Earth&Planetarytimes

Total Page:16

File Type:pdf, Size:1020Kb

Earth&Planetarytimes WINTER 2010 TIMES EarthHARVARD UNIVERSITY DEPARTMENT&Planetary OF EARTH AND PLANETARY SCIENCES Arctic haze over the North Slope, Brooks Range, Alaska. Arctic Haze is a winter- and spring-time build-up of anthropogenic atmospheric Combining chemistry, pollution in the Arctic atmosphere that biology, oceanography & can persist for weeks. 5geology EPS’s first tenured female faculty member Ann PHOTOGRAPH BY CAMERON S. MCNAUGHTON Pearson studies biological Analyzing Pollution in the signatures Arctic Atmosphere GEOS-Chem model helps quantify atmospheric composition BY JENNY FISHER, FOURTH-YEAR GRADUATE STUDENT Department field trips or centuries, the remote, sparsely- has been a problem of long-standing interest to provide a real life version of 6textbooks topics populated Arctic has been considered the scientific community. While some pollutants one of the most pristine and unpol- are undoubtedly local (such as the oil fields of luted environments on Earth. Yet Alaska and the copper smelters of Russia), the despite its distance from the world’s scale of the pollution influence points to emis- major population centers, the region is adversely sions transported from much larger sources in affected by a by-product of human activity: air the industrialized countries of the northern mid- pollution. Large amounts of soot, ozone, mercury, latitudes. Early studies in the 1970s and 1980s Fand other pollutants accumulate over the pole blamed industrial activity in Europe and the Let the games begin: every winter and spring, when constant darkness former USSR. Over the past 20 years, however, 10EPS vs. Physics and cold temperatures slow the atmosphere’s the global distribution of pollutants has changed natural removal processes. The resultant hazy dramatically, and more recent studies disagree as Arctic skies have far-reaching implications for air to which sources are responsible for the pollu- quality, atmospheric chemistry, polar ecology, and tion. global climate. A variety of data are available to study the Quantifying the sources of Arctic pollution Arctic atmosphere, CONTINUED ON PAGE 3 Kissing salmon and other 13news from our alumni Visit us online at www.eps.harvard.edu FROM THE CHAIR JOHN H. SHAW aWelcome newsletter dedicated to the to inauguralstrengthening theissue community of Earth of scholars, & Planetary students, staff, Times and alumni, of Harvard University’s Earth and Planetary Sciences (EPS) Department. You might ask why we initiated this effort in such trying financial times. Most of Harvard’s press coverage these past months has focused on endowment losses. Our fine University, however, seems to be making a strong recovery, and the most important activities in EPS—improving our undergraduate and graduate programs, supporting our talented staff, growing our faculty, and pursu- ing inspired research—haven’t missed a beat. Our newsletter is inspired by a desire to share these rewarding activities with you, and in the process to help build a stronger EPS commu- nity. As you will see in the articles and photographs that cover these pages, the past year has been one of great progress. We welcomed two new senior faculty members—Jerry X. Mitrovi- N ca and Ann Pearson—and two new assistant professors— RSO E TT Francis Macdonald and David Johnston. Ann was promoted E P N from within, and represents the first female senior faculty member in Earth sciences over the long history of our Univer- sity. Moreover, our faculty and scholars continue to pursue an ever-expanding range of research—seeking to understand the PHOTOGRAPH BY RYA Earth’s atmosphere and oceans, the workings of its inner core, Stop one, day three. mantle and crust, examining the origins of life, and exploring other planets. This diversity of interest After climbing a little over reflects our charge as an “Earth and Planetary” department, one that is keenly interested in main- 2,000 feet from lake level, the taining strength in geology while embracing other disciplines that are revolutionizing our field. undergraduate field trip troupe, led by John Shaw (center, back row in red polo shirt), poses for Much of this research aims to directly benefit our society—by addressing issues of climate change, a group photo at the McConnell pollution, energy, resources, and hazards. These topics serve as the greatest selling points for our Thrust at Mt. Yamnuska. To see undergraduate concentration, which has more than doubled in size over the past six years. To benefit more photos visit http://structure. harvard.edu/RockiesPix2009. these students, as well as those in our vibrant graduate program, we have worked hard to revise our curriculum and promote educational opportunities beyond the classroom. Recent student trips to Iceland, Hawaii, and the Canadian Rockies help broaden the horizons of our students, while building relationships that will hopefully extend beyond their time at Harvard. It is precisely these relation- ships that we hope to foster with you through this newsletter. So please read ahead, reminisce a bit, and enjoy. Also, please contact us if you would like to share your thoughts and stories with our com- munity through future editions of Earth & Planetary Times. Harry C. Dudley Professor of Structural & Economic Geology | Harvard College Professor CONTENTS Table of winter 2010 • volume 1 • issue 1 EACH ISSUE FEATURES 11 Around the Department 4 Portrait of the Artist as a Young Geophysicist 11 Table Talk 5 Into the Mud with Ann Pearson 12 Alumni Notes 6 Field (Trips) of Dreams 16 EPS Connections 8 Meet the New Guys 16 Stump the Scholar 9 Promotions 9 Seismic Observatory Renamed to Honor Adam Dziewonski 10 Ultimately, EPS Wins Hearts not Frisbee 2 WINTER 2010 show that CO in the GEOS-Chem model is consistently lower than observations, indicating that our state-of-the-science estimates of CO emissions from fossil fuel burning are underestimated, particularly over Europe and Asia. With improved estimates of CO emis- sions, we used the model to quantify the sources affecting Arctic pollution during spring 2008. Figure 1 shows the impact of fossil fuel burning in three regions (North America, Europe, and Asia) on CO pollu- tion in the Arctic. Asian pollution is clearly dominant at all altitudes, although European pollution has some influence near the sur- face. In contrast, North American pollution has virtually no impact on the Arctic. Satellite observations offer a longer-term perspective, providing context for the 2008 R E results. Data from NASA’s Atmospheric SH I F InfraRed Sounder (AIRS) satellite instru- Y ment show that CO over Alaska in April F JENN O 2008 was lower than average. We have found SY E that AIRS observations of CO over Alaska RT U CO are strongly correlated with the Ocean Niño Index, a measure of the strength of El Niño. HART C Meteorological changes associated with El Figure 1. Mean CO concentrations in different altitude bands for emissions from different regions as simu- Niño enhance transport of Asian pollution lated by the GEOS-Chem model. to Alaska, while conditions associated with La Niña reduce this transport. This result suggests that the impact of Asian pollution on the Arctic, already dominant, could be “Plumes of pollution aren’t impossible to track if you know even greater during a strong El Niño event. Our work thus far has provided impor- how to look for them.” ~Jenny Fisher tant constraints to understanding Arctic pollution—namely, the underestimation of fossil fuel sources, the dominance of Asian CONTINUED FROM PAGE 1 each with distinct to provide quantitative constraints on the emissions and the importance of El Niño— advantages and disadvantages. Surface- sources of Arctic pollution. but the picture is far from complete. While based measurements provide long-term Plumes of pollution aren’t impossible to CO serves as a good indicator of overall records but are limited to a few sites and to track if you know how to look for them. We pollution, other environmentally-important the lowest levels of the atmosphere. Air- use carbon monoxide (CO) as an indica- species are affected by different source distri- craft campaigns provide enhanced vertical tor of atmospheric pollution. CO is emit- butions and atmospheric processes. Current coverage but occur infrequently (every 5-10 ted by incomplete combustion—fossil fuel research in our group is expanding on this years) and cover a limited spatial region. and biomass burning—and stays in the work to better understand the sources and Satellites provide daily coverage of the polar atmosphere for several months. This is long impacts of a variety of Arctic contaminants, region but the data are difficult to interpret enough for a plume of CO to be tracked including environmental toxins like mercury and have yet to be tested in the Arctic. from a mid-latitude source to the Arctic but and climate-forcing pollutants like ozone, Individually these data provide only sparse short enough that it doesn’t get mixed into soot, and sulfate. snapshots of the polar region, but combined the background. Perhaps most importantly, they form a more comprehensive picture. CO is one of only a few pollutants that is Jenny’s interest in air Unfortunately, they can’t be compared measurable from space. pollution developed directly due to differences in resolution, Last April, as part of the 4th International while she was living in sampling location, and sampling frequency. Polar Year, NASA and NOAA sponsored Pasadena, CA, where In the Atmospheric Chemistry Modeling extensive aircraft campaigns, covering a pollution haze was Group, we use a global three-dimensional swath from Alaska to Greenland to the N often thick enough to RSO chemical transport model (GEOS-Chem) North Pole and providing enough CO E completely block the ETT to combine the complementary information observations to perform a comparison with N P nearby San Gabriel ya available in these different datasets in order the CO modeled by GEOS-Chem.
Recommended publications
  • CNC/IUGG: 2019 Quadrennial Report
    CNC/IUGG: 2019 Quadrennial Report Geodesy and Geophysics in Canada 2015-2019 Quadrennial Report of the Canadian National Committee for the International Union of Geodesy and Geophysics Prepared on the Occasion of the 27th General Assembly of the IUGG Montreal, Canada July 2019 INTRODUCTION This report summarizes the research carried out in Canada in the fields of geodesy and geophysics during the quadrennial 2015-2019. It was prepared under the direction of the Canadian National Committee for the International Union of Geodesy and Geophysics (CNC/IUGG). The CNC/IUGG is administered by the Canadian Geophysical Union, in consultation with the Canadian Meteorological and Oceanographic Society and other Canadian scientific organizations, including the Canadian Association of Physicists, the Geological Association of Canada, and the Canadian Institute of Geomatics. The IUGG adhering organization for Canada is the National Research Council of Canada. Among other duties, the CNC/IUGG is responsible for: • collecting and reconciling the many views of the constituent Canadian scientific community on relevant issues • identifying, representing, and promoting the capabilities and distinctive competence of the community on the international stage • enhancing the depth and breadth of the participation of the community in the activities and events of the IUGG and related organizations • establishing the mechanisms for communicating to the community the views of the IUGG and information about the activities of the IUGG. The aim of this report is to communicate to both the Canadian and international scientific communities the research areas and research progress that has been achieved in geodesy and geophysics over the last four years. The main body of this report is divided into eight sections: one for each of the eight major scientific disciplines as represented by the eight sister societies of the IUGG.
    [Show full text]
  • Earthquake Depth-Energy Release: Thermomechanical 5 Implications for Dynamic Plate Theory
    Submitted to Physics of the Earth and Planetary Interiors, © Regan L. Patton, 7/15/2012, 1:04:23 PM 1 2 3 4 Earthquake Depth-Energy Release: Thermomechanical 5 Implications for Dynamic Plate Theory 6 7 8 9 10 11 12 13 14 Running title: EARTHQUAKE DEPTH-ENERGY RELEASE 15 Words abstract: 290 16 Words text: 13552 17 References: 93 18 Tables: 6 19 Figures: 9 20 21 22 23 24 25 26 27 28 29 R. L. Patton 30 School of Environmental Sciences 31 Washington State University 32 Pullman, WA 99164 33 [email protected] 34 1 PATTON 35 Abstract. Analysis of the global centroid-moment tensor catalog reveals significant regional variations of 36 seismic energy release to 290 km depth. The largest variations, with direction from the baseline indicated 37 using plus and minus signs, and in decreasing order, occur at 14-25 km depths in continental transform (+), 38 oceanic ridge/transform (+), continental rift (+), Himalayan-type (+), island arc-type (-) and Andean-type (- 39 ) margins. At 25-37 km depths, variations one-fifth the size occur in continental rift (+), island arc-type 40 (+), Andean-type, (-), Himalayan-type (-), oceanic ridge/transform (-), and continental transform (-) 41 margins. Below 37-km depth, variations one-tenth the size occur in Andean-type and Himalayan-type 42 margins to depths of about 260 km. Energy release in island arc-type margins closely tracks the baseline to 43 the maximum depth of earthquakes at 699 km. The maximum depth of earthquakes in Andean-type and 44 Himalayan-type margins is 656 and 492 km, respectively, while in divergent and transform margins it is 45 about 50 km.
    [Show full text]
  • GSA TODAY • Declassified Satellite Photos, P
    Vol. 5, No. 7 July 1995 INSIDE GSA TODAY • Declassified Satellite Photos, p. 139 • GSA Employment Service, p. 144 A Publication of the Geological Society of America • 1995 GSA Awards, p. 144 Normal-Mode Splitting Observations from the Great 1994 Bolivia and Kuril Islands Earthquakes: Constraints on the Structure of the Mantle and Inner Core Jeroen Tromp, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 ABSTRACT of Earth and contains information Body-wave seismologists who study tional dependence such that waves about its density and its elastic and the inner core have recognized for travel faster along the rotation axis On June 9, 1994, a magnitude anelastic structure. The effect of more than 10 years that compres- than in the equatorial plane; such 8.3 earthquake struck ~650 km Earth’s rotation, ellipticity, and lat- sional waves traversing the inner a directional dependence of wave below Earth’s surface in Bolivia. Four eral heterogeneity is to distort the core along a trajectory parallel to speed is called anisotropy. I confirm months later, on October 4, a second shapes of the resonance peaks; this Earth’s rotation axis arrive faster that both inner-core travel-time large earthquake of similar magni- phenomenon is referred to as split- than waves traveling in the equato- anomalies and the splitting of most tude occurred >60 km below the ting. The details of the splitting of a rial plane. In 1986, Morelli et al. and anomalous modes can be explained Kuril Islands. Both events were given resonance peak are determined Woodhouse et al.
    [Show full text]
  • TREATISE on GEOPHYSICS 11-Volume Set
    PUBLISHING FALL 2007! TREATISE ON GEOPHYSICS 11-Volume Set Editor-in-Chief Gerald Schubert, University of California, Los Angeles, USA SAVE 20% WITH INTRODUCTORY PRICING See inside for details Available electronically on ScienceDirect shortly upon publication. Please see page 10 for details. www.TreatiseOnGeophysics.com ABOUT THE TREATISE TREATISE ON GEOPHYSICS * Eleven-Volume Set SAVE 20% WITH INTRODUCTORY PRICING! Introductory Print Price: $3,995 / €3,200 / £2,250 List Print Price: $4,995 / €4,000 / £2,800 Editor-in-Chief: Gerald Schubert University of California, Los Angeles, USA *Introductory print price valid through end of third month after publication The Treatise on Geophysics is the only comprehensive, state-of-the-art, and integrated summary of the present state of geophysics. Offering an array of articles from some of the top scientists around the world, this 11-volume work deals with all major topics of Solid-Earth Geophysics, including a volume on the terrestrial planets and moons in our solar system. This major reference work will aid researchers, advanced undergraduate and graduate students, as well as professionals in cutting-edge research with all the relevant information that they need right at their fingertips. KEY FEATURES: • Self-contained volumes start with an overview of the subject then explore each topic with in-depth detail • Extensive reference lists and cross references with other volumes to facilitate further research • Full-color figures and tables support the text and aid in understanding • Content suited for both the expert and non-expert • Fully searchable text available on Science Direct shortly after publication In This Brochure: Page .............
    [Show full text]
  • Adam Marian Dziewoński Was Spread Upon the Permanent Records of the Faculty
    At a meeting of the FACULTY OF ARTS AND SCIENCES on November 7, 2017, the following tribute to the life and service of the late Adam Marian Dziewoński was spread upon the permanent records of the Faculty. ADAM MARIAN DZIEWOŃSKI BORN: November 15, 1936 DIED: March 1, 2016 Adam Marian Dziewoński was born in Lwów, Poland (now Lviv, Ukraine) and received his M.S. in 1960 from the University of Warsaw and his Doctor of Technical Sciences in 1965 from the Academy of Mines and Metallurgy in Krakow. He moved to the United States in 1965 as a research associate at the Graduate Research Center of the Southwest in Dallas and became an assistant professor at University of Texas at Dallas in 1969. Adam moved to Harvard University as an associate professor in 1972, became a full professor in 1976, and was named the Frank B. Baird, Jr., Professor of Science in 1994. He was the chair of the Department of Geological Sciences between 1982 and 1986 (Department of Earth and Planetary Sciences thereafter). He retired in 2009 but remained actively engaged in research until his death. Adam was born in a year of seismological significance, the year in which the Earth’s inner core was discovered. As if fated, Adam was involved in all subsequent major discoveries about this deepest layer of Earth. With James Freeman Gilbert, Adam provided the first direct evidence that the inner core is solid, settling the debate over its nature. He continued his work on the inner core with his colleagues at Harvard and went on to show that it is anisotropic, rotates at a slightly different rate than the mantle, and has another layer at its center.
    [Show full text]
  • DON ANDERSON Themes Developed Across Several Decades
    Don L. Anderson 1933–2014 A Biographical Memoir by Thorne Lay ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. DON LYNN ANDERSON March 5, 1933–December 2, 2014 Elected to the NAS, 1982 Don L. Anderson, the Eleanor and John R. McMillan Professor of Geophysics at the California Institute of Tech- nology, was a geophysicist who made numerous seminal contributions to our understanding of Earth’s origin, composition, structure and evolution. He pioneered applications of seismic anisotropy for global surface waves, contributed to discovering the seismic velocity discontinuities in the mantle’s transition zone and initi- ated their mineralogical interpretation, established deep insights into seismic attenuation, co-authored the most widely used reference Earth structure model, helped to establish the field of global tomography, and re-opened inquiry into the nature of hotspot volcanism and mantle stratification. He contributed to initiatives that upgraded By Thorne Lay global and regional seismic instrumentation. He served as Director of the Caltech Seismological Laboratory for 22 years, overseeing a prolific scientific environment, distilling many advances into his masterpiece book Theory of the Earth. His enthusiasm for debate and his phenomenal editorial efforts raised the scientific standard of students and colleagues alike. Don was a geophysicist of tremendous breadth, publishing about 325 peer-reviewed research papers between 1958 and 2014 in seismology, mineral physics, planetary science, tectonophysics, petrology and geochemistry. He had a remarkable familiarity with the literature across all these disciplines, keeping reprints sorted into a multitude of three-ring binders that he could access in an instant, uniquely positioning him to undertake the writing of his ambitious book, The Theory of the Earth, published in 1989.
    [Show full text]
  • The Geodesist's Handbook 2000.Pdf
    Volume 74 ∙ Number 1 ∙ February 2000 Journal of 74 1 Geodesy The International Association of Geodesy Geodesist’s International Union of Geodesy and Geophysics Handbook Union Géodésique Et Géophysique Internationale Le Manuel Bureau Central de l’Association Internationale de Géodésie du Department of Geophysics Juliane Maries vej 30 DK-2000 Copenhagen Oe Géodésien Denmark Editor: 2000 Ole B. Andersen 1 FOREWORD AVANTPROPOS Ole B. Andersen Every four years, after every General Assembly, the Manuel du Ge ode sien, nume ro spe cial du ``Journal of International Association of Geodesy publishes the Geodesy'' (anciennement Bulletin Ge ode sique). Ceci est Geodesist's Handbook as a special issue of the Journal la 6eÁ me edition de ce document de crivant l'Association of Geodesy (previously the Bulletin Ge ode sique). This is Internationale de Ge ode sie. the 6th edition of this Geodesists handbook describing La premieÁ re partie de crit l'AIG (historique, statuts et the International Association of Geodesy. re glement). La seconde partie est un compte-rendu de la The ®rst part describes the IAG itself (history, sta- XXIIeÁ me Assemble eGe ne rale, tenue aÁ Birmingham tutes and by-laws). The second part is a report of the (Juliet, 1999, Grande Bretagne). La troisieÁ me partie XXIIth General Assembly, held in Birmingham (July, de crit en de tail la composition et l'organisation de l'As- 1999, UK). The third part describes in detail the struc- sociation Internationale de Ge ode sie pour la pe riode ture and organization of the International Association 1999±2003. La quatrieÁ me partie pre sente des informa- of Geodesy itself for the 1999±2003 period.
    [Show full text]
  • (Travaux De L'aig 1995-1999).Pdf
    INTERNATIONAL ASSOCIATION OF GEODESY - TRAVAUX TABLE OF CONTENTS Foreword O.B. Andersen p.IV SECTION I: POSITIONING Report by the President F.K. Brunner p.5 Commissions Comm. X : Global and Regional Geodetic Networks C. Boucher p.9 Special Commisions SC4: Applications of Geodesy to Engineering H. Kahmen p.14 Special Study Groups SSG 1.154: Quality Issues in Real time GPS Positioning C. Rizos p.17 SSG 1.155: Active GPS Networks H. Tsuji n.a SSG 1.156: Avanced GPS Analysis for Precise Positioning G. Blewitt n.a. SSG 1.157: GPS Ambiguity Resolution and Validation P.J. de Jonge p.39 SSG 1.158: GPS Antenna and Site Effects J. Johansson p.42 SSG 1.159: Ground-Based GPS Meteorology M. Bevis p.51 SECTION II: ADVANCED SPACE TECHNOLOGY Report by the President R. Rummel p.69 Secretaries: P. Willis Commissions Comm VIII: Int Coordination of Space Techniques for Geodesy and Geodynamics (CSTG) G. Beutler p.72 Special Commissions SC6: "Wegener Project" S. Zerbini p.77 SC7: Gravity Field Determination by Satellite K.-H. Ilk p.82 Gravity Gradiometry Special Study Groups SSG 2.160: SAR Interferometry Technology R. Klees p.89 SSG 2.161: Probing the Atmosphere by GPS C. Rocken p.112 SSG 2.162: Precise Orbits using Multiple Space Techniques Remko Scharroo n.a. Services IGS - International GPS Service for Geodynamics G. Beutler p.127 SECTION III: DETERMINATION OF THE GRAVITY FIELD Report by the President R. Forsberg p.140 Commissions Comm III: International Gravity Commission I. Marson p.144 Comm XII: International Geoid Commission H.
    [Show full text]
  • IRIS Management Structure Is an Interface Between the Scientific Community, Funding Agencies, and IRIS Programs
    I R I S A N N U A L INCORPORATED REASEARCH INSTITUTIONS FOR SEISMOLOGY R E P O R T 2 0 1 0 The IRIS management structure is an interface between the scientific community, funding agencies, and IRIS programs. The structure is designed to focus scientific talent on common objectives, encourage broad participation, and efficiently manage The Consortium IRIS programs. IRIS VOTING MEMBERS Columbia University Massachusetts Institute of Technology Princeton University Western Washington University James Gaherty • Felix Waldhauser Robert Dirk van der Hilst • Bradford H. Hager Frederik Simons • Robert Phinney Jackie Caplan-Auerbach • Juliet Crider University of Alabama Andrew Goodliffe • Antonio Rodriguez University of Connecticut University of Memphis University of Puerto Rico, Mayagüez University of Wisconsin, Madison Vernon F. Cormier • Lanbo Liu Heather DeShon • Beatrice Magnani Christa von Hillebrandt • Eugenio Asencio Clifford Thurber • Lutter William University of Alaska Douglas H. Christensen • Roger Hansen Cornell University University of Miami Purdue University University of Wisconsin, Milwaukee Muawia Barazangi • Larry Brown Tim Dixon • Falk Amelung Lawrence W. Braile • Robert Nowack Keith A. Sverdrup • Brett Ketter University of Arizona Susan Beck • George Zandt University of Delaware Miami University, Ohio Rensselaer Polytechnic Institute University of Wisconsin, Oshkosh Susan McGeary Michael Brudzinski • Brian Currie Steven Roecker • Robert McCaffrey Timothy Paulsen Arizona State University Matthew J. Fouch • Ed J. Garnero Duke University University of Michigan Rice University Woods Hole Oceanographic Institution Eylon Shalev Jeroen Ritsema • Larry Ruff Alan R. Levander • Dale Sawyer University of Arkansas at Little Rock Ralph Stephen • Alan Chave Haydar J. Al-Shukri • Hanan Mahdi Florida International University Michigan State University University of Rochester Wright State University Dean Whitman Kazuya Fujita • David W.
    [Show full text]
  • Is the Earth's Core Leaking? Background Information
    Is the Earth’s Core Leaking? Background Information Dr. Michael J. Passow Earth2Class Workshops for Teachers at LDEO February 12, 2005 Technology has often led to new discoveries • Telescope • Microscope • X-ray machines • Radar and Sonar • Satellite multispectral cameras • Hubble Space Telescope Understanding the nature of Earth’s interior can be considered one of the great discoveries of the past century. • Entirely hidden by surface rocks and oceans • Key to understanding how many surface features formed • Creates Earth’s magnetic field, which changes over time • Better understanding will lead to new questions not yet conceived • Concepts that were the focus of intense research and scientific debate when today’s senior teachers were in school and college are routinely taught today at the high school and even intermediate level. • Some examples in most Earth Science courses: --Structure & characteristics of Earth’s Layers --Locating earthquake epicenters --Plate Tectonics: boundaries and motions --Chemical composition of Earth’s interior In most college, high school, and middle schools, we routinely (and casually) present models of what lies beneath us such as the one shown in the next slide. http://www.seismo.unr.edu/ftp/p ub/louie/class/100/interior.html “The earth is divided into four main layers: the inner core, outer core, mantle, and crust. The core is composed mostly of iron (Fe) and is so hot that the outer core is molten, with about 10% sulphur (S). The inner core is under such extreme pressure that it remains solid. Most of the Earth's mass is in the mantle, which is composed of iron (Fe), magnesium (Mg), aluminum (Al), silicon (Si), and oxygen (O) silicate compounds.
    [Show full text]
  • New Theory of the Earth
    P1: RNK/HAF P2: RNK 0521849594agg.xml CUUK615B-Anderson January 31, 2007 21:15 New Theory of the Earth New Theory of the Earth is an interdisciplinary advanced textbook on all aspects of the interior of the Earth and its origin, composition, and evolution: geophysics, geochemistry, dynamics, convection, mineralogy, volcanism, energetics and thermal history. This is the only book on the whole landscape of deep Earth processes that ties together all the strands of the subdisciplines. This book is a complete update of Anderson’s Theory of the Earth (1989). It includes dozens of new figures and tables. A novel referencing system using Googlets is introduced that allows immediate access to supplementary material via the internet. There are new sections on tomography, self-organization, and new approaches to plate tectonics. The paradigm/paradox approach to developing new theories is developed, and controversies and contradictions have been brought more center-stage. As with the Theory of the Earth, this new edition will prove to be a stimulating textbook for advanced courses in geophysics, geochemistry, and planetary science, and a supplementary textbook on a wide range of other advanced Earth science courses. It will also be an essential reference and resource for all researchers in the solid Earth sciences. Don L. Anderson is Professor (Emeritus) of Geophysics in the Division of Geological and Planetary Sciences at the California Institute of Technology (Caltech). He received his B.S. and D.Sc. (Hon) in Geophysics from Rensselaer Polytechnic Institute (RPI), his M.S. and Ph.D. in Mathematics and Geophysics from Caltech, and Doctors Honoris Causa from the Sorbonne, University of Paris.
    [Show full text]
  • New Approaches for Extending the Twentieth Century Climate Record
    Eos,Vol. 86, No. 1, 4 January 2005 With support from the U. S. National Science References Oganov,A. R., and S. Ono (2004),Theoretical and Foundation (NSF), a multidisciplinary work- experimental evidence for a post-perovskite phase Badro, J., J.-P.Ruef, G.Vankó,G. Monaco, G. Fiquet, and ″ shop organized by the Cooperative Institute of MgSiO3 in Earth’s D layer, Nature, 430, 445–448. F.Guyot (2004),Electronic transitions in perovskite: for Deep Earth Research (CIDER) was held at Shim, S.-H.,T.S. Duffy,R. Jeanloz, and G. Shen (2004), Possible nonconvecting layers in the lower man- Stability and crystal structure of MgSiO perovskite the Kavli Institute for Theoretical Physics of 3 tle, Science, 305, 383–386. to the core-mantle boundary, Geophys. Res. Lett., the University of California, Santa Barbara on Humayun, M., L. Qin, and M. D.Norman (2004), Geo- 31, L10603, doi:10.1029/2004GL019639. 12 July–6 August 2004 (http://online.kitp.ucsb. chemical evidence for excess iron in the mantle Sidorin, I., M. Gurnis, and D.V.Helmberger (1999), edu/online/earth04/). Part of the workshop beneath Hawaii, Science, 306, 91–94. Dynamics of a phase change at the base of the focused on the post-perovskite phase transi- Iitaka,T., K. Hirose, K. Kawamura, and M. Murakami mantle consistent with seismological observations, (2004),The elasticity of the MgSiO post-perovskite tion, and highlighted the emerging multidisci- 3 J. Geophys. Res., 104, 15,005–15,023. phase in the Earth’s lowermost mantle, Nature, plinary challenges. Tsuchiya,T., J.Tsuchiya, K.
    [Show full text]