Cloning of the Mouse BTG3 Gene and Definition of a New Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts. -
Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G. Schatz,†,‖ and Steven H. Kleinstein*,‡ Aberrant targeting of the enzyme activation-induced cytidine deaminase (AID) results in the accumulation of somatic mutations in ∼25% of expressed genes in germinal center B cells. Observations in Ung2/2 Msh22/2 mice suggest that many other genes efficiently repair AID-induced lesions, so that up to 45% of genes may actually be targeted by AID. It is important to understand the mechanisms that recruit AID to certain genes, because this mistargeting represents an important risk for genome instability. We hypothesize that several mechanisms combine to target AID to each locus. To resolve which mechanisms affect AID targeting, we analyzed 7.3 Mb of sequence data, along with the regulatory context, from 83 genes in Ung2/2 Msh22/2 mice to identify common properties of AID targets. This analysis identifies three transcription factor binding sites (E-box motifs, along with YY1 and C/EBP-b binding sites) that may work together to recruit AID. Based on previous knowledge and these newly discovered features, a classification tree model was built to predict genome-wide AID targeting. Using this predictive model, we were able to identify a set of 101 high-interest genes that are likely targets of AID. The Journal of Immunology, 2013, 190: 3878–3888. omatic hypermutation (SHM) occurs in germinal center the enzyme that deaminates cytosines to initiate SHM, can act (GC) B cells, resulting in the introduction of point muta- outside of the Ig locus. -
TINCR Inhibits the Proliferation and Invasion of Laryngeal Squamous Cell
He et al. BMC Cancer (2021) 21:753 https://doi.org/10.1186/s12885-021-08513-0 RESEARCH ARTICLE Open Access TINCR inhibits the proliferation and invasion of laryngeal squamous cell carcinoma by regulating miR-210/BTG2 Guoqing He1†, Rui Pang2†, Jihua Han2, Jinliang Jia2, Zhaoming Ding2, Wen Bi2, Jiawei Yu2, Lili Chen2, Jiewu Zhang2* and Yanan Sun1* Abstract Background: Terminal differentiation-induced ncRNA (TINCR) plays an essential role in epidermal differentiation and is involved in the development of various cancers. Methods: qPCR was used to detect the expression level of TINCR in tissues and cell lines of laryngeal squamous cell carcinoma (LSCC). The potential targets of TINCR were predicted by the bioinformation website. The expression of miR-210 and BTG2 genes were detected by qPCR, and the protein levels of BTG2 and Ki-67 were evaluated by western blot. CCK-8 assay, scratch test, and transwell chamber were used to evaluate the proliferation, invasion, and metastasis ability of LSCC cells. The relationships among TINCR, miR-210, and BTG2 were investigated by bioinformatics software and luciferase reporter assay. The in vivo function of TINCR was accessed on survival rate and tumor growth in nude mice. Results: We used qRT-PCR to detect the expression of TINCR in laryngeal squamous cell carcinoma (LSCC) tissues and cells and found significantly lower levels in cancer tissues compared with adjacent tissues. Additionally, patients with high TINCR expression had a better prognosis. TINCR overexpression was observed to inhibit the proliferation and invasion of LSCC cells. TINCR was shown to exert its antiproliferation and invasion effects by adsorbing miR- 210, which significantly promoted the proliferation and invasion of laryngeal squamous cells. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
A Genomic Approach to Study Down Syndrome and Cancer Inverse Comorbidity: Untangling the Chromosome 21
PERSPECTIVE ARTICLE published: 04 February 2015 doi: 10.3389/fphys.2015.00010 A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21 Jaume Forés-Martos , Raimundo Cervera-Vidal , Enrique Chirivella , Alberto Ramos-Jarero and Joan Climent* Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA, Valencia, Spain Edited by: Down syndrome (DS), one of the most common birth defects and the most widespread Anaïs Baudot, Centre National de la genetic cause of intellectual disabilities, is caused by extra genetic material on Recherche Scientifique, France chromosome 21 (HSA21). The increased genomic dosage of trisomy 21 is thought to Reviewed by: be responsible for the distinct DS phenotypes, including an increased risk of developing Cristian Bellodi, Lund University, Sweden some types of childhood leukemia and germ cell tumors. Patients with DS, however, have Jian-Hua Mao, Lawrence Berkeley a strikingly lower incidence of many other solid tumors. We hypothesized that the third National Laboratory, USA copy of genes located in HSA21 may have an important role on the protective effect *Correspondence: that DS patients show against most types of solid tumors. Focusing on Copy Number Joan Climent, Genomics and Variation (CNV) array data, we have generated frequencies of deleted regions in HSA21 in Systems Biology (InGSB) Lab, Oncology and Hematology four different tumor types from which DS patients have been reported to be protected. Department, Biomedical Research We describe three different regions of deletion pointing to a set of candidate genes Institute INCLIVA, Avda Blasco that could explain the inverse comorbidity phenomenon between DS and solid tumors. -
BTG2: a Rising Star of Tumor Suppressors (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 46: 459-464, 2015 BTG2: A rising star of tumor suppressors (Review) BIjING MAO1, ZHIMIN ZHANG1,2 and GE WANG1 1Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Chongqing 400042; 2Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China Received September 22, 2014; Accepted November 3, 2014 DOI: 10.3892/ijo.2014.2765 Abstract. B-cell translocation gene 2 (BTG2), the first 1. Discovery of BTG2 in TOB/BTG gene family gene identified in the BTG/TOB gene family, is involved in many biological activities in cancer cells acting as a tumor The TOB/BTG genes belong to the anti-proliferative gene suppressor. The BTG2 expression is downregulated in many family that includes six different genes in vertebrates: TOB1, human cancers. It is an instantaneous early response gene and TOB2, BTG1 BTG2/TIS21/PC3, BTG3 and BTG4 (Fig. 1). plays important roles in cell differentiation, proliferation, DNA The conserved domain of BTG N-terminal contains two damage repair, and apoptosis in cancer cells. Moreover, BTG2 regions, named box A and box B, which show a high level of is regulated by many factors involving different signal path- homology to the other domains (1-5). Box A has a major effect ways. However, the regulatory mechanism of BTG2 is largely on cell proliferation, while box B plays a role in combination unknown. Recently, the relationship between microRNAs and with many target molecules. Compared with other family BTG2 has attracted much attention. MicroRNA-21 (miR-21) members, BTG1 and BTG2 have an additional region named has been found to regulate BTG2 gene during carcinogenesis. -
Integrative Differential Expression and Gene Set Enrichment Analysis Using Summary Statistics for Scrna-Seq Studies
ARTICLE https://doi.org/10.1038/s41467-020-15298-6 OPEN Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies ✉ Ying Ma 1,7, Shiquan Sun 1,7, Xuequn Shang2, Evan T. Keller 3, Mengjie Chen 4,5 & Xiang Zhou 1,6 Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an integrative 1234567890():,; and scalable computational method, iDEA, to perform joint DE and GSE analysis through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data modeling through com- plementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many pathways that would not be identified by existing approaches in these data. 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA. 2 School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China. 3 Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. 4 Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 5 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA. -
BTG3 Rabbit Polyclonal Antibody – TA323849 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA323849 BTG3 Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC, WB Recommended Dilution: ELISA: 1:1000-5000, WB: 1:200-1000, IHC: 1:25-100 Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Fusion protein corresponding to a region derived from 22-252 amino acids of human BTG family, member 3BTG family, member 3 Formulation: PBS pH7.3, 0.05% NaN3, 50% glycerol Concentration: lot specific Purification: Antigen affinity purification Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 29 kDa Gene Name: BTG family member 3 Database Link: NP_001124386 Entrez Gene 12228 MouseEntrez Gene 54230 RatEntrez Gene 10950 Human Q14201 Background: The protein encoded by this gene is a member of the BTG/Tob family. This family has structurally related proteins that appear to have antiproliferative properties. This encoded protein might play a role in neurogenesis in the central nervous system. Two transcript variants encoding different isoforms have been found for this gene. Overexpression impairs serum-induced cell cycle progression from the G0/G1 to S phase. Synonyms: ANA; APRO4; TOB5; TOB55; TOFA This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 BTG3 Rabbit Polyclonal Antibody – TA323849 Product images: Predicted band size: 29 kDa. -
Upregulation of BTG1 Enhances the Radiation Sensitivity of Human Breast Cancer in Vitro and in Vivo
ONCOLOGY REPORTS 34: 3017-3024, 2015 Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo RAN ZHU1*, WEI LI2*, YAN XU3, JIANMEI WAN1 and ZENGLI ZHANG4 1Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions; 2Department of General Surgery, Second Affiliated Hospital of Soochow University; 3Department of General Surgery, First Affiliated Hospital of Soochow University; 4Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu, P.R. China Received July 3, 2015; Accepted August 4, 2015 DOI: 10.3892/or.2015.4311 Abstract. X-ray-based radiotherapy is one of the most Introduction effective therapeutic strategies for breast cancer patients. However, radioresistance and side-effects continue to be the Breast cancer is the most common female cancer and one of most challenging issues. B-cell translocation gene 1 (BTG1) the leading causes of cancer-related deaths worldwide with a is a member of the BTG/Tob family, which inhibits cancer relatively high incidence rate (1,2). Surgery, chemotherapy and growth and promotes apoptosis. We, therefore, hypothesized radiotherapy are the traditional therapeutic methods for the that BTG1 plays an important role in the radiosensitivity of treatment of breast cancer, and radiotherapy is an important breast cancer cells. In the present study, breast cancer cell adjuvant therapy for breast cancer patients (3). lines that stably overexpressed BTG1 were used to investigate However, resistance to radiotherapy often results in the effects of BTG1 on cell radiosensitivity in vitro. -
Thermal Manipulation of the Chicken Embryo Triggers Differential Gene
Loyau et al. BMC Genomics (2016) 17:329 DOI 10.1186/s12864-016-2661-y RESEARCH ARTICLE Open Access Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge Thomas Loyau1, Christelle Hennequet-Antier1, Vincent Coustham1, Cécile Berri1, Marie Leduc1, Sabine Crochet1, Mélanie Sannier1, Michel Jacques Duclos1, Sandrine Mignon-Grasteau1, Sophie Tesseraud1, Aurélien Brionne1, Sonia Métayer-Coustard1, Marco Moroldo2, Jérôme Lecardonnel2, Patrice Martin3, Sandrine Lagarrigue4, Shlomo Yahav5 and Anne Collin1* Abstract Background: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. -
Inactivation of Erk1 and Erk2 Disrupts Cortical
INACTIVATION OF ERK1 AND ERK2 DISRUPTS CORTICAL PROGENITOR PROLIFERATION LEADING TO ABNORMAL CYTOARCHITECTURE, CIRCUITRY AND BEHAVIOR, MODELING HUMAN NCFC AND RELATED SYNDROMES. by JOANNA PUCILOWSKA Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Gary E. Landreth Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY August 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Joanna Pucilowska candidate for the PhD degree*. (signed) Robert Miller (chair of the committee) Gary Landreth Jerry Silver Stephen Maricich (date) 5/29/2012 *We also certify that written approval has been obtained for any proprietary material contained within. 2 TABLE OF CONTENTS List of figures……...……………………………………………………………….….6 ABSTRACT…...………………………………………………………………….…..9 CHAPTER 1: INTRODUCTION………………………………………………………….11 MAP KINASE Signaling Pathway………………………………………………...11 MAPK Specificity: The Right Place at the Right Time………………………..…16 ERKs and Isoform Specificity………………..…………………………………….23 ERKs in Learning and Memory………………………..………………………….26 ERKs and their FGF Ligands………………………..…………………………….28 CORTICAL DEVELOPMENT: Forebrain Regionalization and Morphogenesis………..…………………31 The Role of Cell Cycle in Corticogenesis……..…………...………………33 ERKs and the Cell Cycle Progression…………………..…………………36 Progenitor Proliferation and Neurogenesis………………..……………...39 Migration…………………..………………………………………………..45 Gliogenesis…………………………………………………………..………47 Differentiation……………………………………………………..………..48 -
The PRMT1 Gene Expression Pattern in Colon Cancer
British Journal of Cancer (2008) 99, 2094 – 2099 & 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $32.00 www.bjcancer.com The PRMT1 gene expression pattern in colon cancer 1,5 2,5 3 2 4 ,1 K Mathioudaki , A Papadokostopoulou , A Scorilas , D Xynopoulos , N Agnanti and M Talieri* 1 Department of Cellular Physiology, ‘G Papanicolaou’ Research Center of Oncology, ‘Saint Savvas’ Hospital, 171 Alexandras Avenue, Athens 11522, Greece; 2Department of Gastroenterology, ‘Saint Savvas’ Hospital, 171 Alexandras Avenue, Athens 11522, Greece; 3Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimioupoli, Athens 15711, Greece; 4Department of Pathology, School of Medicine, University of Ioannina, Ioannina 45110, Greece The methylation of arginine has been implicated in many cellular processes, such as regulation of transcription, mRNA splicing, RNA metabolism and transport. The enzymes responsible for this modification are the protein arginine methyltransferases. The most abundant methyltransferase in human cells is protein arginine methyltransferase 1. Methylation processes appear to interfere in the emergence of several diseases, including cancer. During our study, we examined the expression pattern of protein arginine methyltransferase 1 gene in colon cancer patients. The emerging results showed that the expression of one of the gene variants is associated with statistical significant probability to clinical and histological parameters, such as nodal status and stage. This is a first attempt to acquire an insight on the possible relation of the expression pattern of protein arginine methyltransferase 1 and colon cancer progression. British Journal of Cancer (2008) 99, 2094 – 2099. doi:10.1038/sj.bjc.6604807 www.bjcancer.com & 2008 Cancer Research UK Keywords: protein arginine methyltransferase; PRMT1; colon cancer; prognosis Colon cancer is one of the most dominant types of cancer in et al, 2005b; Cook et al, 2006) and can be classified into three Western industrialised countries.