Scaffolding Mechanisms Supporting Fast Neurotransmitter Release at the Presynaptic Active Zone

Total Page:16

File Type:pdf, Size:1020Kb

Scaffolding Mechanisms Supporting Fast Neurotransmitter Release at the Presynaptic Active Zone Scaffolding Mechanisms Supporting Fast Neurotransmitter Release at the Presynaptic Active Zone The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Held, Richard Guy. 2018. Scaffolding Mechanisms Supporting Fast Neurotransmitter Release at the Presynaptic Active Zone. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41121214 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! ! ! ! "#$%%&'()*+!,-#.$*)/,/!/011&23)*+!%$/3!*-02&32$*/,)33-2!2-'-$/-!$3!3.-!12-/4*$13)#!$#3)5-!6&*-! ! ! 7!()//-23$3)&*!12-/-*3-(! ! ! 84! ! ! 9)#.$2(!:04!;-'(! ! ! 3&! ! ! <.-!=)5)/)&*!&%!>-()#$'!"#)-*#-/! ! ! ! ! ! ! )*!1$23)$'!%0'%)'',-*3!&%!3.-!2-?0)2-,-*3/! ! %&2!3.-!(-+2--!&%! ! =&#3&2!&%!@.)'&/&1.4! ! )*!3.-!/08A-#3!&%!! ! B-02&8)&'&+4! ! ! ! ! ! ! ;$25$2(!C*)5-2/)34! ! D$,82)(+-E!>$//$#.0/-33/! !! 70+0/3!FGHI ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! J!FGHI!9)#.$2(!:04!;-'(! ! 7''!2)+.3/!2-/-25-(K! ! =)//-23$3)&*!7(5)/&2L!=2K!@$/#$'!"K!M$-/-2!! ! ! ! !! !9)#.$2(!:04!;-'(! ! ! "#$%%&'()*+!,-#.$*)/,/!/011&23)*+!%$/3!*-02&32$*/,)33-2!2-'-$/-!$3!3.-!12-/4*$13)#!$#3)5-!6&*-! ! !"#$%&'$( ! ! "4*$13)#!5-/)#'-!-N&#43&/)/!%2&,!12-/4*$13)#!*-25-!3-2,)*$'/!&##02/!O)3.!-N32-,-! 3-,1&2$'!$*(!/1$3)$'!12-#)/)&*E!&*!3.-!&2(-2!&%!,)#2&/-#&*(/!$*(!*$*&,-3-2/K!P)3.)*!3.-! 12-/4*$13)#!3-2,)*$'E!$!12&3-)*!#&,1'-N!Q*&O*!$/!3.-!$#3)5-!6&*-!-*$8'-/!3.)/!$*(!/-25-/!$/! 3.-!/)3-!&%!5-/)#'-!%0/)&*K!RN3-*/)5-!2-/-$2#.!.$/!)(-*3)%)-(!)*()5)(0$'!12&3-)*!#&,1&*-*3/!&%!3.-! $#3)5-!6&*-!$*(!3.-!),1&23$*3!2&'-/!3.-4!1'$4!)*!#&*32&'')*+!%0/)&*K!7#3)5-!6&*-!12&3-)*/!$2-! responsible for ‘docking’ vesicles to the plasma membrane, for generating fusion competent ‘readily releasable’ vesicles, and for positioning those vesicles in close proximity to CaFS! #.$**-'/!3&!)*#2-$/-!3.-)2!2-'-$/-!12&8$8)')34K!=-/1)3-!3.)/!%0*#3)&*$'!Q*&O'-(+-E!,$A&2! ?0-/3)&*/!2-,$)*!$8&03!3.-!/320#302-!&%!3.-!$#3)5-!6&*-!12&3-)*!#&,1'-N!)3/-'%K!T)2/3E!3.-! ,&'-#0'$2!,-#.$*)/,/!3.$3!-/3$8')/.!$*(!,$)*3$)*!3.-!/320#302$'!)*3-+2)34!&%!3.-!$#3)5-!6&*-! .$5-!2-,$)*-(!0*#'-$2K!"-#&*(E!3.-!/#$%%&'()*+!)*3-2$#3)&*/!3.$3!$2-!2-/1&*/)8'-!%&2!'&#$')6)*+! -//-*3)$'!12&3-)*/!3&!3.-!$#3)5-!6&*-!$2-!)*#&,1'-3-'4!0*(-2/3&&(K! <.)/!O&2Q!O$/!(-/)+*-(!3&!$((2-//!3.-/-!3O&!?0-/3)&*/!0/)*+!+-*-!Q*&#Q&03/!&%! ),1&23$*3!$#3)5-!6&*-!12&3-)*!%$,)')-/K!U!%)2/3!$*$'46-(!3.-!-%%-#3/!&%!Q*&#Q)*+!&03!RVM"E!$! 12&3-)*!%$,)'4!3.$3!,$4!,-()$3-!$#3)5-!6&*-!/#$%%&'()*+K!P.)'-!3.-/-!/30()-/!2-5-$'-(!*&! )*(-1-*(-*3!/320#302$'!2&'-/!%&2!RVM"E!U!%&0*(!/0212)/)*+!()5-2/)34!)*!3.-!/4*$13)#!,-#.$*)/,/! 3.$3!0*(-2')-!2-'-$/-!(-%)#)3/!)*!RVM"!Q*&#Q&03/K!U*!/08/-?0-*3!O&2QE!8&3.!RVM"!$*(!$*&3.-2! $#3)5-!6&*-!12&3-)*E!9U>E!O-2-!+-*-3)#$''4!2-,&5-(K!<.)/!2-/0'3-(!)*!*-$2!#&,1'-3-!()/$//-,8'4! &%!3.-!$#3)5-!6&*-!12&3-)*!#&,1'-NE!2-5-$')*+!/0212)/)*+E!/32&*+!/#$%%&'()*+!2-(0*($*#4!8-3O--*! RVM"!$*(!9U>K!T)*$''4E!U!(-3-2,)*-(!.&O!)*3-2$#3)&*/!8-3O--*!$#3)5-!6&*-!12&3-)*/!$*(! FS 12-/4*$13)#!D$ !#.$**-'/!#&*32)803-!3&!$#3)5-!6&*-!/#$%%&'()*+K!9-,&5)*+!$''!D$WF!#.$**-'/! """! ! 2-5-$'-(!3.$3!D$WF!#.$**-'/!3.-,/-'5-/!(&!*&3!/#$%%&'(!$#3)5-!6&*-!12&3-)*/K!U*/3-$(E!,0'3)1'-! 2-(0*($*3!)*3-2$#3)&*/!&%!3.-!D$WF!DX3-2,)*0/!3-3.-2!3.-!#.$**-'/!3&!2-'-$/-!/)3-/K!<.)/!O&2Q! .)+.')+.3/!$!%0*($,-*3$'!&2+$*)6$3)&*$'!12)*#)1'-!&%!3.-!$#3)5-!6&*-L!.)+.'4!2-(0*($*3!12&3-)*! )*3-2$#3)&*/!-*/02-!3.-!/320#302$'!)*3-+2)34!&%!3.-!$#3)5-!6&*-K!"0#.!$*!&2+$*)6$3)&*$'!/#.-,-! #$*!)*#2-$/-!3.-!%0*#3)&*$'!2-')$8)')34!&%!3.)/!,&'-#0'$2!,$#.)*-!$*(!$''&O!/1-#)%)#!)*3-2$#3)&*/! $*(!%0*#3)&*/!3&!8-!%$5&2-(!(-1-*()*+!&*!3.-!'&#$'!#&*3-N3E!-*$8')*+!/4*$1/-X/1-#)%)#!2-'-$/-! 12&1-23)-/K! ! "#! ! )&"*+(,-(',.$+.$#( Abstract……………………………………………………………………………………………….…KKK)))! Table of contents………………………………………………………………………………………K…v! Acknowledgments………………………………………………………………………………………..vi! D;7@<R9!YBRL!U*32&(0#3ion………………….……………………………..…………KK………KKKK….1! D;7@<R9!<PYL!RVM"!#&*32&'/!3.-!1&&'!&%!2-$()'4!2-'-$/$8'-!5-/)#'-/!$3!-N#)3$3&24!/4*$1/-/! 3.2&0+.!)3/!BX3-2,)*$'!#&)'-(Xcoil domains……………………...………………………………..….KHZ! D;7@<R9!<;9RRL!T0/)&*!#&,1-3-*3!/4*$13)#!5-/)#'-/!1-2/)/3/!01&*!$#3)5-!6&*-!()/2013)&*! $*(!'&//!&%!5-/)#'-!(&#Qing……………………………………………………………………..….KK…[G! D;7@<R9!TYC9L!9-(0*($*3!/#$%%&'()*+!,-#.$*)/,/!3$2+-3!D$WF!%$,)'4!5&'3$+-X+$3-(! calcium channels to the presynaptic active zone……………..…………………………………….KI\! D;7@<R9!TUWRL!Discussion and Outlook………….……………………………..…………….….HFG! 7@@RB=U]!YBRL!"011'-,-*3$'!T)+02-/K………KKK………………………………………………KKKH^^! 7@@RB=U]!<PY: Supplemental Figures.………..…………………………………………………162! References …………………………..…………………KK……………………………………………KH_^! ! ! #! ! !'/.,0*+12+3+.$#! ! U!$,!(--1'4!)*(-83-(!3&!,$*4!1-&1'-!$*(!)*/3)303)&*/!%&2!3.-!1&/)3)&*!U!%)*(!,4/-'%!)*!$*(! $*4!/0##-//!U!,$4!.$5-!%&0*(!$'&*+!3.-!O$4K!>4!+2$(0$3-!/#.&&'!-N1-2)-*#-!O$/!/.$1-(!84! 3.-!1-&1'-!3.$3!U!/1-*3!)3!O)3.K!U!O$/!%&230*$3-!3&!8-!)*!$*!)*#&,)*+!#'$//!%)''-(!O)3.!1-&1'-!3.$3! O-2-!/),0'3$*-&0/'4!3$'-*3-(!$*(!O)'')*+!3&!*&3!3$Q-!3.-,/-'5-/!3&&!/-2)&0/'4K!U*!1$23)#0'$2E! 9&.$*!9$,-/.E!7*(2-$!`0*+E!D.2)/!<6-*+E!a-*!7*(2-&*-E!702&2$!b.$*+E!>)#.$-'!D&0'3-2E! :2-+!a24,$*E!$*(!3.-!$(&13-(!a2)$*!D.&O!.$5-!8--*!%$*3$/3)#!#'$//,$3-/!$*(!8-33-2!%2)-*(/K! <.-)2!/1&0/-/!$*(!/)+*)%)#$*3!&3.-2/E!)*!1$23)#0'$2!T$3),$!"$*3)$*&!$*(!c&.*!"$1)-*6$E!O-2-! O&*(-2%0'!$(()3)&*/!3&!&02!+2&01!&%!%2)-*(/!$*(!-N32-,-'4!1$3)-*3!O)3.!$''!3.-!3$'Q!$8&03!/#)-*#-K! 9&.$*!.$/!3.-!$((-(!()/3)*#3)&*!&%!/.$2)*+!$!()/$/32&0/!$1$23,-*3!O)3.!,-!%&2!%)5-!4-$2/E!%&2! O.)#.!U!$,!8&3.!+2$3-%0'!$*(!$1&'&+-3)#K! !U!$,!#&+*)6$*3!&%!3.-!%$#3!3.$3!3.-/-!1-&1'-E!,4/-'%!)*#'0(-(E!O-2-!82&0+.3!3&+-3.-2!84! ;$25$2(!C*)5-2/)34!$*(!3.-!@2&+2$,!)*!B-02&/#)-*#-K!<.-!#.$*#-!3&!O&2Q!)*!$*!-*5)2&*,-*3! O.-2-!4&0!$2-!/022&0*(-(!84!.)+.!$#.)-5)*+!1-&1'-!)/!$!12)5)'-+-K!;$25$2(!$*(!@)B!+$5-!,-! 3.$3!#.$*#-E!$!%$#3!3.$3!U!O)''!2-,$)*!+2$3-%0'!%&2K!U!$,!$'/&!+2$3-%0'!3&!a-*A$,)*!;$''E!O.&!+$5-! ,-!,4!%)2/3!&11&230*)34!3&!O&2Q!)*!.)/!'$8!$3!<0'$*-!C*)5-2/)34!$*(!-*#&02$+-(!,-!3&!$11'4!3&! +2$(0$3-!/#.&&'!$3!;$25$2(d!U!3.&0+.3!.-!O$/!#2$64K!D.).XD.)-.!c$4!P$*+E!$!+2$(0$3-!/30(-*3! in Ben’s lab and later a postX(&#!$3!;$25$2(E!3$0+.3!,-!.&O!3&!O&2Q!)*!$!'$8!$*(!'-3!,-!O&2Q!&*! .)/!12&A-#3!$/!$!'&O'4!0*(-2+2$(0$3-K!P)3.&03!.)/!.$2(!O&2Q!$*(!$##&,1')/.,-*3/E!U!O&0'(! *-5-2!.$5-!+&33-*!)*3&!+2$(0$3-!/#.&&'!)*!3.-!%)2/3!1'$#-K! ! U!.$5-!8--*!-?0$''4!%&230*$3-!)*!O.&!U!/.$2-(!$!'$8!/1$#-!O)3.K!>4!%-''&O!M$-/-2!'$8! ,-,8-2/!,$Q-!3.-!'$8!$!O&*(-2%0'!1'$#-E!&*-!O.-2-!4&0!#$*!8-!8&3.!12&(0#3)5-!$*(!/&#)$'K! ".$*!".$*!P$*+!)*!1$23)#0'$2!.$/!8--*!3.-!8-/3!#&''$8&2$3&2!U!#&0'(!.$5-!$/Q-(!%&2K!".-!.$/! +2$#)&0/'4!$##-13-(!,4!O&2Q!&*!.-2!12&A-#3/!$*(!/-'%'-//'4!#&*32)803-(!.-2!O&2Q!3&!,)*-K!Y02! #&''$8&2$3)&*!.$/!.0+-'4!-*.$*#-(!,4!12&(0#3)5)34!$*(!U!.&1-!/.-!%--'/!U!.$5-!.-'1-(!.-2/K! #"! ! "0**4!B4)32$)E!O.&!/3$23-(!$3!3.-!/$,-!3),-!$/!,-E!.$/!8--*!$*!)*#2-()8'4!5$'0$8'-!/&02#-!&%! /#)-*3)%)#!/Q-13)#)/,!$*(!2)+&2!3.$3!.$/!),12&5-(!3.-!?0$')34!,4!O&2QE!2-+$2('-//!&%!3.-!3),-!&%! *)+.3K!D.$*+')$*+!V)0!.$/!/-25-(!$/!8&3.!$!/&02#-!&%!12$+,$3)#!2-$')/,!$*(!&%!#2-$3)5-E! /&,-3),-/!$8/02(E!)(-$/!&%!8&3.!$!/#)-*3)%)#!$*(!*&*X/#)-*3)%)#!*$302-K!V$02-*!M-2/.8-2+!,$Q-/! ,-!%--'!&'(!803!$'/&!12&0(!3.$3!3.-!'$8!U!(-#)(-(!3&!A&)*!#&*3)*0-/!3&!$332$#3!/,$23!1-&1'-!O.&! $2-!O)'')*+!3&!O&2Q!.$2(!3&!/0##--(K!c-**)%-2!P$*+E!$*(!8-%&2-!.-2!V4()$!a)#Q%&2(E!Q--1!3.-!'$8! 20**)*+!$*(!$''&O!0/!3&!#&*(0#3!3.-!341-!&%!,&0/-!+-*-3)#!-N1-2),-*3/!3.$3!'$8/!3O)#-!&02!/)6-! O&0'(!/320++'-!3&!,$)*3$)*!)*!3.-)2!#&'&*)-/K!@&/3(&#/E!1$/3!$*(!12-/-*3E!)*#'0()*+!723.02!(-! c&*+E!>$*!`$*!P&*+E!7()3)!a$*-2A--E!$*(!c$5)-2!R,1-2$(&2!12&5)(-!3.-!O)/(&,!$*(!2-/&02#-! &%!-N1-2)-*#-K!U!$,!$'/&!+2$3-%0'!3&!".$*!".$*E!V$02-*E!V4()$E!$*(!3.-!&*#-!$+$)*!$(&13-(! a2)$*!D.&O!%&2!#&,)*+!3&!+-3!#&%%--!O)3.!,-!$3!$',&/3!$*4!.&02!&%!3.-!($4K! ! >4!$(5)/&2E!@$/#$'!M$-/-2E!.$/!8--*!$!1.-*&,-*$'!,-*3&2K!;-!.$/!/011&23-(!,-!)*! ()%%-2-*3!O$4/!$/!U!.$5-!(-5-'&1-(!$/!$!/#)-*3)/3E!+)5)*+!,-!&11&230*)3)-/!3&!+$)*!-N1-2)-*#-! -$2'4!&*!$*(!3.-!)*(-1-*(-*#-!3&!-N1'&2-!,4!)(-$/!)*!'$3-2!12&A-#3/K!U!.$5-!'-$2*-(!$!'&3!%2&,! .),E!803!)%!U!.$(!3&!+0-//!3.-!,&/3!5$'0$8'-!'-//&*E!)3!)/!3.$3!/#)-*#-!*-5-2!-*(/!$*(!4&0!/.&0'(! $'O$4/!8-!12-1$2)*+!%&2!3.-!12&A-#3!3.$3!4&0!O)''!8-!O&2Q)*+!&*!3O&!4-$2/!%2&,!*&O!O.)'-! %)*)/.)*+!3.-!&*-!4&0!$2-!O&2Q)*+!&*!3&($4K!U!$,!/02-!3.$3!U!.$5-!*&3!$'O$4/!8--*!$*!-$/4! 1-2/&*!3&!,-*3&2!803!.-!.$/!,$*$+-(!3&!+0)(-!,-!(&O*!)*3-2-/3)*+!1$3./K! @-&1'-!$'O$4/!/$4!3.$3!+2$(0$3-!/#.&&'!)/!.$2(!$*(!)*!$!?0$*3)%)$8'-!/-*/-!3.-4!$2-! 2)+.3K!V&*+!.&02/E!%$)'-(!-N1-2),-*3/E!$*(!3.-!0*12-()#3$8'-!*$302-!&%!8)&'&+4!,-$*!3.$3!8$'$*#-! #$*!8-!$!()%%)#0'3!3.)*+!3&!%)*(K!"08A-#3)5-'4E!/1-$Q)*+!%2&,!,4!&O*!-N1-2)-*#-E!3.-4!$2-!O2&*+E! .&O-5-2K!U!.$5-!O&2Q-(!.$2(!$/!$!+2$(0$3-!/30(-*3!8-#$0/-!U!O$*3-(!3&E!8-#$0/-!U!#.&/-!3.)/! 1$3.!$*(!%)*(!)3!%0'%)'')*+K!U%!U!O$/!)*!'$8!'$3-!&*!$!"$302($4!*)+.3E!)3!O$/!8-#$0/-!3.-2-!O-2-! ?0-/3)&*/!3&!8-!$/Q-(!$*(!$*/O-2/!3&!8-!%&0*(!3.$3!,&3)5$3-(!,-!3&!8-!3.-2-K!<.-4!O-2-!*&3! #""! ! $'O$4/!3.-!&*-/!3.$3!3.-!O&2'(!$*(!3.-!%)-'(!,)+.3!%)*(!3.-!,&/3!#&,1-'')*+d!3.-4!O-2-!A0/3!3.-! &*-/!U!')Q-(K!<.-2-!)/!*&!.$2(/.)1!)*!3.$3K!! T&2!3.-!1-&1'-!O.&/-!')5-/!U!$,!$!1$23!&%E!.&O-5-2E!3.-2-!O$/!#&*/)(-2$8'4!'-//!#.&)#-!
Recommended publications
  • Cell Surface Mobility of GABAB Receptors Saad Bin
    Cell surface mobility of GABAB receptors Saad Bin Hannan September 2011 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University College London Department of Neuroscience, Physiology, and Pharmacology University College London Gower Street London WC1E 6BT UK Declaration ii ‘I, Saad Hannan confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' ____________________ Saad Hannan September 2011 To Ammu, Abbu, Polu Abstract ivi Abstract Type-B γ-aminobutyric acid receptors (GABABRs) are important for mediating slow inhibition in the central nervous system and the kinetics of their internalisation and lateral mobility will be a major determinant of their signalling efficacy. Functional GABABRs require R1 and R2 subunit co-assembly, but how heterodimerisation affects the trafficking kinetics of GABABRs is unknown. Here, an α- bungarotoxin binding site (BBS) was inserted into the N-terminus of R2 to monitor receptor mobility in live cells. GABABRs are internalised via clathrin- and dynamin- dependent pathways and recruited to endosomes. By mutating the BBS, a new technique was developed to differentially track R1a and R2 simultaneously, revealing the subunits internalise as heteromers and that R2 dominantly-affects constitutive internalisation of GABABRs. Notably, the internalisation profile of R1aR2 heteromers, but not R1a homomers devoid of their ER retention motif (R1ASA), is similar to R2 homomers in heterologous systems. The internalisation of R1aASA was slowed to that of R2 by mutating a di-leucine motif in the R1 C-terminus, indicating a new role for heterodimerisation, whereby R2 subunits slow the internalization of surface GABABRs.
    [Show full text]
  • Complexin Suppresses Spontaneous Exocytosis by Capturing the Membrane- Proximal Regions of VAMP2 and SNAP25
    bioRxiv preprint doi: https://doi.org/10.1101/849885; this version posted November 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Complexin suppresses spontaneous exocytosis by capturing the membrane- proximal regions of VAMP2 and SNAP25 Authors: J. Malsam1,6, S. Bärfuss1,6, T. Trimbuch2, F. Zarebidaki2, A.F.-P. Sonnen3,5, K. Wild1, A. Scheutzow1, I. Sinning1, J.A.G. Briggs3,4, C. Rosenmund2, and T.H. Söllner1,7,* Author Affiliations: 1Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany. 2Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany. 3European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. 4MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 5Present address: Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands 6These authors contributed equally 7Lead Contact *Correspondence: [email protected]. Summary The neuronal protein complexin contains multiple domains that exert both clamping and facilitatory functions to tune spontaneous and action potential triggered synaptic release. We address the clamping mechanism and show that the accessory helix of complexin arrests the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor
    [Show full text]
  • C-Terminal Domain of Mammalian Complexin-1 Localizes to Highly Curved Membranes
    C-terminal domain of mammalian complexin-1 localizes to highly curved membranes Jihong Gonga,b,c,d,1, Ying Laie,1, Xiaohong Lia,b,c,d, Mengxian Wanga,b,c,d, Jeremy Leitze,f, Yachong Hug, Yunxiang Zhange,UcheorB.Choie, Daniel Ciprianoe,f, Richard A. Pfuetznere,f, Thomas C. Südhofe,f, Xiaofei Yanga,b,c,d,2, Axel T. Brungere,f,h,i,j,2, and Jiajie Diaoe,f,2,3 aKey Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China; bHubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China; cLaboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China; dCollege of Life Science, South-Central University for Nationalities, Wuhan 430074, China; eDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305; fHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; gCenter for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; hDepartment of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; iDepartment of Structural Biology, Stanford University, Stanford, CA 94305; and jDepartment of Photon Science, Stanford University, Stanford, CA 94305 Contributed by Axel T. Brunger, August 25, 2016 (sent for review June 21, 2016; reviewed by Jeremy S. Dittman and Erdem Karatekin) In presynaptic nerve terminals, complexin regulates spontaneous membranes via a membrane-binding motif (20, 21).
    [Show full text]
  • IBENS - Institut De Biologie De L’École Normale Supérieure Rapport Hcéres
    IBENS - Institut de biologie de l’école Normale Supérieure Rapport Hcéres To cite this version: Rapport d’évaluation d’une entité de recherche. IBENS - Institut de biologie de l’école Normale Supérieure. 2013, École normale supérieure - ENS, Centre national de la recherche scientifique - CNRS, Institut national de la santé et de la recherche médicale - INSERM. hceres-02031420 HAL Id: hceres-02031420 https://hal-hceres.archives-ouvertes.fr/hceres-02031420 Submitted on 20 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Department for the evaluation of research units AERES report on unit: Institut de Biologie de l’Ecole Normale Supérieure IBENS Under the supervision of the following institutions and research bodies: Ecole Normale Supérieure Institut national de la santé et de la recherche médicale Centre National de la Recherche Scientifique January 2013 Research Units Department The president of AERES "signs[...], the evaluation reports, [...]countersigned for each evaluation department by the relevant head of department (Article 9, paragraph 3, of french decree n°2006-1334 dated 3 november 2006, revised). Institut de Biologie de l’ENS, IBENS, INSERM, CNRS and ENS, Mr Antoine TRILLER Grading Once the visits for the 2012-2013 evaluation campaign had been completed, the chairpersons of the expert committees, who met per disciplinary group, proceeded to attribute a score to the research units in their group (and, when necessary, for these units’ in-house teams).
    [Show full text]
  • Distribution of Glycine Receptors on the Membrane of a Central Neuron: an Lmmunoelectron Microscopy Study
    The Journal of Neuroscience, November 1988, 8(11): 4319-4333 Distribution of Glycine Receptors on the Membrane of a Central Neuron: An lmmunoelectron Microscopy Study Tania Seitanidou, Antoine Triller, and Henri Korn Laboratoire de Neurobiologie Cellulaire, INSERM U261, DQpartement des Biotechnologies, lnstitut Pasteur, 75724 Paris CQdex 15, France The distribution of glycine receptors on the plasmalemma Glycine is a major inhibitory neurotransmitter in the CNS of of the teleost Mauthner cell was examined with light and many species (Werman et al., 1967, 1968; Aprison and Daly, electron microscopy using monoclonal antibodies raised 1978) and is involved, for instance, in the genesis ofthe recurrent against the glycine receptors of the rat. These immunoglob- collateral inhibition of spinal motoneurons in vertebrates (Ec- ulins recognize a peptide of 93 kDa associated with the cles et al., 1954; Brooks and Wilson, 1959; Larson, 1969). Re- intracellular side of the receptor complex. With indirect im- ceptors for this amino acid are found primarily in the phylo- munofluorescence, labeling appeared as small clusters over genetically oldest parts of the CNS (Aprison et al., 1969; Zarbin the whole surface of the neuron. This distribution indicates et al., 198 1); thus, they have a nonuniform distribution in the that, unlike other neurons, the Mauthner cell can express CNS. glycine receptors at the dendritic and at the somatic level Until recently, the morphological evidence for glycinergic as well. Vestibular or reticular neurons lying in the proximity transmission was obtained with biochemical and indirect au- of the Mauthner cell were also stained. toradiographic methods: (1) Glycinergic boutons were identified At the ultrastructural level, the immunoenzymatic reaction using tritiated glycine to localize its high-affinity uptake sites in product, localized in front of the presynaptic active zones, the spinal cord (Hokfelt and Ljungdahl, 197 l), in the cerebellum slightly overextends the limits of the synaptic complex.
    [Show full text]
  • The Role of Complexin in Neurotransmitter Release
    THE ROLE OF COMPLEXIN IN NEUROTRANSMITTER RELEASE Neurons communicate using specialized con- Student Researcher: Joel Fernandez nections called synapses by releasing synaptic Mentor: Jeremy Dittman, Weill Cornell Medical College, New York, NY vesicles (SVs) containing neurotransmitters. How this process is regulated is not completely understood, although some of the key mole- cules have been identified. Complexins are a INTRODUCTION proteins in vivo. Furthermore, many family of protein found primarily in the synaptic mutants have already been nervous system of all animals. We investigated Chemical synapses play a critical identified (a complexin null mutant the role of complexin I (cpx-1) in the nematode role in the function of an animal's among them). C. elegans. We found that cpx-1 null mutants Using this organism, we tested paralyzed far quicker in aldicarb than wild- nervous system. They are the means type animals. Furthermore, the null mutants through which neurons transfer infor- whether complexin plays an inhibitory displayed severe locomotory defects; the null mation. The presynaptic terminal is or facilitating role in neurotransmitter mutants showed about a 70% decrease in pivotal in this exchange. It is responsible release. Furthermore, we wanted to body bends per 20 seconds. Introducing a for the regulated release of vesicles know if a null mutant can be rescued complexin GFP fusion protein into GABA by reintroducing complexin into the motor neurons alone did not rescue the containing neurotransmitters, the chem- mutants; these animals displayed the exact icals which relay messages across synap- animal. defects as the null mutants, suggesting that null ses. How this vital and rapid process is defects are independent of the GABA motor regulated is still a mystery, although neurons.
    [Show full text]
  • The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013
    The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013 by Thomas C. Südhof Dept. of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, USA. 1. THE NEUROTRANSMITTER RELEASE ENIGMA Synapses have a long history in science. Synapses were frst functionally demon- strated by Emil duBois-Reymond (1818–1896), were morphologically identifed by classical neuroanatomists such as Rudolf von Kölliker (1817–1905) and San- tiago Ramon y Cajal (1852–1934), and named in 1897 by Michael Foster (1836– 1907). Although the chemical nature of synaptic transmission was already sug- gested by duBois-Reymond, it was long disputed because of its incredible speed. Over time, however, overwhelming evidence established that most synapses use chemical messengers called neurotransmitters, most notably with the pioneer- ing contributions by Otto Loewi (1873–1961), Henry Dale (1875–1968), Ulf von Euler (1905–1983), and Julius Axelrod (1912–2004). In parallel, arguably the most important advance to understanding how synapses work was provided by Bernard Katz (1911–2003), who elucidated the principal mechanism of syn- aptic transmission (Katz, 1969). Most initial studies on synapses were carried out on the neuromuscular junction, and central synapses have only come to the fore in recent decades. Here, major contributions by many scientists, including George Palade, Rodolfo Llinas, Chuck Stevens, Bert Sakmann, Eric Kandel, and Victor Whittaker, to name just a few, not only confrmed the principal results obtained in the neuromuscular junction by Katz, but also revealed that synapses 259 6490_Book.indb 259 11/4/14 2:29 PM 260 The Nobel Prizes exhibit an enormous diversity of properties as well as an unexpected capacity for plasticity.
    [Show full text]
  • Complexin II Plays a Positive Role in Ca -Triggered Exocytosis By
    Complexin II plays a positive role in Ca2؉-triggered exocytosis by facilitating vesicle priming Haijiang Caia,1, Kerstin Reimb, Frederique Varoqueauxb, Sompol Tapechuma,2, Kerstin Hillc,3, Jakob B. Sørensenc, Nils Broseb, and Robert H. Chowa,4 aDepartment of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089; bDepartment of Molecular Neurobiology and Center for the Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, D-37075 Go¨ttingen, Germany; and cDepartment of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Go¨ttingen, Germany Communicated by Clay M. Armstrong, University of Pennsylvania, Philadelphia, PA, October 10, 2008 (received for review August 3, 2008) SNARE-mediated exocytosis is a multistage process central to II antibody into Aplysia buccal ganglia neurons stimulated neuro- synaptic transmission and hormone release. Complexins (CPXs) are transmitter release (14), and overexpression of CPX I or CPX II in small proteins that bind very rapidly and with a high affinity to the PC12 cells was reported to suppress acetylcholine (ACh) release SNARE core complex, where they have been proposed recently to (15). More recent studies showed that cell–cell fusion of cells that inhibit exocytosis by clamping the complex and inhibiting mem- express SNAREs facing extracellularly is inhibited by CPX (16–18) brane fusion. However, several other studies also suggest that and that overexpression of a synaptobrevin CPX fusion protein, CPXs are positive regulators of neurotransmitter release. Thus, which is thought to cause high presynaptic levels of CPX, inhibits whether CPXs are positive or negative regulators of exocytosis is synaptic transmission (19).
    [Show full text]
  • Cranfield University Glaxosmithkline JESSICA BROTHWOOD
    Cranfield University GlaxoSmithKline JESSICA BROTHWOOD DRUGGABLE AND BIOPHARMABLE GENOME ANNOTATION PIPELINE DEVELOPMENT Cranfield Health Applied Bioinformatics MSc Thesis Academic year: 2011-12 Supervisors: Dr Michael Cauchi (Cranfield) Dr Hannah Tipney (GSK) September 2012 Cranfield University GlaxoSmithKline Research & Development Ltd Cranfield Health Applied Bioinformatics MSc Thesis Academic Year 2011-12 Jessica Brothwood Druggable and biopharmable genome annotation pipeline development Supervisors: Dr Michael Cauchi (Cranfield University) Dr Hannah Tipney (GlaxoSmithKline) September 2012 This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science. © Cranfield University 2012. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. Abstract The identification of proteins which could be potential targets for new pharmaceutical products is invaluable for the continued improvement people’s quality of life and expansion of available treatment options. In order to aid the discovery of new drug targets, predictions of every human gene likely to be exploitable by compounds and biotechnology were generated using open source tools and publicly available data. An automated pipeline was produced in order to minimise the effort required to reproduce, update and expand this work. In total, using various different prediction techniques, over 15,000 genes were predicted to code potential targets. An optimistic estimate of the druggable genome at 5,097 genes was produced. These genes contain one or more of the same Pfam protein domains as a drug target (a protein displaying significant activity with a phase four drug from ChEMBL database). The preliminary techniques explored here estimate the biopharmable genome to encompass between 3,169 and 8,117 genes.
    [Show full text]
  • SNARE Complex Oligomerization by Synaphin/Complexin Is Essential for Synaptic Vesicle Exocytosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 104, 421±432, February 9, 2001, Copyright 2001 by Cell Press SNARE Complex Oligomerization by Synaphin/Complexin Is Essential for Synaptic Vesicle Exocytosis Hiroshi Tokumaru,*² Keiko Umayahara,*² al., 1994; Broadie et al., 1995; Sweeney et al., 1995). Lorenzo L. Pellegrini,²§ Toru Ishizuka,³ Reconstituting SNARE proteins into liposomes demon- Hideo Saisu,³ Heinrich Betz,²§ strates that these proteins can serve as a minimal molec- George J. Augustine,*²k and Teruo Abe²³ ular machinery to fuse membranes (Weber et al., 1998), *Department of Neurobiology though it is presently unclear whether SNAREs directly Duke University Medical Center mediate membrane fusion or act at a step that immedi- Box 3209 ately precedes fusion (Coorssen et al., 1998; Ungermann Durham, North Carolina 27710 et al., 1998). ² Marine Biological Laboratory In vitro, SNARE proteins bind to each other to form Woods Hole, Massachusetts 02543 binary and heterotrimeric complexes (Hayashi et al., ³ Department of Cellular Neurobiology 1994; Pevsner et al., 1994). The ternary SNARE complex Brain Research Institute is highly stable and resists denaturation by detergents Niigata University such as SDS (Hayashi et al., 1994). It consists of a parallel Niigata 951-8585 four-helix bundle containing one coiled-coil domain Japan from syntaxin, another from synaptobrevin 2, and two § Department of Neurochemistry from SNAP-25 (Sutton et al., 1998). Dissociation of the Max-Planck-Institute for Brain Research complex appears to require NSF, an ATPase that atta- 60528 Frankfurt ches to the SNARE complex via ␣-SNAP (SoÈ llner et al., Germany 1993a, 1993b).
    [Show full text]
  • Structural and Functional Study of SNARE Machinery in Neurotransmitter Release Shuang Song Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Structural and functional study of SNARE machinery in neurotransmitter release Shuang Song Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons, Biology Commons, and the Biophysics Commons Recommended Citation Song, Shuang, "Structural and functional study of SNARE machinery in neurotransmitter release" (2013). Graduate Theses and Dissertations. 13082. https://lib.dr.iastate.edu/etd/13082 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Structural and functional study of SNARE machinery in neurotransmitter release by Shuang Song A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular, and Developmental Biology Program of Study Committee: Yeon-Kyun Shin, Major Professor Linda Ambrosio Edward Yu Alan DiSpirito Diane Bassham Iowa State University Ames, Iowa 2013 Copyright © Shuang Song, 2013. All rights reserved. ii TABLE OF CONTENTS ABSTRACT .............................................................................................................................
    [Show full text]
  • Subcloning and Expression of Complexin Isoforms Involved in Mast Cell Degranulation
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2014 Subcloning and Expression of Complexin Isoforms Involved in Mast Cell Degranulation Cameron Blake King University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Cell and Developmental Biology Commons Recommended Citation King, Cameron Blake, "Subcloning and Expression of Complexin Isoforms Involved in Mast Cell Degranulation" (2014). Honors Theses. 226. https://aquila.usm.edu/honors_theses/226 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Subcloning and Expression of Complexin Isoforms Involved in Mast Cell Degranulation by Cameron King A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in the Department of Biological Sciences May 2014 ii Approved by ______________________________ Hao Xu, Ph.D., Thesis Adviser Assistant Professor of Biology ______________________________ Shiao Wang, Ph.D., Interim Chair Department of Biological Sciences ________________________________________ David R. Davies, Ph.D., Dean Honors College iii Abstract Mast cells play an important role in the immune system by releasing chemicals such as chemokines and cytokines once they are stimulated. These products are released after stimulation by a process called mast cell degranulation. Mast cell degranulation is accomplished when vesicles containing the chemicals inside the mast cell fuse with the mast cell membrane via SNARE-mediated (Soluble NSF Attachment Protein Receptors) membrane fusion.
    [Show full text]