How Can Honey Bees Explain the Process of Animal Domestication by Humans?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Insights of Mitochondrial 16S Rdna Genes of the Native Honey Bees Subspecies Apis Mellifera Carnica and Apis Mellifera Jementica (Hymenoptera: Apidae) In
Molecular insights of mitochondrial 16S rDNA genes of the native honey bees subspecies Apis mellifera carnica and Apis mellifera jementica (Hymenoptera: Apidae) in Saudi Arabia Reem Alajmi1, Rewaida Abdel-Gaber1,2*, Loloa Alfozana1 1Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia 2Faculty of Science, Department of Zoology, Cairo University, Cairo, Egypt Corresponding author: Rewaida Abdel-Gaber E-mail: [email protected] Genet. Mol. Res. 18 (1): gmr16039948 Received Nov 30, 2018 Accepted Dec 21, 2018 Published Jan 05, 2019 DOI: http://dx.doi.org/10.4238/gmr16039948 Copyright © 2018 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. The honey bee Apis mellifera is of major importance for the world’s agriculture and is also suitable for environmental monitoring. It includes several recognized subspecies distinguished by using morphological and morphometric variants. Here, 200 adult worker Apis mellifera honey bees were collected from Hail region, Saudi Arabia. Mitochondrial 16S rDNA was conducted to detect molecular polymorphism among honey bee A. mellifera subspecies. The amplified and sequenced gene regions of mtDNA revealed the presence of two different subspecies of Apis mellifera carnica (gb| MH939276.1) and Apis mellifera jementica (gb| MH939277.1). The sequences were compared with each other and with others retrieved from the GenBank demonstrating a high degree of similarity (up to 72%). The NJ tree indicated that all Apis species are clustered together in one clade in addition to the genetically origin of Apis species within family Apidae as a paraphyletic group within the African lineage. -
Ecology, Behaviour and Control of Apis Cerana with a Focus on Relevance to the Australian Incursion
Insects 2013, 4, 558-592; doi:10.3390/insects4040558 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion Anna H. Koetz Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, 21-23 Redden St., Portsmith, QLD 4870, Australia; E-Mail: [email protected]; Tel.: +61-419-726-698; Fax: +61-7-4057-3690 Received: 27 June 2013; in revised form: 13 September 2013 / Accepted: 24 September 2013 / Published: 21 October 2013 Abstract: Apis cerana Fabricius is endemic to most of Asia, where it has been used for honey production and pollination services for thousands of years. Since the 1980s, A. cerana has been introduced to areas outside its natural range (namely New Guinea, the Solomon Islands, and Australia), which sparked fears that it may become a pest species that could compete with, and negatively affect, native Australian fauna and flora, as well as commercially kept A. mellifera and commercial crops. This literature review is a response to these concerns and reviews what is known about the ecology and behaviour of A. cerana. Differences between temperate and tropical strains of A. cerana are reviewed, as are A. cerana pollination, competition between A. cerana and A. mellifera, and the impact and control strategies of introduced A. cerana, with a particular focus on gaps of current knowledge. Keywords: Apis cerana; Apis mellifera; incursion; pest species; Australia; pollination; competition; distribution; control 1. Introduction Apis cerana Fabricius (also known as the Asian honeybee, Asiatic bee, Asian hive bee, Indian honeybee, Indian bee, Chinese bee, Mee bee, Eastern honeybee, and Fly Bee) is endemic to most of Asia where it has been used for honey production and pollination services for thousands of years. -
Friedrich Ruttner Biogeography and Taxonomy of Honeybees
Friedrich Ruttner Biogeography and Taxonomy of Honeybees With 161 Figures Springer-Verlag Berlin Heidelberg GmbH Professor Dr. FRIEDRICH RUTTNER Bodingbachstraße 16 A-3293 Lunz am See Legend for cover mOlif: Four species of honeybees around the area of distribution. ISBN 978-3-642-72651-4 ISBN 978-3-642-72649-1 (eBook) DOI 10.1007/978-3-642-72649-1 Library of Congress Cataloging in Publication Data. Ruttner, Friedrich. Biogeogra phy and taxonomy of honeybees/Friedrich Ruttner. p. cm. Bibliography: p. In c\udes. index. 1. Apis (Insects) 2. Honeybee. I. TitIe. QL568.A6R88 1987 595.79'9--dc19 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of lune 24, 1985, and a copyright fee must always be paid. Vio lations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1988 Originally published by Springer-Verlag Berlin Heidelberg New York in 1988 Softcover reprint of the hardcover 18t edition 1988 The use of registered names, trademarks, etc. in this publication does not imply, even in th absence of a specific statement, that such names are exempt from the relevant prutective laws and regulations and therefore free for general use. Data conversion and bookbinding: Appl, Wemding. -
Aggregations of Unrelated Apis Florea Colonies Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P
Aggregations of unrelated Apis florea colonies Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P. Oldroyd To cite this version: Wandee Wattanachaiyingcharoen, Siriwat Wongsiri, Benjamin P. Oldroyd. Aggregations of unrelated Apis florea colonies. Apidologie, Springer Verlag, 2008, 39 (5), pp.531-536. hal-00891920 HAL Id: hal-00891920 https://hal.archives-ouvertes.fr/hal-00891920 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 531–536 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2008045 Original article Aggregations of unrelated Apis florea colonies* Wandee Wattanachaiyingcharoen1, Siriwat Wongsiri2,BenjaminP.Oldroyd3 1 Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 2 Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10320, Thailand 3 Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia Received 5 July 2007 – Revised 25 March 2008 – Accepted 13 May 2008 Abstract – Intensive surveys of an area of woodland in Phitsanulok province, Thailand, revealed 15 colonies of Apis florea. The colonies had a highly aggregated spatial distribution (Standardized Morisita’s Index of Dispersion = 0.59). -
Species from Sympatric Apis Florea (Fabricius, 1787)
Original article Evidence of reproductive isolation confirms that Apis andreniformis (Smith, 1858) is a separate species from sympatric Apis florea (Fabricius, 1787) S Wongsiri K Limbipichai P Tangkanasing M Mardan T Rinderer HA Sylvester G Koeniger G Otis 1 Bee Biology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 2 Department of Plant Protection, Universiti Pertanian Malaysia, 43400 Serdang, Selangor, Malaysia; 3 Honey-Bee Breeding, Genetics & Physiology Research 1157 Ben Hur Road, Baton Rouge, Louisiana 70820, USA; 4 Institut für Bienenkunde D 6370 Oberursel 1, FRG (Received 7 September 1989; accepted 29 September 1989) Summary — The species Apis andreniformis (Smith, 1858), the small dwarf honey bee of South- east Asia, is recognized as a valid biological species. This recognition is based on distinctive endo- phallus characteristics in comparison with sympatric Apis florea (Fabricius, 1787). Additionally, scan- ning electron microscope images of drone basitarsi are presented, as are preliminary comparisons of wing venation. Apis florea / Apis andreniformis / taxonomy / reproductive isolation INTRODUCTION characteristics of Apis florea (Fabricius, 1787) that are reported for worker bees (Maa, 1953). In 1984, our group collected dwarf honey bees in Thailand in the province of Chan- Wu and Kuang (1986, 1987) reported taburi near the border with Kampuchea. that secondary sex characteristics differed Laboratory examinations of worker bees between drones of A florea and A andre- from these collections revealed that some formis. Specifically, both have a furcated bees had the species specific characteris- basitarsus, presumably modified to grasp tics of Apis andreniformis (Smith, 1858) queens during mating (see Ruttner, 1988). and that others had the species specific The furcated basitarsus is quite different in * Correspondence and reprints. -
Africanized Bee from Wikipedia, the Free Encyclopedia
Africanized bee From Wikipedia, the free encyclopedia The Africanized bee, also known as the Africanised honey bee, and known colloquially as "killer bee", is a hybrid of the Western Africanized bee honey bee species (Apis mellifera), produced originally by cross- breeding of the African honey bee (A. m. scutellata), with various European honey bees such as the Italian bee A. m. ligustica and the Iberian bee A. m. iberiensis. The Africanized honey bee was first introduced to Brazil in the 1950s in an effort to increase honey production, but in 1957, 26 swarms accidentally escaped quarantine. Since then, the species has spread throughout South America and arrived in North America in 1985. Hives were found in south Texas of the United States in Scientific classification 1990.[1] Kingdom: Animalia Africanized bees are typically much more defensive than other species of bee, and react to disturbances faster than European honey Phylum: Arthropoda bees. They can chase a person a quarter of a mile (400 m); they Class: Insecta have killed some 1,000 humans, with victims receiving ten times more stings than from European honey bees.[2] They have also Order: Hymenoptera [3] killed horses and other animals. Suborder: Apocrita Subfamily: Apinae Contents Tribe: Apini Genus: Apis 1 History 2 Geographic spread throughout North America Species: Apis mellifera 3 Foraging behavior Subspecies 3.1 Variation in honey bee proboscis extension response 3.2 Evolution of foraging behavior in honey bees HYBRID (see text) 3.2.1 Proximate causes 3.2.2 Ultimate causes 4 Morphology and genetics 5 Consequences of selection 5.1 Defensiveness 6 Impact on human population 6.1 Fear factor 6.2 Misconceptions 7 Impact on existing apiculture 7.1 Queen management in Africanized bee areas 7.2 Gentle Africanized bees 8 References 9 Further reading 10 External links History There are 28 recognized subspecies of Apis mellifera based largely on geographic variations. -
Genes Involved in Convergent Evolution of Eusociality in Bees
Genes involved in convergent evolution of eusociality in bees S. Hollis Woodarda,1, Brielle J. Fischmana,1, Aarti Venkatb, Matt E. Hudsonb, Kranthi Varalab, Sydney A. Cameronc, Andrew G. Clarkd, and Gene E. Robinsona,c,e,f,2 aProgram in Ecology, Evolution, and Conservation Biology, Departments of bCrop Sciences and cEntomology, eInstitute for Genomic Biology, and fNeuroscience Program, University of Illinois, Urbana, IL 61801; and dDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Contributed by Gene E. Robinson, March 12, 2011 (sent for review February 17, 2011) Eusociality has arisen independently at least 11 times in insects. different social lifestyles among relatively closely related species. Despite this convergence, there are striking differences among Furthermore, the extensive knowledge of bee natural history (8, eusocial lifestyles, ranging from species living in small colonies 13, 14) provides a valuable framework for developing hypotheses with overt conflict over reproduction to species in which colonies about the adaptive significance of genetic changes detected in contain hundreds of thousands of highly specialized sterile work- eusocial bee lineages. ers produced by one or a few queens. Although the evolution of To study patterns of molecular evolution associated with eusociality has been intensively studied, the genetic changes eusociality in bees, we generated ~1 Gbp of expressed sequence involved in the evolution of eusociality are relatively unknown. tags (ESTs) from a set of nine bee species (Table S1). This set of We examined patterns of molecular evolution across three in- species reflects the remarkable social diversity in bees by in- dependent origins of eusociality by sequencing transcriptomes of cluding eusocial and non-eusocial species; three origins of euso- nine socially diverse bee species and combining these data with ciality (9, 10); and two different forms of eusocial lifestyle, “highly genome sequence from the honey bee Apis mellifera to generate eusocial” and “primitively eusocial” (ref. -
Developmental Cycles of the Red Dwarf Honeybee, Apis Florea
International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2015) April 7-8, 2015 Phuket (Thailand) Developmental Cycles of the Red Dwarf Honeybee, Apis florea Preecha Rod-im, Randall Hepburn, and Orawan Duangphakdee II. MATERIALS AND METHODS Abstract— Published analyses of the structure of the single comb nests of A. florea are literally “instamatic snapshots” of nests. We Origin of bees have photographically documented the developmental changes and Observations were initially conducted on 6 colonies of the report on the details of the cyclical process of nest building until red dwarf honeybees, Apis florea between 2011-2012 at the eventual abandonment of the nests by swarming or migration after Ratchaburi Campus of King Mongkut’s University of 13-17 weeks. Nests changes occur in fifteen distinct stages. The Technology, Thonburi, Thailand at Chom Bueng (13.37N, growth curves of the nests show daily changes in comb length, width 99.35E, altitude 86 m). The A. florea nests were collected and area at a rate of 40 cm2/week and provide a final structure which is close to circular. The crown comb is constructed more quickly than from nearby forest lands, were moved at dusk, and were then the brood comb. The results are given ecological meaningfulness hanged on small trees maintaining the vertical position of the when they are placed in the context of related data on the combs. Colonies were allowed a few days to adapt to the new immigration, emigration and stability of nests over a full year. ambient conditions and to resume normal activities and foraging. Keywords— Honeybee, Apis florea, Development cycle, Comb Experimental preparations construction After few days, the brood comb extending below the crown I. -
Comparing the Appetitive Learning Performance of Six European
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452344; this version posted July 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comparing the appetitive learning performance of six European 2 honeybee subspecies in a common apiary 3 Scheiner R1*, Lim K 1,2, Meixner MD3, Gabel MS1,3 4 5 Running head: Learning of honeybee subspecies 6 7 1 University of Würzburg, Behavioral Physiology & Sociobiology, Biocenter, Am Hubland, 8 97074 Würzburg, Germany 9 2 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul 10 National University, Seoul 08826, Korea 11 3 Landesbetrieb Landwirtschaft Hessen - Bee Institute Kirchhain, Erlenstraße 9, 35274 12 Kirchhain, Germany 13 14 * Corresponding author 15 Ricarda Scheiner, E-mail: [email protected] 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452344; this version posted July 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Summary statement 20 This study is the first to compare the associative learning performance of six honeybee 21 subspecies from different European regions in a common apiary. 22 23 Abstract 24 The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous 25 subspecies in its native range. In how far adaptation to local habitats has affected the cognitive 26 skills of the different subspecies is an intriguing question which we investigate in this study. -
Honey Bee 101
HONEY BEE 101 Chapter 1 A Bee with Class he honey bee belongs to the Class Insecta, which is part of the Phylum TArthropoda. Thus, the honey bee is an insect and the honey bee is also an arthropod. As an arthropod, the honey bee has an external skeleton known as an exoskeleton, as opposed to the internal skeleton that supports ourselves and other vertebrates. As an insect, the honey bee possesses classic characteristics—two antennae, six legs, and three main body parts (the head, thorax, and abdomen that are reflected in the organization of this book). All insects—from giant water bugs and wasps to ladybird beetles and dragonflies—arearthropods, but not all arthropods (which include spiders, barnacles, and crayfish) are insects. Characteristic Trappings of an Insect Three Main Body Parts Head Two Antennae Attached to the Head Thorax Six Legs Attached to the Thorax Abdomen The honey bee is an insect and thus shares certain characteristics with all other insects: two antennae, six legs, and three main body parts—head, thorax, and abdomen. 12 Honey-Maker: How the Honey Bee Worker Does What She Does Classification Early on, we make distinctions in the world around us along the lines of Plant, Animal, Mineral. In doing this, we are using a system of classification. Biologists use a system in which all organisms are described according to Kingdom , which similarly includes broadly defined plant and animal distinctions. A total of five Kingdoms are generally accepted today. Both the honey bee and the human being are described as animals and thus belong to the Kingdom Animalia. -
Appeal for Biodiversity Protection of Native Honey Bee Subspecies of Apis Mellifera in Italy (San Michele All'adige Declaration)
Bulletin of Insectology 71 (2): 257-271, 2018 ISSN 1721-8861 Appeal for biodiversity protection of native honey bee subspecies of Apis mellifera in Italy (San Michele all'Adige declaration) Paolo FONTANA1,4, Cecilia COSTA2, Gennaro DI PRISCO3, Enrico RUZZIER4, Desiderato ANNOSCIA5, Andrea BATTISTI6, Gianfranco CAODURO4, Emanuele CARPANA2, Alberto CONTESSI4, Antonio DAL LAGO7, Raffaele DALL’OLIO8, Antonio DE CRISTOFARO9, Antonio FELICIOLI10, Ignazio FLORIS11, Luca FONTANESI12, Tiziano GARDI13, Marco LODESANI2, Valeria MALAGNINI1, Luigi MANIAS14, Aulo MANINO15, Gabriele MARZI4, Bruno MASSA16, Franco MUTINELLI17, Francesco NAZZI5, Francesco PENNACCHIO3, Marco PORPORATO15, Giovanni STOPPA4, Nicola TORMEN4, Marco VALENTINI4,18, Andrea SEGRÈ1,12 1Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy 2CREA Research Centre for Agriculture and Environment, Italy 3Laboratory of Entomology “E. Tremblay”, Department of Agricultural Sciences, University of Napoli Federico II, Italy 4World Biodiversity Association onlus, Verona, Italy 5Department of Agricultural, Environmental and Animal Science, University of Udine, Italy 6Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Italy 7Museum of Nature and Archaeology in Vicenza, Italy 8BeeSources, Bologna, Italy 9Department of Agricultural, Environmental and Food Sciences, University of Molise, Italy 10Department of Veterinary Sciences, University of Pisa, Italy 11Department of Agricultural Sciences, University of Sassari, Italy 12Department of Agricultural -
Associative Olfactory Learning of the Red Dwarf Honey Bee Apis Florea Roy Kaspi, Sharoni Shafir
Associative olfactory learning of the red dwarf honey bee Apis florea Roy Kaspi, Sharoni Shafir To cite this version: Roy Kaspi, Sharoni Shafir. Associative olfactory learning of the red dwarf honey bee Apis florea. Apidologie, Springer Verlag, 2012, 44 (1), pp.100-109. 10.1007/s13592-012-0160-y. hal-01201276 HAL Id: hal-01201276 https://hal.archives-ouvertes.fr/hal-01201276 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:100–109 Original article * INRA, DIB and Springer-Verlag, France, 2012 DOI: 10.1007/s13592-012-0160-y Associative olfactory learning of the red dwarf honey bee Apis florea 1,2 1 Roy KASPI , Sharoni SHAFIR 1B. Triwaks Bee Research Center, Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel 2The Israel Cohen Institute for Biological Control, Plant Production and Marketing Board, Citrus Division, P.O. Box 235, Yahud-Monoson 56000, Israel Received 22 December 2011 – Revised 17 June 2012 – Accepted 18 July 2012 Abstract – Apis florea has a wide distribution in southeast Asia, where it is the dominant honey bee species.