The PRMT1 Gene Expression Pattern in Colon Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts. -
Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G. Schatz,†,‖ and Steven H. Kleinstein*,‡ Aberrant targeting of the enzyme activation-induced cytidine deaminase (AID) results in the accumulation of somatic mutations in ∼25% of expressed genes in germinal center B cells. Observations in Ung2/2 Msh22/2 mice suggest that many other genes efficiently repair AID-induced lesions, so that up to 45% of genes may actually be targeted by AID. It is important to understand the mechanisms that recruit AID to certain genes, because this mistargeting represents an important risk for genome instability. We hypothesize that several mechanisms combine to target AID to each locus. To resolve which mechanisms affect AID targeting, we analyzed 7.3 Mb of sequence data, along with the regulatory context, from 83 genes in Ung2/2 Msh22/2 mice to identify common properties of AID targets. This analysis identifies three transcription factor binding sites (E-box motifs, along with YY1 and C/EBP-b binding sites) that may work together to recruit AID. Based on previous knowledge and these newly discovered features, a classification tree model was built to predict genome-wide AID targeting. Using this predictive model, we were able to identify a set of 101 high-interest genes that are likely targets of AID. The Journal of Immunology, 2013, 190: 3878–3888. omatic hypermutation (SHM) occurs in germinal center the enzyme that deaminates cytosines to initiate SHM, can act (GC) B cells, resulting in the introduction of point muta- outside of the Ig locus. -
BTG2: a Rising Star of Tumor Suppressors (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 46: 459-464, 2015 BTG2: A rising star of tumor suppressors (Review) BIjING MAO1, ZHIMIN ZHANG1,2 and GE WANG1 1Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Chongqing 400042; 2Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China Received September 22, 2014; Accepted November 3, 2014 DOI: 10.3892/ijo.2014.2765 Abstract. B-cell translocation gene 2 (BTG2), the first 1. Discovery of BTG2 in TOB/BTG gene family gene identified in the BTG/TOB gene family, is involved in many biological activities in cancer cells acting as a tumor The TOB/BTG genes belong to the anti-proliferative gene suppressor. The BTG2 expression is downregulated in many family that includes six different genes in vertebrates: TOB1, human cancers. It is an instantaneous early response gene and TOB2, BTG1 BTG2/TIS21/PC3, BTG3 and BTG4 (Fig. 1). plays important roles in cell differentiation, proliferation, DNA The conserved domain of BTG N-terminal contains two damage repair, and apoptosis in cancer cells. Moreover, BTG2 regions, named box A and box B, which show a high level of is regulated by many factors involving different signal path- homology to the other domains (1-5). Box A has a major effect ways. However, the regulatory mechanism of BTG2 is largely on cell proliferation, while box B plays a role in combination unknown. Recently, the relationship between microRNAs and with many target molecules. Compared with other family BTG2 has attracted much attention. MicroRNA-21 (miR-21) members, BTG1 and BTG2 have an additional region named has been found to regulate BTG2 gene during carcinogenesis. -
Colon Cancer and Protein Arginine Methyltransferase 1 Gene Expression
ANTICANCER RESEARCH 29: 1361-1366 (2009) Colon Cancer and Protein Arginine Methyltransferase 1 Gene Expression ALEXANDRA PAPADOKOSTOPOULOU1*, KONSTANTINA MATHIOUDAKI2*, ANDREAS SCORILAS3, DIMITRIOS XYNOPOULOS1, ALEXANDROS ARDAVANIS4, ELIAS KOUROUMALIS5 and MAROULIO TALIERI2 Departments of 1Gastroenterology and 2Cellular Physiology, G. Papanicolaou Research Center of Oncology, and 4Oncology, St. Savvas Hospital, Athens; 3Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens; 5Department of Gastroenterology, University Hospital of Heraklion, Crete, Greece Abstract. Background: In this study, the possible relation synthesis. Some of these modifications are reversible, such of the expression pattern of arginine methyltransferase 1 and as protein phosphorylation reactions, whereas others are colon cancer progression is investigated. Materials and apparently irreversible and can effectively create new types Methods: Colon cancer samples as well as normal colon of amino acids to broaden the chemical diversity of samples were used to define the arginine methyltransferase polypeptides. In this latter group of modifications, a 1 expression by RT-PCR. The results were associated with number of methylation reactions is included (1). Protein clinical and histological parameters of the tissues. Results: methylation involves transfer of a methyl group from S- In colon cancer tissue, only PRMT1 variants v1 and v2 were adenosylmethionine to acceptor groups on substrate often expressed. Statistical significance for the -
PRMT1, Human Recombinant Protein (Active) HMT2, HRMT1L2, IR1B4 Catalog # Pbv10454r
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PRMT1, human recombinant protein (Active) HMT2, HRMT1L2, IR1B4 Catalog # PBV10454r Specification PRMT1, human recombinant protein PRMT1, human recombinant protein (Active) - (Active) - Background Product info PRMT1 methylate’s (mono & asymmetric Primary Accession Q99873 dimethylation) the guanidino nitrogens of Calculated MW 84.0 kDa KDa arginyl residues present in a glycine and arginine-rich domain (may methylate HNRNPA1 and histones) methylate’s SUPT5H. The PRMT1 PRMT1, human recombinant protein (Active) - Additional Info protein functions as a histone methyltransferase specific for H4. PRMT1 is an essential factor in oncogenesis and is a Gene ID 3276 potential novel therapeutic target in cancer. Gene Symbol ANM1 PRMT1-mediated methylation serves as a Other Names positive modulator of IR/IRS-1/PI3K pathway Protein arginine N-methyltransferase 1, and glucose uptake in skeletal muscle cells. Histone-arginine N-methyltransferase CAF1 is a new regulator of PRMT1-dependent PRMT1, Interferon receptor 1-bound protein 4, Histone-arginine N-methyltransferase arginine methylation. PRMT1 PRMT1, Interferon receptor 1-bound protein arginine-methylate’s MRE11 therefore it 4 regulates the activity of MRE11-RAD50-NBS1 complex during the intra-S-phase DNA damage Gene Source Human checkpoint response. PRMT1 plays a Source E. coli post-translationally part in regulating the Assay&Purity SDS-PAGE; ≥90% transcriptional activity. PRMT1 is found predominantly in the cytoplasm, though a Assay2&Purity2 HPLC; fraction of PRMT1 is located in the nucleus. Recombinant Yes PRMT1 Human Recombinant (a.a. 1-353) fused Sequence MHHHHHHMKI with His-MBP tag at N-terminus produced in EEGKLVIWIN E.Coli is a single, non-glycosylated, polypeptide GDKGYNGLAE chain containing 750 amino acids and having a VGKKFEKDTG molecular mass of 84 kDa. -
Upregulation of BTG1 Enhances the Radiation Sensitivity of Human Breast Cancer in Vitro and in Vivo
ONCOLOGY REPORTS 34: 3017-3024, 2015 Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo RAN ZHU1*, WEI LI2*, YAN XU3, JIANMEI WAN1 and ZENGLI ZHANG4 1Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions; 2Department of General Surgery, Second Affiliated Hospital of Soochow University; 3Department of General Surgery, First Affiliated Hospital of Soochow University; 4Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu, P.R. China Received July 3, 2015; Accepted August 4, 2015 DOI: 10.3892/or.2015.4311 Abstract. X-ray-based radiotherapy is one of the most Introduction effective therapeutic strategies for breast cancer patients. However, radioresistance and side-effects continue to be the Breast cancer is the most common female cancer and one of most challenging issues. B-cell translocation gene 1 (BTG1) the leading causes of cancer-related deaths worldwide with a is a member of the BTG/Tob family, which inhibits cancer relatively high incidence rate (1,2). Surgery, chemotherapy and growth and promotes apoptosis. We, therefore, hypothesized radiotherapy are the traditional therapeutic methods for the that BTG1 plays an important role in the radiosensitivity of treatment of breast cancer, and radiotherapy is an important breast cancer cells. In the present study, breast cancer cell adjuvant therapy for breast cancer patients (3). lines that stably overexpressed BTG1 were used to investigate However, resistance to radiotherapy often results in the effects of BTG1 on cell radiosensitivity in vitro. -
Thermal Manipulation of the Chicken Embryo Triggers Differential Gene
Loyau et al. BMC Genomics (2016) 17:329 DOI 10.1186/s12864-016-2661-y RESEARCH ARTICLE Open Access Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge Thomas Loyau1, Christelle Hennequet-Antier1, Vincent Coustham1, Cécile Berri1, Marie Leduc1, Sabine Crochet1, Mélanie Sannier1, Michel Jacques Duclos1, Sandrine Mignon-Grasteau1, Sophie Tesseraud1, Aurélien Brionne1, Sonia Métayer-Coustard1, Marco Moroldo2, Jérôme Lecardonnel2, Patrice Martin3, Sandrine Lagarrigue4, Shlomo Yahav5 and Anne Collin1* Abstract Background: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. -
Supplemental Information
Supplemental Information Supplemental Figures Supplemental Figure 1. Quantitation of bioluminescent imaging data in Figure 1B. 1 Supplemental Figure 2. Impact of Brg1 shRNAs on proliferation of immortalized murine embryonic fibroblasts (iMEFs), BCR-ABL/p19-/- B cell acute lymphoblastic leukemia (B-ALL), murine breast cancer cells (4T1), and BrafV600E melanoma. A) shRNA/GFP competition assay in indicated murine cell lines. Rpa3 shRNA targeting replication protein A3 serves as a positive control. shRNA targeting Renilla luciferase is included as a negative control. B) Western blotting for additional Brg1 shRNAs in the indicated cell lines transduced with the Ren or Brg1 LMN-shRNAs. A representative experiment of three biological replicates is shown. 2 Supplemental Figure 3. Effect of Brg1 shRNAs on proliferation of human leukemia cell lines. A) shRNA/GFP competition assay in the indicated human cell lines with shRen.713, shBrg1.4471, or shSpt16.3249. All shRNAs were evaluated in a timecourse of GFP% measurements at days 4, 8, 12, 16, 20, and 24. CML-BC indicates chronic myeloid leukemia blast crisis. B) Western blotting of SPT16 levels in whole cell lysates prepared from HeLa cells transduced with the indicated MLP shRNA constructs following puromycin selection. 3 Supplemental Figure 4. Expression and functional validation of SWI/SNF subunits in MLL-AF9/NrasG12D leukemia. A) RPKM values for genes encoding SWI/SNF complex subunits from polyA+ tail RNA-seq performed in RN2 cell line. B) shRNA/GFP competition assay with two independent shRNAs targeting indicated SWI/SNF subunits. Experiments were performed in RN2 cells as in Figure 1A. n=2-3. C) RT-qPCR was performed to test the knockdown efficiency of indicted SWI/SNF subunit shRNAs. -
Up-Regulation of the BTG2 Gene in TPA- Or RA-Treated HL-60 Cell Lines
633-637 6/2/08 15:51 Page 633 ONCOLOGY REPORTS 19: 633-637, 2008 633 Up-regulation of the BTG2 gene in TPA- or RA-treated HL-60 cell lines BYOUNG-OK CHO1, YONG-WOOK JEONG2, SEOUNG-HOON KIM3, KUN PARK4, JI-HYE LEE5, GI RYANG KWEON6 and JONG-CHUN PARK2 1Department of Pharmacology, College of Medicine, Chosun University, 375 Seosuk-Dong, Dong-ku, Gwangju 501-759; Departments of 2Microbiology and 3Pharmacology, College of Medicine, Seonam University, Kwangchi-Dong 720, Namwon, Chunpook 590-711; Departments of 4Dermatology and 5Internal Medicine and College of Medicine Eulji University, Hagye 1-dong, Nowon-gu, Seoul 139-711; 6Department of Biochemistry, School of Medicine, Chungnam National University, Joong-ku, Taejon 301-721, Korea Received August 9, 2007; Accepted October 8, 2007 Abstract. The key pathogenesis of leukemia is the defection Introduction of the differentiation processes of hematopoietic stem cells. There are five APRO (anti-proliferative) genes, BTG1, The human leukemia HL-60 cell line was derived from a BTG2, BTG3, TOB and TOB2, and it was reported that female patient diagnosed with acute promyelocytic leukemia. certain APRO genes are associated with cell differentiation. The HL-60 cells are differentiated into monocyte/macrophage- However, it is still unknown whether APRO genes are related like lineages by 12-O-tetradecanoylphorbol-13-acetate (TPA) with the differentiation process of blood cells. In this study, or granulocyte-like lineages by RA treatment (1,2). The TPA- we investigated the expression of APRO genes in 12-O-tetra- or RA-induced differentiation of HL-60 cells is characterized decanoylphorbol-13-acetate (TPA) or retinoic acid (RA)- by cell cycle arrest through the up-regulation of a cell cycle treated HL-60 cell lines. -
PRMT1-Dependent Regulation of RNA Metabolism and DNA Damage Response Sustains Pancreatic Ductal Adenocarcinoma ✉ Virginia Giuliani 1 , Meredith A
ARTICLE https://doi.org/10.1038/s41467-021-24798-y OPEN PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma ✉ Virginia Giuliani 1 , Meredith A. Miller1,17, Chiu-Yi Liu1,17, Stella R. Hartono 2,17, Caleb A. Class 3,13, Christopher A. Bristow1, Erika Suzuki1, Lionel A. Sanz2, Guang Gao1, Jason P. Gay1, Ningping Feng1, Johnathon L. Rose4, Hideo Tomihara4,14, Joseph R. Daniele1, Michael D. Peoples1, Jennifer P. Bardenhagen5, Mary K. Geck Do5, Qing E. Chang6, Bhavatarini Vangamudi1,15, Christopher Vellano1, Haoqiang Ying 7, Angela K. Deem1, Kim-Anh Do3, Giannicola Genovese4,8, Joseph R. Marszalek1, Jeffrey J. Kovacs1, Michael Kim9, 1234567890():,; Jason B. Fleming9,16, Ernesto Guccione10, Andrea Viale4, Anirban Maitra 11, M. Emilia Di Francesco5, Timothy A. Yap 12, Philip Jones 5, Giulio Draetta 1,4,5, Alessandro Carugo 1, Frederic Chedin 2 & ✉ Timothy P. Heffernan 1 Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clini- cally challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative poly- adenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. -
Mechanism of Translation Regulation of BTG1 by Eif3 Master's Thesis
Mechanism of Translation Regulation of BTG1 by eIF3 Master’s Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Biology Amy S.Y. Lee, Advisor In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Shih-Ming (Annie) Huang May 2019 Copyright by Shih-Ming (Annie) Huang © 2019 ACKNOWLEDGEMENT I would like to express my deepest gratitude to Dr. Amy S.Y. Lee for her continuous patience, support, encouragement, and guidance throughout this journey. I am very thankful for all the members of the Lee Lab for providing me with this caring and warm environment to complete my work. I would also like to thank Dr. James NuñeZ for collaborating with us on this project and helping us in any shape or form. iii ABSTRACT Mechanism of Translation Regulation of BTG1 by eIF3 A thesis presented to the Department of Biology Graduate School of Arts and Sciences Brandeis University Waltham, Massachusetts By Shih-Ming (Annie) Huang REDACTED iv TABLE OF CONTENTS REDACTED v LIST OF FIGURES REDACTED vi INTRODUCTION I. Gene Regulation All cells in our bodies contain the same genome, but distinct cell types express very different sets of genes. The sets of gene expressed under specific conditions determine what the cell can do, by controlling the proteins and functional RNAs the cell contains. The process of controlling which genes are expressed is known as gene regulation. Any step along the gene expression pathway can be controlled, from DNA transcription, translation of mRNAs into proteins, to post-translational modifications. -
Whole Genome Expression in Hmbl +/+ Mice Examining The
Whole Genome Expression in Mice Containing a Human Mannose Binding Gene (hMBL): Examining the Immunological Role of Monoclonal Antibody (mAb) 3F8 In Attenuating Myocardial Ischemia-Reperfusion Injuries By William Brian Gorsuch A Dissertation Submitted to Rutgers, The State University of New Jersey School of Health Related Professions In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Health Informatics Biomedical Informatics Program October 2014 ii TABLE OF CONTENT ABSTRACT................................................................................................................................ v ACKNOWLEDGMENTS ..........................................................................................................vii LIST OF TABLES .....................................................................................................................ix LIST OF FIGURES ................................................................................................................... x ABREVIATIONS ......................................................................................................................xii CHAPTER 1 INTRODUCTION ................................................................................................. 1 1.1 Statement of The Problem .................................................................................... 1 1.2 Background of the Problem ................................................................................... 2 1.3 Goals, Objectives