Genome-Wide Survey of Odorant-Binding Proteins in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
106Th Annual Meeting of the German Zoological Society Abstracts
September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416 -
Ecology, Behaviour and Control of Apis Cerana with a Focus on Relevance to the Australian Incursion
Insects 2013, 4, 558-592; doi:10.3390/insects4040558 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion Anna H. Koetz Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, 21-23 Redden St., Portsmith, QLD 4870, Australia; E-Mail: [email protected]; Tel.: +61-419-726-698; Fax: +61-7-4057-3690 Received: 27 June 2013; in revised form: 13 September 2013 / Accepted: 24 September 2013 / Published: 21 October 2013 Abstract: Apis cerana Fabricius is endemic to most of Asia, where it has been used for honey production and pollination services for thousands of years. Since the 1980s, A. cerana has been introduced to areas outside its natural range (namely New Guinea, the Solomon Islands, and Australia), which sparked fears that it may become a pest species that could compete with, and negatively affect, native Australian fauna and flora, as well as commercially kept A. mellifera and commercial crops. This literature review is a response to these concerns and reviews what is known about the ecology and behaviour of A. cerana. Differences between temperate and tropical strains of A. cerana are reviewed, as are A. cerana pollination, competition between A. cerana and A. mellifera, and the impact and control strategies of introduced A. cerana, with a particular focus on gaps of current knowledge. Keywords: Apis cerana; Apis mellifera; incursion; pest species; Australia; pollination; competition; distribution; control 1. Introduction Apis cerana Fabricius (also known as the Asian honeybee, Asiatic bee, Asian hive bee, Indian honeybee, Indian bee, Chinese bee, Mee bee, Eastern honeybee, and Fly Bee) is endemic to most of Asia where it has been used for honey production and pollination services for thousands of years. -
Gene Families in the Desert Locust Schistocerca Gregaria
Molecular Elements Involved in Locust Olfaction: Gene Families in the Desert Locust Schistocerca gregaria Dissertation for Obtaining the Doctoral Degree of Natural Sciences (Dr. rer. nat.) Faculty of Natural Sciences University of Hohenheim From the Institute of Physiology Prof. Dr. H. Breer Submitted by Xingcong Jiang Heze (Provinz Shandong), V.R. China 2018 Dean: Prof. Dr. Uwe Beifuß 1st reviewer: Prof. Dr. Heinz Breer 2nd reviewer: Prof. Dr. Jürgen Krieger Submitted on: Oral examination on: 10.08.2018 This work was accepted by the Faculty of Natural Sciences at the University of Hohenheim as “Dissertation for Obtaining the Doctoral Degree of Natural Sciences”. Annex 2 to the University of Hohenheim doctoral degree regulations for Dr. rer. nat. Affidavit according to Sec. 7(7) of the University of Hohenheim doctoral degree regulations for Dr. rer. nat. 1. For the dissertation submitted on the topic Molecular Elements Involved in Locust Olfaction: Gene Families in the Desert Locust Schistocerca gregaria I hereby declare that I independently completed the work. 2. I only used the sources and aids documented and only made use of permissible assistance by third parties. In particular, I properly documented any contents which I used - either by directly quoting or paraphrasing - from other works. 3. I did not accept any assistance from a commercial doctoral agency or consulting firm. 4. I am aware of the meaning of this affidavit and the criminal penalties of an incorrect or incomplete affidavit. I hereby confirm the correctness of the above declaration: I hereby affirm in lieu of oath that I have, to the best of my knowledge, declared nothing but the truth and have not omitted any information. -
Identification of Candidate Chemosensory Genes in Mythimna Separata by Transcriptomic Analysis
Du et al. BMC Genomics (2018) 19:518 https://doi.org/10.1186/s12864-018-4898-0 RESEARCH ARTICLE Open Access Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis Lixiao Du1†, Xincheng Zhao2†, Xiangzhi Liang1, Xiwu Gao3, Yang Liu1* and Guirong Wang1* Abstract Background: The oriental armyworm, Mythimna separata, is an economically important and common Lepidopteran pest of cereal crops. Chemoreception plays a key role in insect life, such as foraging, oviposition site selection, and mating partners. To better understand the chemosensory mechanisms in M. separata, transcriptomic analysis of antennae, labial palps, and proboscises were conducted using next-generation sequencing technology to identify members of the major chemosensory related genes. Results: In this study, 62 putative odorant receptors (OR), 20 ionotropic receptors (IR), 16 gustatory receptors (GR), 38 odorant binding proteins (OBP), 26 chemosensory proteins (CSP), and 2 sensory neuron membrane proteins (SNMP) were identified in M. separata by bioinformatics analysis. Phylogenetic analysis of these candidate proteins was performed. Differentially expressed genes (DEGs) analysis was used to determine the expressions of all candidate chemosensory genes and then the expression profiles of the three families of receptor genes were confirmed by real-time quantitative RT-PCR (qPCR). Conclusions: The important genes for chemoreception have now been identified in M. separata. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest. Keywords: Mythimna separata, Transcriptome, Chemosensory gene, Expression analysis Background receptor neurons (GRNs) are distributed on different Insects live in environments where they are constantly taste organs over the entire body surface of insects in- surrounded by various chemical signals, including olfac- cluding the proboscis, legs, wings, and even the female tory and taste. -
Aggregations of Unrelated Apis Florea Colonies Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P
Aggregations of unrelated Apis florea colonies Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P. Oldroyd To cite this version: Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P. Oldroyd. Aggregations of unrelated Apis florea colonies. Apidologie, Springer Verlag, 2008, 39 (5), pp.531-536. hal-00891920 HAL Id: hal-00891920 https://hal.archives-ouvertes.fr/hal-00891920 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 531–536 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2008045 Original article Aggregations of unrelated Apis florea colonies* Wandee Wattanachaiyingcharoen1, Siriwat Wongsiri2,BenjaminP.Oldroyd3 1 Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 2 Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10320, Thailand 3 Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia Received 5 July 2007 – Revised 25 March 2008 – Accepted 13 May 2008 Abstract – Intensive surveys of an area of woodland in Phitsanulok province, Thailand, revealed 15 colonies of Apis florea. The colonies had a highly aggregated spatial distribution (Standardized Morisita’s Index of Dispersion = 0.59). -
Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles Gambiae
Article Bioinformatics-Based Identi¯cation of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae Zhengxi Li1*, Zuorui Shen1, Jingjiang Zhou2, and Lin Field2 1 Department of Entomology, China Agricultural University, Beijing 100094, China; 2 Biological Chemistry Division, Rothamsted Research, Harpenden, Herts. AL5 2JQ, UK. Chemosensory proteins (CSPs) are identi¯able by four spatially conserved Cys- teine residues in their primary structure or by two disul¯de bridges in their ter- tiary structure according to the previously identi¯ed olfactory speci¯c-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that ¯ve out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identi¯cation of Anopheles CSPs, though all of these candidates need additional experimental veri¯cation. Key words: chemosensory protein, proteomics, bioinformatics, olfaction, African malaria mosqui- to, Anopheles gambiae Introduction Anopheles gambiae (A. gambiae) is the principal vec- (OBPs) and olfactory speci¯c-D (OS-D) related pro- tor of malaria that a²icts more than 500 million peo- teins (3 ; 4 ). OS-D related proteins (average 13 kDa) ple and causes more than 1 million deaths each year. were ¯rst identi¯ed by subtractive hybridisation ex- Analysis of the whole genome of A. gambiae revealed periments using antennae of Drosophila melanogaster strong evidence for about 14,000 protein-coding tran- (5 ; 6 ). Many OS-D homologues were subsequently scripts, which need further annotation and experi- identi¯ed based on sequence similarity in di®erent in- mental veri¯cation (1 ). -
Species from Sympatric Apis Florea (Fabricius, 1787)
Original article Evidence of reproductive isolation confirms that Apis andreniformis (Smith, 1858) is a separate species from sympatric Apis florea (Fabricius, 1787) S Wongsiri K Limbipichai P Tangkanasing M Mardan T Rinderer HA Sylvester G Koeniger G Otis 1 Bee Biology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 2 Department of Plant Protection, Universiti Pertanian Malaysia, 43400 Serdang, Selangor, Malaysia; 3 Honey-Bee Breeding, Genetics & Physiology Research 1157 Ben Hur Road, Baton Rouge, Louisiana 70820, USA; 4 Institut für Bienenkunde D 6370 Oberursel 1, FRG (Received 7 September 1989; accepted 29 September 1989) Summary — The species Apis andreniformis (Smith, 1858), the small dwarf honey bee of South- east Asia, is recognized as a valid biological species. This recognition is based on distinctive endo- phallus characteristics in comparison with sympatric Apis florea (Fabricius, 1787). Additionally, scan- ning electron microscope images of drone basitarsi are presented, as are preliminary comparisons of wing venation. Apis florea / Apis andreniformis / taxonomy / reproductive isolation INTRODUCTION characteristics of Apis florea (Fabricius, 1787) that are reported for worker bees (Maa, 1953). In 1984, our group collected dwarf honey bees in Thailand in the province of Chan- Wu and Kuang (1986, 1987) reported taburi near the border with Kampuchea. that secondary sex characteristics differed Laboratory examinations of worker bees between drones of A florea and A andre- from these collections revealed that some formis. Specifically, both have a furcated bees had the species specific characteris- basitarsus, presumably modified to grasp tics of Apis andreniformis (Smith, 1858) queens during mating (see Ruttner, 1988). and that others had the species specific The furcated basitarsus is quite different in * Correspondence and reprints. -
Honey Bee from Wikipedia, the Free Encyclopedia
Honey bee From Wikipedia, the free encyclopedia A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the Honey bees construction of perennial, colonial nests from wax. Currently, only seven Temporal range: Oligocene–Recent species of honey bee are recognized, with a total of 44 subspecies,[1] PreЄ Є O S D C P T J K Pg N though historically six to eleven species are recognized. The best known honey bee is the Western honey bee which has been domesticated for honey production and crop pollination. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.[2] Some other types of related bees produce and store honey, including the stingless honey bees, but only members of the genus Apis are true honey bees. The study of bees, which includes the study of honey bees, is known as melittology. Western honey bee carrying pollen Contents back to the hive Scientific classification 1 Etymology and name Kingdom: Animalia 2 Origin, systematics and distribution 2.1 Genetics Phylum: Arthropoda 2.2 Micrapis 2.3 Megapis Class: Insecta 2.4 Apis Order: Hymenoptera 2.5 Africanized bee 3 Life cycle Family: Apidae 3.1 Life cycle 3.2 Winter survival Subfamily: Apinae 4 Pollination Tribe: Apini 5 Nutrition Latreille, 1802 6 Beekeeping 6.1 Colony collapse disorder Genus: Apis 7 Bee products Linnaeus, 1758 7.1 Honey 7.2 Nectar Species 7.3 Beeswax 7.4 Pollen 7.5 Bee bread †Apis lithohermaea 7.6 Propolis †Apis nearctica 8 Sexes and castes Subgenus Micrapis: 8.1 Drones 8.2 Workers 8.3 Queens Apis andreniformis 9 Defense Apis florea 10 Competition 11 Communication Subgenus Megapis: 12 Symbolism 13 Gallery Apis dorsata 14 See also 15 References 16 Further reading Subgenus Apis: 17 External links Apis cerana Apis koschevnikovi Etymology and name Apis mellifera Apis nigrocincta The genus name Apis is Latin for "bee".[3] Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e. -
De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha Longicaudata
G C A T T A C G G C A T genes Article De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha longicaudata (Ashmead) 1, 2, 2 2 3,4, 5, Liangde Tang y, Jimin Liu y, Lihui Liu , Yonghao Yu , Haiyan Zhao * and Wen Lu * 1 Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; [email protected] 2 Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; [email protected] (J.L.); [email protected] (L.L.); [email protected] (Y.Y.) 3 Department of Entomology, College of Tobacco Science, Guizhou University, Guiyang 550025, China 4 Guangxi Academy of Agricultural Sciences, Nanning 530007, China 5 College of Agriculture, Guangxi University, Nanning 530007, China * Correspondence: [email protected] (H.Z.); [email protected] (W.L.) Authors contribute equally. y Received: 3 January 2020; Accepted: 22 January 2020; Published: 29 January 2020 Abstract: Diachasmimoorpha longicaudata (Ashmead, D. longicaudata) (Hymenoptera: Braconidae) is a solitary species of parasitoid wasp and widely used in integrated pest management (IPM) programs as a biological control agent in order to suppress tephritid fruit flies of economic importance. Although many studies have investigated the behaviors in the detection of their hosts, little is known of the molecular information of their chemosensory system. We assembled the first transcriptome of D. longgicaudata using transcriptome sequencing and identified 162,621 unigenes for the Ashmead insects in response to fruit flies fed with different fruits (guava, mango, and carambola). -
How Can Honey Bees Explain the Process of Animal Domestication by Humans?
Arthropods, 2020, 9(2): 32-37 Article How can honey bees explain the process of animal domestication by humans? Hossam F. Abou-Shaara Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt E-mail: [email protected] Received 1 February 2020; Accepted 5 March 2020 ; Published 1 June 2020 Abstract Animal domestication depends on complex relationships between humans and animals. There are many questions related to the domestication still incompletely solved especially since animal domestication occurred at specific regions in the past, and the percentage of domesticated animals is low. It is not easy to change characteristics and behaviors of wild animals, and humans can only train them to do specific tasks in most cases. Some species of honey bees, genus Apis, are wild and others are domesticated. In this article, domestication steps of honey bees by humans was used as a model to explain the early domestication process for other animals and to present answers to unsolved questions. Keywords beekeeping; selection; characteristics; history. Arthropods ISSN 22244255 URL: http://www.iaees.org/publications/journals/arthropods/onlineversion.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml Email: [email protected] EditorinChief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction Some animals can simply be kept by humans and some of them can serve humans, for example donkeys. Donkeys for a long period of time were the main transportation means and they can be easily kept by humans in closed and open environments. Horses are another example, and the hybridization between horses and donkeys gives domesticated hybrids which can also be kept by humans. -
Genes Involved in Convergent Evolution of Eusociality in Bees
Genes involved in convergent evolution of eusociality in bees S. Hollis Woodarda,1, Brielle J. Fischmana,1, Aarti Venkatb, Matt E. Hudsonb, Kranthi Varalab, Sydney A. Cameronc, Andrew G. Clarkd, and Gene E. Robinsona,c,e,f,2 aProgram in Ecology, Evolution, and Conservation Biology, Departments of bCrop Sciences and cEntomology, eInstitute for Genomic Biology, and fNeuroscience Program, University of Illinois, Urbana, IL 61801; and dDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Contributed by Gene E. Robinson, March 12, 2011 (sent for review February 17, 2011) Eusociality has arisen independently at least 11 times in insects. different social lifestyles among relatively closely related species. Despite this convergence, there are striking differences among Furthermore, the extensive knowledge of bee natural history (8, eusocial lifestyles, ranging from species living in small colonies 13, 14) provides a valuable framework for developing hypotheses with overt conflict over reproduction to species in which colonies about the adaptive significance of genetic changes detected in contain hundreds of thousands of highly specialized sterile work- eusocial bee lineages. ers produced by one or a few queens. Although the evolution of To study patterns of molecular evolution associated with eusociality has been intensively studied, the genetic changes eusociality in bees, we generated ~1 Gbp of expressed sequence involved in the evolution of eusociality are relatively unknown. tags (ESTs) from a set of nine bee species (Table S1). This set of We examined patterns of molecular evolution across three in- species reflects the remarkable social diversity in bees by in- dependent origins of eusociality by sequencing transcriptomes of cluding eusocial and non-eusocial species; three origins of euso- nine socially diverse bee species and combining these data with ciality (9, 10); and two different forms of eusocial lifestyle, “highly genome sequence from the honey bee Apis mellifera to generate eusocial” and “primitively eusocial” (ref. -
A Chemosensory Protein Detects Antifeedant in Locust (Locusta Migratoria)
insects Article A Chemosensory Protein Detects Antifeedant in Locust (Locusta migratoria) Xingcong Jiang, Haozhi Xu, Nan Zheng, Xuewei Yin * and Long Zhang * Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] (X.J.); [email protected] (H.X.); [email protected] (N.Z.) * Correspondence: [email protected] (X.Y.); [email protected] (L.Z.); Tel.: +86-010-62731303 (L.Z.) Simple Summary: Chemosensory proteins (CSPs) in insects are small compact polypeptides which can bind and carry hydrophobic semiochemicals. CSPs distribute in many organs of insect and have multiple functions. In chemosensory system, CSPs are thought to be responsible for detect- ing chemical signals from the environment. In this study, we proved that LmigCSPIII, a CSP in Locusta migratoria is involved in detecting an antifeedant. LmigCSPIII exhibits high binding affin- ity to α-amylcinnamaldehyde, a natural compound from non-host plant which was subsequently demonstrated to be an effective antifeedant. Knockdown of LmigCSPIII gene by RNA interference showed reduced sensitivity to α-amylcinnamaldehyde but showed no changes in their physiological development or food consumption. Our findings provided new evidence that CSPs can detect antifeedant in chemosensory system of insects. Abstract: Chemosensory system is vitally important for animals to select food. Antifeedants that herbivores encounter can interfere with feeding behavior and exert physiological effects. Few studies have assessed the molecular mechanisms underlying the chemoreception of antifeedants. In this study, we demonstrated that a chemosensory protein (CSP) in Locusta migratoria is involved in detecting an antifeedant. This CSP, LmigEST6 (GenBank Acc.