National Emergency Management Organization (NEMO).
    [Show full text]