Programme Update No.2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S. -
Downloaded 09/25/21 11:52 PM UTC 948 MONTHLY WEATHER REVIEW VOLUME 128 Was Based Mainly on Surface Data (E.G., Sekioka 1956, Extratropical Weather Systems
APRIL 2000 THORNCROFT AND JONES 947 The Extratropical Transitions of Hurricanes Felix and Iris in 1995 CHRIS THORNCROFT Department of Meteorology, University of Reading, Reading, United Kingdom SARAH C. JONES Meteorologisches Institut, UniversitaÈt MuÈnchen, Munich, Germany (Manuscript received 28 October 1998, in ®nal form 19 March 1999) ABSTRACT The extratropical transitions of Hurricanes Felix and Iris in 1995 are examined and compared. Both systems affected northwest Europe but only Iris developed signi®cantly as an extratropical system. In both cases the hurricane interacts with a preexisting extratropical system over the western Atlantic. The remnants of the exhurricanes can be identi®ed and tracked across the Atlantic as separate low-level potential vorticity (PV) anomalies. The nature of the baroclinic wave involved in the extratropical transition is described from a PV perspective and shown to differ signi®cantly between the two cases. The role of vertical shear in modifying the hurricane structure during the early phase of the transition is investigated. Iris moved into a region of strong shear. The high PV tower of Iris developed a marked downshear tilt. Felix moved into a vertically sheared environment also but the shear was weaker than for Iris and the PV tower of Felix did not tilt much. Iris maintained its warm-core structure as it tracked across relatively warm water. It moved into the center of a large-scale baroclinic cyclone. The superposition of the two systems gave rise to strong low-level winds. The resulting strong surface latent heat ¯uxes helped to keep the boundary layer equivalent potential temperature (ue) close to the saturated equivalent potential temperature of the underlying sea surface temperature. -
Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SKILL OF SYNTHETIC SUPERENSEMBLE HURRICANE FORECASTS FOR THE CANADIAN MARITIME PROVINCES By HEATHER LYNN SZYMCZAK A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2004 The members of the Committee approve the Thesis of Heather Szymczak defended on 26 October 2004. _________________________________ T.N. Krishnamurti Professor Directing Thesis _________________________________ Philip Cunningham Committee Member _________________________________ Robert Hart Committee Member Approved: ____________________________________________ Robert Ellingson, Chair, Department of Meteorology ____________________________________________ Donald Foss, Dean, College of Arts and Science The Office of Graduate Studies has verified and approved the above named committee members. ii I would like to dedicate my work to my parents, Tom and Linda Szymczak, for their unending love and support throughout my long academic career. iii ACKNOWLEDGEMENTS First and foremost, I would like to extend my deepest gratitude to my major professor, Dr. T.N. Krishnamurti, for all his ideas, support, and guidance during my time here at Florida State. I would like to thank my committee members, Drs. Philip Cunningham and Robert Hart for all of their valuable help and suggestions. I would also like to extend my gratitude to Peter Bowyer at the Canadian Hurricane Centre for his help with the Canadian Hurricane Climatology. -
Spatial and Temporal Variability of Tropical Storm and Hurricane Strikes
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2007 Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles Alexa Jo Andrews Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Andrews, Alexa Jo, "Spatial and temporal variability of tropical storm and hurricane strikes in the Bahamas, and the Greater and Lesser Antilles" (2007). LSU Master's Theses. 3558. https://digitalcommons.lsu.edu/gradschool_theses/3558 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SPATIAL AND TEMPORAL VARIABILITY OF TROPICAL STORM AND HURRICANE STRIKES IN THE BAHAMAS, AND THE GREATER AND LESSER ANTILLES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Alexa Jo Andrews B.S., Louisiana State University, 2004 December, 2007 Table of Contents List of Tables.........................................................................................................................iii -
Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery
172 WEATHER AND FORECASTING VOLUME 13 Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery CHRISTOPHER S. VELDEN AND TIMOTHY L. OLANDER Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin RAYMOND M. ZEHR Regional and Mesoscale Meteorology Branch, NOAA/NESDIS, Fort Collins, Colorado (Manuscript received 17 July 1996, in ®nal form 10 August 1997) ABSTRACT The standard method for estimating the intensity of tropical cyclones is based on satellite observations (Dvorak technique) and is utilized operationally by tropical analysis centers around the world. The technique relies on image pattern recognition along with analyst interpretation of empirically based rules regarding the vigor and organization of convection surrounding the storm center. While this method performs well enough in most cases to be employed operationally, there are situations when analyst judgment can lead to discrepancies between different analysis centers estimating the same storm. In an attempt to eliminate this subjectivity, a computer-based algorithm that operates objectively on digital infrared information has been developed. An original version of this algorithm (engineered primarily by the third author) has been signi®cantly modi®ed and advanced to include selected ``Dvorak rules,'' additional constraints, and a time-averaging scheme. This modi®ed version, the Objective Dvorak Technique (ODT), is applicable to tropical cyclones that have attained tropical storm or hurricane strength. The performance of the ODT is evaluated on cases from the 1995 and 1996 Atlantic hurricane seasons. Reconnaissance aircraft measurements of minimum surface pressure are used to validate the satellite-based estimates. Statistical analysis indicates the technique to be competitive with, and in some cases superior to, the Dvorak-based intensity estimates produced operationally by satellite analysts from tropical analysis centers. -
Economic Impact of Disasters: Evidence from DALA Assessments by ECLAC in Latin America and the Caribbean
ECLAC SUBREGIONAL OFFICE IN MEXICO S E R I estudios y perspectivas 117 Economic impact of disasters: Evidence from DALA assessments by ECLAC in Latin America and the Caribbean Ricardo Zapata Benjamín Madrigal ECLAC Subregional Office in Mexico Mexico City, November 2009 This document has been prepared by Ricardo Zapata Martí, Regional Advisor and Regional Focal Point for Disaster Evaluation of the Disaster Evaluation Unit, ECLAC, with the collaboration of Benjamín Madrigal. The views expressed in this document, which has been reproduced without formal editing, are those of the authors and do not necessarily reflect the views of the Organization. United Nations Publication ISSN printed version 1680-8800 ISSN online version 1684-0364 ISBN: 978-92-1-121731-5 LC/L.3172-P LC/MEX/L.941 Sales No.: E.09.II.G.146 Copyright © United Nations, November 2009. All rights reserved Printed in United Nations, Mexico City, Mexico Applications for the right to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. Member States and their governmental institutions may reproduce this work without prior authorization, but are requested to mention the source and inform the United Nations of such reproduction. CEPAL - Serie Estudios y perspectivas – Mexico – No 117 Economic impact of disasters: Evidence from DALA … Table of contents Abstract ............................................................................................ 5 I. Disasters, impact on development indices as observed in Latin America and the Caribbean.............................................. 7 1. Summary of impact of disasters in economic terms................... 7 2. Absolute and relative economic impact of disasters in Latin America and the Caribbean (LAC). -
Summary of 2001 Atlantic Tropical Cyclone Activity and Verification of Authors' Seasonal Activity Forecast
SUMMARY OF 2001 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHORS' SEASONAL ACTIVITY FORECAST A Successful Forecast of an Active Hurricane Season - But the 2nd Consecutive Year Without US Hurricane Landfall (as of 20 November 2001) By William M. Gray1, Christopher W. Landsea2, Eric Blake3, Paul W. Mielke, Jr. and Kenneth J. Berry4 [with advice and assistance from Philip Klotzbach5 and William Thorson6] 1Professor of Atmospheric Science 2Meteorologist with NOAA/AOML HRD Lab., Miami, FL 3Graduate Student 4Professors of Statistics 5Graduate Student 6Research Associate [Thomas Milligan or Jennifer Dimas, Colorado State University Media Representatives (970-491-6432) are available to answer questions about this forecast.] Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Phone Number: 970-491-8681 The following appeared as a misprint in the Fort Collins Coloradoan Newspaper on 22 May 2001 - referring to NOAA's mid-May forecast. We wonder how the verification is going?........... SUMMARY OF 2001 SEASONAL FORECASTS AND VERIFICATION Sequence of Forecast Updates Tropical Cyclone Seasonal 7 Dec 00 6 Apr 01 7 Jun 01 7 Aug 01 * Parameters (1950-90 Ave.) Forecast Forecast Forecast Forecast Observed 2001 Totals Named Storms (NS) (9.3) 9 10 12 12 14 Named Storm Days (NSD) (46.9) 45 50 60 60 59 Hurricanes (H)(5.8) 5 6 7 7 8 Hurricane Days (HD)(23.7) 20 25 30 30 24 Intense Hurricanes (IH) (2.2) 2 2 3 3 4 Intense Hurricane Days (IHD)(4.7) 4 4 5 5 5 Hurricane Destruction Potential (HDP) (70.6) 65 65 75 75 65 Maximum Potential Destruction (MPD) (61.7) 60 60 70 70 83 Net Tropical Cyclone Activity (NTC)(100%) 90 100 120 120 132 *A few of the numbers may change slightly in the National Hurricane Center's final tabulation VERIFICATION OF 2001 MAJOR HURRICANE LANDFALL FORECAST Forecast Probability of one or more cyclones and the Observed Climatology for the last 100 Years (in parentheses) 1. -
Impacts of Climate Change on Settlements and Infrastructure in the Coastal and Marine Environments of Caribbean Small Island Developing States (SIDS)
CARIBBEAN MARINE CLIMATE CHANGE REPORT CARD: SCIENCE REVIEW 2017 Science Review 2017: pp 155-173. Impacts of Climate Change on Settlements and Infrastructure in the Coastal and Marine Environments of Caribbean Small Island Developing States (SIDS) Adrian Cashman, Mohammad R. Nagdee Centre for Resource Management and Environmental Studies, University of the West Indies, Cave Hill Campus, Bridgetown, Barbados EXECUTIVE SUMMARY Since the early 1960s much of the coastal area of the Caribbean has undergone a change in land use, from being primarily agricultural, to become increasingly residential, commercial, and tourism orientated. Areas that were previously undesirable for settlement were increasingly developed. This has led to a concentration of infrastructure and wealth in low lying coastal areas, prone to multiple natural hazards, the impacts of which are being exacerbated by climate change. Climate change projections for the Caribbean suggest that sea levels will rise by as much as 1.4 m by the end of the century increasing coastal flooding brought about by variations in storm surge extreme events superimposed on these rising sea levels. This is likely to lead to an acceleration of severe damage to coastal settlements, with the accompanying impacts on national economies. Predictions of the impact of climate change on hurricane activity suggest an increase in frequency of higher category events. Changes in temperature and rainfall indicate a general warming and drying trend, varying across the Region. The drying has two components; a reduction in total rainfall, and longer dry period accompanied by more intense rainfall. These changes imply increasing frequency and severity of pluvial flooding. The economic impacts will pose a severe challenge to the Region. -
P32-37 Alicia Barcena.Indd
Disaster Management The increasing risk of disasters in the Caribbean Dr Alicia Bárcena Ibarra, Executive Secretary, United Nations Economic Commission for Latin America and the Caribbean (ECLAC) Hazards systemic development policy requires Evidence presented in the Fourth Assessment of the materialise incorporating the issue of disaster risk Intergovernmental Panel on Climate Change as to the A reduction as part of the strategic themes vulnerability of the Latin American region, on Small into disasters linked to integration, productivity and competitiveness Island States and specifically on the Caribbean supports and social equity. This is particularly true in small this notion. But the Caribbean people don’t need to be on a regular developing countries and in small island states given told this, they know and experience, that not only is basis but their exposure to natural events – mainly climatic in the hurricane season stronger, it has changed, it begins nature – and their insufficiently diversified economies earlier, has more events and lasts longer (as Paloma in these hazards that tend to be highly dependent on natural resources. 2008 proved again). are changing, The ACS Member States (either island economies The valuations made of recent disasters, from 2004- or countries bordering the Atlantic coast in the Central 08 assessed by ECLAC and the functioning of the accelerating American isthmus) are linked intrinsically by the Caribbean Catastrophe Risk Insurance Facility (CCRIF) pace and Caribbean Sea. One consequence of that link is that they – that made its first payment to the Turks and Caicos have much more at stake in the face of hydro-climatic islands due to the government on their 2008 hurricane increasing in events than larger continental countries. -
Atlantic Hurricane Season of 1995
1124 MONTHLY WEATHER REVIEW VOLUME 126 Atlantic Hurricane Season of 1995 M. B. LAWRENCE,B.M.MAYFIELD,L.A.AVILA,R.J.PASCH, AND E. N. RAPPAPORT National Hurricane Center, Tropical Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, Miami, Florida (Manuscript received 3 September 1996, in ®nal form 13 February 1997) ABSTRACT The 1995 Atlantic hurricane season is described. There were eight tropical storms and 11 hurricanes for a total of 19 named tropical cyclones in the Atlantic basin during 1995. This is the second-largest number of tropical storms and hurricanes in over 100 years of records. Thirteen named tropical cyclones affected land. 1. Introduction winds and lowest surface pressure. It is reliably located This report continues a tradition of Monthly Weather from both satellite and aircraft data. The intensity is Review annual summaries of Atlantic basin tropical cy- more dif®cult to determine, as it is de®ned as the max- clone activity that goes back to the year 1881. An over- imum 1-min surface (10 m) wind speed, anywhere with- view of the season is given in section 2. Section 3 is a in the tropical cyclone circulation. mostly chronological description of the track and in- The location of the maximum wind speed could be tensity of each tropical storm and hurricane in the At- anywhere within 50 km or more from the center, so that lantic Ocean, Caribbean Sea, or Gulf of Mexico during a rather large area is involved. Aircraft generally make 1995. Individual storm descriptions are subdivided into two perpendicular passes through the cyclone, sampling 1) synoptic history, 2) meteorological statistics, and 3) the ¯ight level wind as often as every 10 s, but this casualties and damage, when appropriate. -
Vulnerability to Tropical Cyclone Related Mortalities Temporal Analysis 88 6 Applications of Findings
VULNERABILITY TO TROPICAL CYCLONE RELATED MORTALITIES ON HISPANIOLA A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Masters of Arts By Bryce Kastelein December 2014 © Copyright All rights reserved Except for previously published materials Thesis written by Bryce Kastelein B.S., Southern Illinois University Edwardsville, 2011 M.A., Kent State University, 2014 Approved by Thomas Schmidlin, Professor, Ph.D., Geography, Masters Advisor Mandy Munro-Stasiuk, Professor, Ph.D., Chair, Department of Geography James L. Blank, Ph.D. Dean, College of Arts and Science Table of Contents TABLE OF CONTENTS.......................................................................................................... III LIST OF FIGURES .................................................................................................................. V LIST OF TABLES ................................................................................................................... VI PREFACE ............................................................................................................................ VII 1 INTRODUCTION ........................................................................................................... 1 2 LITERATURE REVIEW ................................................................................................... 3 2.1 GEOGRAPHY OF THE HISPANIOLA ........................................................................ 3 2.2 TROPICAL CYCLONES ........................................................................................... -
Summary of Impact of Hurricane “Dean" on Cdera Participating States
SUMMARY OF IMPACT OF HURRICANE “DEAN" ON CDERA PARTICIPATING STATES Response Actions, Recovery and Rehabilitation Needs Report Prepared by the Coordinating Unit of the Caribbean Disaster Emergency Response Agency (CDERA) August 22, 2007 1.0 THE EVENT Hurricane Dean impacted several of CDERA Participating States during the period Friday August 17 to Tuesday August 21, 2007. Dean’s passage through the Eastern Caribbean was as a Category 2 Hurricane, strengthening to a Category 4 as it moved across Jamaica and reaching the level of Category 5 as it impacted Belize. During the passage of Dean through the islands of the Lesser Antilles, maximum sustained winds were near 100 mph (169 km/hr) with higher gusts. Hurricane force winds extended outward up to 25 miles (35 km) from the centre and Tropical force winds extended outward up to 140 miles (220 km). On Sunday August 19, 2007 during its passage across southern Jamaica, Dean’s maximum sustained winds were near 145 mph (230 km/hr). However, before Dean made landfall on the Yucatan Peninsula it strengthened to a Category 5 hurricane with sustained winds of 165 mph (265 km/hr), hurricane force winds extending outward up to 65 miles (105km) from the centre and Tropical force winds extended outward up to 205 miles (330 km). 1.1 Participating States Affected The following CDERA Participating States activated their response systems: • Saint Lucia • Dominica • Jamaica • Belize • Barbados • Saint Vincent & the Grenadines • Grenada Belize, Dominica, Jamaica and Saint Lucia were affected by the hurricane. Barbados, Saint Vincent & the Grenadines and Grenada experienced conditions of high winds, rains and rough seas associated with the system.