GEOHYDROLOGY AND HYDROGEOCHEMISTRY OF GROUNDWATER: STREAMFLOI\I SYSTEMS IN THE WILSON CREEK EXPERIMENTAL WATERSHED, MANITOBA. I

*:t*¡t*

A Thesis Presented to The Faculty of Graduate Studies and Research The UniversitY of Manitoba

fr rt ?t ?þ ¡t

In Partial Fulfillment of the Requirernents for the Degree Master of Science

{q*' by O l- ivl¿ r'¡ i i r.j ¡i A Franklin W. Schwartz August 1970

g Franklin hI. Schwartz 1972 ABSTRACT

Geohydrologic and hydrogeochemicaL investigations of groundwater-streamflow systems in Wilson Creek watershed make possible further developrnent and refinement of the hydrochenical nethod of hydrograph separation. During storm runoff periods, dilution behaviour of the major ions in the streamflow is dependent upon its concentra- tion in each of the streamflow sources, direct runoff, channel precipitation, guick rqturn flow and extended return flow. The ions chosen to characterize a particular component or group of hydrograph components relate closely to the physical system as described. Groundwater flow patterns and hydrochenistry indicate that during periods with 1ittle or no precipitation streamflow is maintained by extended return flows discharging from 1ocal and intermediate, transverse flow systems principally in dis- sected reaches of the watershed. High hydraulic conductivi-ty of the Riding Mountain formation coupled with large transient water table fluctuations during storm runoff periods result in increased extended return flow contribution to the stream- f1ow.

l-1 111

Geohydrology and Hydrogeochernistry of Groundwater: Stream- flow Systens in the Wilson Creek Experimental Watershed,

Mani tob a . Franklin W. Schwartz M.Sc. Thesis, University of Manitoba. 1970

Contents

Page ii

1

ACKNOWLEDGEMENTS J

PHYSIOGRAPHY AND GEOHYDROLOGIC SETTING 4

METHODS OF INVESTIGATION 6

Pre cipi tation 6

Streamflow 6 Hydraulic Head Distribution in the t:":"1*:':' Zone 7

Insi tu Hy draulic Conductivity I

Ma j or I on Chernis try 9

HYDROGEOLOGY 11 Alluviun 11 Upper Glacial Drift L2

Lacustrine sediments . 13 Lower Ti11 L3 Riding Mountain Formation L4 Lower Bedrock 15 11I

Page

GROUNDWATER FLOW SYSTEMS T7

Conceptual Model L7 Longitudinal Flow Pattern Beneath Inter- val1ey Uplands I7 Details of Flow Systens 18

GROUNDWATER GEOCHEMI STRY 23

Hydrochemical Facies 23 Controlling Parameters 24

HYDROCHEMISTRY OF STREAMFLOW 50

Source of fons in Recession Flow 30

Geochemical Hydrographs 3T

GEOCHEMI CAL HYDROGRAPH SEPARATION 34

Ideali zation of Hydrograph Components 34

Hydrochernical Separation 36

SUMMARY OF CONCLUSIONS 4L

REFERENCES CITED 44

APPENDICES 78 List of Figures

Page

1. Location of watershed and regional physiography 49

2. Topography and location of instrumentation. . 50 3. Geologic cross-section thr ough the watershed. 51

4. Three detailed geolggic cr OSS - sections through the lower reaches of the water shed 52 5. Conceptual groundwater nodel of an open watershed system.. 55 6. Longitudinal flow pattern beneath uplands s4 7. Schenatic interpretation of groundwater flow pat- tern in a section transverse to valley trends 55 8. Three geohydrologic cross-sections through lower reache'i of the wátershed. 56 9. Water table fluctuations in upper glacial drift and Riding Mountain formation 57

10 Interpretation of water table contours and flow " lines as basis of outflow computations. . 58 11. Piper diagran of hydrochemical facies 59 L2. Histogram sunmary of cation and anion concentra- tions in water types I - IV 60 13. Location of hydrochernical facies in cross-section 61 L4. Time variation of ionic concentration and conduc- tivity of streamflow at Wilson Creek Weir 62 15. Time variation of rnajor ion concentration and conductivity of streamflow at Weir. 63 16. Tirne variation of maj or ion concentration and conductivity for Wilson Creek during najor storm. 64 T7. Tirne variation of rnajor ion and conductivity dilu- tion ratios for Wilson Creek (May 30 to June 10). 65 V1

Page 18. Tine variation of rnajor ion and conductivity dilu- tion ratios for Wilson Creek (June 25 to July 1) 66 19. Effect of Bald Hill reservoiï on SOr= concentra- tion of Vlilson Creek flow following-major storm period 67 20. Annual variation of SOO= ancl conductivity, 1969 68 2L. Tirne variation of S0¿= concentration ancl conduc- tivity for McKinnon ánd Dead Creeks . 69 22. Time variation of SO¿= concentration and conduc- tivity for Packhorse, Bald Hi1l, Dead Ox and McKinnon Creeks 70 23. Geochemical hydrograph separation for Wilson and Packhorse creãks üsiirg Nti, Ca++ and Mg++ average 7L 24. Detailed geochemical hydrogTaph_s_eparation for Wilson Creek using Na*, Ca++ and Mg++ average 72 25. Geochenical hydrograph separation for McKinnon and Dead Ox Creeks using SO4= dilution 73 26. Detailed geochernical hydrograph separation for McKinnon and Dead 0x Creeks using S04= dilution 74 27. Piezometer design 75 28. Scatter diagram of total dissolved solids vs conductivity 76 v11

List of Tables

Page

1. Summary of Hvorslev measurements L2 vt_ 11

List of Appendices

Page A. Description of stratigraplny and lithology of deposits in the lower reaches and east of the watershed . 78 B. Piezometer locations, design and test hole logs .80 C. Hydraulic conductivity data: Results of Hvorslev Tes ts oo

D. Computer program for cheinistry computations . 101 E. Tabulation of chemical analyses íncluding percent saturation and ion charge balance .106

F. Hydraulic head data for piezometers . LzL G. Detailed description of the hydrograph separation technique . L24 1

INTRODUCT ION

Studies of groundwater-streanflow systens in Wilson Creek Experimental Watershed (Fig. 1) began in 1968 in order to determine the hydrochernical characteristics of the ground- water and surface water flow systems , and to refine the hydro- chernical method of hydrograph separation (Newbury et â1. , 1969; Cox, 1969). The present study was motivated in part by the need for rnore detailed geohydrologic and hydrogeochemical informa- tion to assist in the development of digital response nodels for Wilson Creek watershed and other sinilar watersheds along the It{anitoba Escarpment. Four specif ic ob j ectives of this study were: 1. to describe patterns of groundwater flow within and adj acent to trtlilson Creek watershed 2, to characteríze hydrochemistry of the groundwater surface water systern 3. to develop further and refine th-e h-ydrochernical nethod for separation of a composite hydrograph within Wilson Creek watershed and apply the technique to Dead Ox and McKinnon Creeks, srnall creeks in a similar physical setting along th-e Manitoba Escarpment 4. to estimate the quantity of subsurface out:florr from Wilson Creek watershed. 2

Forty-five piezometer nests were utilized to inves ti - gate groundwater flow patterns and hydrochemistry as well as the spatial distribution of hydraulic conductivity. Stream hydrochemistry was monitored daily at five locations and often more frequently during storm runoff periods. 3

ACKNOWLEDGEMENTS

I wish to thank Dr. J.A. Cherry for his guidance and encouïagement throughout this investigation and his critical review of the manuscript. I am grateful to Dr. R.W. Newbury and Professor C. Booy, members of my thesis committee, for reading this manuscript. The assistance of Mr. J.E. Thonlinson, Watershed Manager, P.F.R.A., who provided technical advice and assis- tance, arranged for transportation , and made available data collected by him and the watershed staff is very gratefully acknowledged. Pernission to work in Wilson Creek watershed hras kindly arranged by Mr. G.H. McKay through the Wilson Creek Headwater Control Cornnittee. Thanks are also extended to all members of the water- shed staff at Wilson Creek and in particular to Mr. Frank Thompson and I4r. Roy Mulligan for their excellent assistance. Finally, I am grateful to my wife Diane for her assistance in all phases of the work. This research was supported by grants from tb-e Depart- ment of Energy, Mines and Resources (N.4. C.W.R.R. ) and the National Research Council of Canada. I conducted this re- search while recipient of a Graduate Scholarship from the National Research Council of Canada, 4

PHYSIOGRAPHY AND GEOHYDROLOGIC SETTING

Wilson Creek watershed (Figs. 1 and 2) is typical of many smal1 watersheds located on the eastward facing slope of the Manitoba Escarpment. I,rlithin a relatively short dis- tance streams rising at the top of the escarprnent descend more than 1000 feet in elevation. Upper reaches of Wilson Creek watershed (Fig. 2) are characterized by hummocky topography with closed depressions, sloughs and lakes. Middle reaches of the watershed are deeply dissected. Accentuated valleys typically are bounded by high, steep and unstable wa1ls forrned of weathered shale bedrock. A meandering stream channel and gentle slopes characterize lower reaches of the watershed. The alluvial fan developed here merges with Lake Agassz plain 3 to 5 niles east and northeast of Wilson Creek watershed (Fig. 2). Lake Manitoba (Fig. 2), with average water surface 813 feet above sea level, is situ- ated approxirnately 37 rniles east of the watershed. Annual air ternperature cycle in the uatershed ranges between -45oF (-42.7"C) and +110oF (43.3"C) with a mean of about 30oF (-1.1'C). Air-mass movement along the Manitoba Escarpment produces frequent and intense rainfall between May and September. Intensities as large as 6 inches per hour have been recorded. Total summer rainfall on th-e uratershed over the last L2 years has averaged L4 inches, (Newbury et ã!., 1e6e). Formation of an openo discontinuous tree Layer of hardwoods and spruces in upper reaches of the watershed is attributed to browsing of shrubs and young trees. Young stands of deciduous trees dominated by white birch and aspen poplar occupy the rniddle and lower reaches. The lowland plain at the base of the escarpment forms a mixed forest with aÍL assortment of conifers and hardwoods. Total stream channel discharge from the watershed ranged from .1 to 700 cfs during 1969. Waterlevels in Bald Hill Reservoir, headwater storage reservoir fluctuated from empty to a maxrmum stage of 15.5 feet. Post-Paleozoic formations in the Riding Mountain area of the Manitoba Escarpment range in age from Jurassic to Upper Cretaceous (Fig. 3). Siliceous shale bedrock in upper reaches of the watershed is overlain by thick glaciaL drift deposits predorninantly composed of ti11 with minor sand and gravel interbeds. A thin discontinuous veneer of glacial ti11 overlies bedrock in middle reaches. A thick glacial drift sequence at the base of the escarpment overlies the shale bedrock and is blanketed by thin alluvial fan deposits (Fig. 5). METHODS OF INVESTIGATION

Pre cip i tati on Precipitation is rneasured by a network of 32 stand- ard raingauges and 8 recording raingauges distributed within and adj acent to the watershed (Fig , 2) . Rainfall distribution is variable within the watershed but most often is greatest in the middle and upper reaches. In one rainfall period in 1969, precipitation ranged frorn a high of 5.35 inches to a low of 3.60 inches. Average precipitation for the watershed was calcu- lated using the recording raingauges and the Theisson Polygon method (Theissen, 1911). Precipitation measured at raingauge No. 10 has been used in this study to approxirnate average basin rainfall because it corresponds closely to the calcu- lated values. Rainfall samples for chemical analysis hlere collected using a polyethylene sheet as a catchment.

Strearnf 1ow Streamflow was measured by two stage recording weirs, one located on Packhorse Creek and a second located at the exit of Wilson Creek fron the watershed. Rating curves were constantly updated throughout the 1969 field season. Dis- charge measurements made at these weirs are accuïate to t5 percent (J.8. Thomlinson, Personal Communication, 1969) . Stage recording installations at Bald Hill reservoir and Ridge dam also provided continuous outflow measurements. 7

Discharge measurements along lower reaches of Bald Hill Creek have been approximated. It is assumed that the discharge sum of Bald Hill and Packhorse Creeks at arLy tine t is equal to the measured discharge at Wilson Creek weir at t + I L/ 2 hours. This assumption is based on a measured L L/2 hour water travel tine fron the confluence of Packhorse and Bald Hill Creeks to lVilson Creek weir and no measurably significant increase or decrease in discharge along this reach. (J.E. Thonlinson, Personal Communication, 1969) Stream stages of Dead Ox and McKinnon Creeks were rneasured ð,ar_lry using staff gauges. Discharge measurements were approxinated frorn rating curves established by 5 dis- charge meterings during the period of observation June L3 to Septernber 2, 1969.

Hydraulic I{ead Distribution in the Groundwater Zone The movement of groundwater is governed by the dis - tribution of hydraulic head and perrneability of the porous medium. For sha1low, steady state and transient flow systems, the expression for hydraulic head can be written

h - z + P 1g where h is hydraulic lnead, Z is elevation of the point above some datum, P is pressure, 1 is fluid density and g is the gravitational acceleration constant (Hubbert, 1940). From consideration of this expression, it follows that the water- leve1 in a piezometer or watertable observation we11, 8 expressed in feet above sea 1evel is a direct measure of hydraulic head at the termination point of the well or piezometer. Throughout this investigation, the open stand- pipe type of piezometer has been utilized which in its sim- plest form (Appendix B, Fig. 27) consists of a standpipe or lined borehole open to the atmosphere. Piezometers and watertable observation we11s were emplaced at 45 locations in and adj acent to.the watershed (Fig. 2). They r^rere constructed from semi-rigid polyvynlchlor- ide (P.V.C.) piping with diameters ranging from .8 to 1.5 inches. Test holes up to 80 feet deep were drilled using a truck-mounted power auger. A portable power auger hras used to dri11 shallow test holes less than 45 feet deep Five piezometer nests installed in 1965 by the

Geological Survey of Canada are designated alphabetically A to E with individual piezometeïs and watertable we11s bearing the prefix GS before each individual identification number (Fig. 2) . Piezoneter nests enplaced during the present study bear the prefix F before each identification number (Fig. 2). Pipe dinensions, top elevations and piezometer depths are listed in Appendix B.

Insitu Hydraulic Conductivity Each piezoneter was subjected to drawdown'Tesponse tests. The detailed procedure is outlined by Hvorslev [1951). Because the duration of arry response test is genera1-1-y short, estinated values of hydraulic conductivity represent only the 9 water bearing material_ close to the piezometer. when the vertical hydraulic conductivity of a porous rnedia is but a fraction of the horizontal component, as is often the case, the flow induced during the short period of observation is two dirnensional. consequently, the horizontaL component of hydraulic conductivity is measured preferential-ly .

The tine for complete recovery of water levels in a bailed piezometer ranged from several seconds to approxirnately 14 days. Measurements of the recovery rates indicated that all piezometers had stabi1-ized after installation.

Maj or I on Chernis try By using a small diameter pipe with a one-way valve at its base, water samples were collected close to the inlet portion of the piezometer in order to obtain samples not in contact with the atmosphere. Stream samples r^rere collected daily from locations D2, D4, D5, D6 and D7 (Fig.. Z) . During the storm runoff period June 24 to July 4,1969, these loca- tions r^rere sampled much more frequently.

Measurements of pH r,\rere made at the piezometers and wells with a temperature controlled, nul1 balance, Radio- meter type PHM4, pH meter and conbínation glass electrodes standardized to two buffers in the manner outlined by Barnes (1964). Each groundwater or stream sample was divided into an acidified and non-acidified portion. within one to two days, non-acidified samples hrere analysed at a field laboratory for HCOg , c1- and so4= concentrations. concentra- 10 tion of HCO3- üIas determined by potentiometric titration (Barnes, 1964) . Turbidornetric and volumetric procedures supplied by a commercial field chenistry kit (Hach Co.) ïiere used to determine tO4= and Cl concentrations respec* tive ly . Concentrations of Ca**, Mg**, Nt* and K+ were deter- nined at the University of Manitoba using a Perkin-Elmer 303 atomic absorption spectrophotometer. The detailed anaLyticaL procedures are given by Fishman (1966). Conductivity was measured for all samples and for comparison, results were standardized at 20"C. Accuracy of the turbidonetric procedure for tO4= concentration was tested by preparing five different sulfate solutions in duplicate from a commercîa1- standard solution and analysing thern. Results indicate an accvracy of t9 percent at concentrations less than 100 ng. per litre and t15 percent at concentrations between 150-200 mg. per 1itre. Quality of the analytical procedures for Ca+*, Mg**, K*, Na+ as well as HCoS concentration measurements 'hlas exarnined by duplicating these determinations for several samples. Results indicate that concentrations of the four cations in aLI cases were reproduc,ible to within 2 percent and those of HCO'- were reproducible to within 4 percent. The average deviation of the samples from electrical balance r,\ras 8 percent. 11

HYDROGEOLOGY

Six hydrostratigraphic units have been identified within the watershed on the basis of their geohydrologic properties such as effective porosity and permeability. In general, hydrostratigraphic units need not have a specific relationship with the formal stratigraphic units (Maxey, 1964).

Alluviurn Following the last Pleistocene deglaciation approximateLy 12,000 years 8.P., an alluvial fan has formed at the base of the escarpment. Alluviurn overlies lacustrine sediments to a depth of approxirnately 20 feet (Fig. 4) and extends northeast five rniles to McCreary. These non- indurated deposits are discontinuously stratified with variable sorting. Sub-rounded siliceous shale fragrnents are abundant in a silt-s ízed matrix. Coarse alluvial terrace deposits along stream channels within the watershed extend upward into niddle reaches. They are comprised alnost completely of shale fragments with some coarse ti11-derived naterial. An intergranular permeability is dorninant in the alluvium because the overburden pressures have not been sufficient to decrease the pore volume. Three Hvorslev values of hydraulic conductivity ranged fron 1.ó x 10-4 to ì 2 x 10-tl - ft. per sec. (Table 1). Hydraulic conductivity data are listed in Appendix C. T2

Table 1. Summary of Hvorslev Measurements

Number Horizontal Hydraulic Hydros tratigraphic of Conductivity ft/sec. Unit Measure - ments Median

Alluviurn 1.6x10'-2xI0- -4 _ _^-4 1.6x10-A -

Upper Glacial -7 -8 -l n Dri ft 5x10 '-7xl0 ZxL0

Lacus trine -R--1x10 -4 Sediments T2 1.6x10 1x1 0 --9 _ --5 Lower Ti11 5 7x10 -2xl0 1x10 Riding moun- tain forma- -4 tion 2 lx10 -1.6xl0-3 I . 5xl0 -q- -4 Lower Bedrock 8 7x10 - 1x10 1 . 6x10

Upper Glacial Drift Shales of the Riding Mountain formation in the upper reaches of the watershed are blanketed by glacial drift de- posits approxinately 450 feet thick (Fig. 3). In sloping middle reaches, the upper glacial drift unit overlies shale bedrock as a discontinuous veneer 0 to 50 feet thick CFig. 3). The drift sequence is comprised rnainly of calcareous glacial till with minor lenses of sand and gravel. The loose-

Iy compacted structure of the surficial ti11 results in a dorninant intergranular permeability with probab1-y only minor secondary perneability. At depth, the changing stress L3 conditions caused by glacial loading and unloading prob abLy produces significant joints and fractures (Westgate, 1969). Five Hvorslev values of hydraulic conductivity ranged fron 3xL0-7 to 7x10-8 ft. per sec. with a nedian of 2xLo-7 ft. per sec. This wide range reflects textural inhornogeneities that were observed within the unit.

Lacustrine sediments An interbed.Ced sequence of lacustrine sediments con- sisting rnainly of calcareous silts and clayey silts with occasional cLay laminae underlies the alluvial unit in lower reaches of the watershed (Fig. 4). A primary permeability is the result of relatively smal1 overburden pressures. Twelve Hvorslev values of hydraulic conductivity range from 1x10-4 ft. per sec. to _o 1.6x10-ö ft. per sec. with a nedian value of 1x10-5 ft. per sec. The wide range in hydraulic conductivity results in part from the spatial variation of grain size within the unit. Tree root penetration observed in upper portions of this unit results in developrnent of secondary, vertical permeability. Origin and correlation of nonindurated sedi- mentary deposits situated near the base of the escarpment are discussed in Appendix A.

Lower Ti11 In lower reaches of the ülilson Creek watershed a thin, compact, silty c1-ay ti11 overlies shale bedrock (Fig. 4). L4

This unit is discontinuous and no outcrops l^Iere observed. Lithologically the ti11 resembles closely the underlying shale bedrock units. Five Hvorslev values for hydraulic -5 -9 conductivity ranged from 2x10 to 7x10 ft. per sec. with a median of 1x10-8 ft. per sec. The hard compact nature of the till and wide ïange of hydraulic conductivity values suggest that a joint permeability rather than intergranular permeability has developed as a result of differential glacial stress.

Riding Mountain Formation This unit outcrops along stream. valley walls in the middle reaches and underlies the upper glacial drift unit in the uppeï reaches and intervalley regions of the rniddle reach. It has a maxirnun thickness of approxirnately 500 feet and is composed of hard gTey shale with ninor interbeds of calcium

montmorillonite bentonite (Bannatyne, 1963) . Measurements of hydraulic conductivity in two deep piezometers indi cate values as high as 1.6x10-3 and 1x10-d. - ft. per sec. These high values of hydraulic conduc- tivity and the hard siliceous nature of the unit suggest that flow at depth in this unit is confined to j oint and fracture zones. In the Brandon aTea of Manitoba, Halstead (1959J found that a deep well yielding 10 gallons per ninute in the Riding Mountain fornation nay be only 100 feet away from a well of the same depth yielding only about 1 gallon per minute. The fissile nature of the Riding formation in the weathering 15 zorLe as evidenced in surface outcrop and shallow boreholes results in extensive, secondary permeability and values of hydraulic conductivity that in general are enhanced over values expected at depth. Valley walls outcrops of the Riding Mountain formation are easiLy erodable. Frequent slurnping or other mass move- ments commonly observed along the stream channels result in development of additional fracture permeab íLíty. In order to describe the flow pattern beneath the intervalley uplands (Fig. 6), the horizontal component of hydraulic conductivity is assumed to be twenty times larger than the vertical component. In the absence of suitable field measurements, the degree of anisotropy was estinated to take into account the interbedded nature of the shales as evidenced by dri11 logs and outcrops. The water table in soil free portions of the rniddle reach is extremely responsive to precipitation events. Resulting short period fluctuations can have maximum arnpli- tudes of f rom 5 to 7 f.eet,

Lower Bedrock This unit comprises all Upper and Lower Cretaceous formations stratigraphically underlying the Riding Mountain fornation (Fig. 3). In lower reaches, the lower bedrock unit underlies the lower till unit or in some cases lacustrine sediments (Fig. 4). It is composed almost exclusively of 16 shale with loca1 accumulations of calcite and natural gas. Eight Hvorslev measurements of hydraulic conduc- -4 tivity ranged four orders of rnagnitude from 1x10 to 7xL0-"-o ft. per sec. with a median of 1.6x10-Á, " ft. per sec. Bentonite and interbeds with 1ow hydraulic conductivity pro- duce large scale anisotropic behaviour and the large range in measured values of hydraulic conductivity. The horizontal component of hydraulic conductivity was again assumed to be twenty times more than the vertical component. Overburden pressure and glacial stress conditions have reduced considerably the size of the intergranular pore spaces. Accordingly, auger samples had a low water content and appeared almost dry in some of the test holes. A secondary joint and fracture permeability resulting from glacial or tectonic stresses has developed within the unit. L7

GROUNDWATER FLOW SYSTEMS

Conceptual Model Regional groundwater flow has been analysed by Toth (1963), Freeze and Witherspoon (1966 , 1967), Meyboom (1966) and Freeze (L967) with the groundwater basin as the unit of geohydrologic study. In the context of watershed hydrology, the concept of the groundwater basin is often difficult or irnpossible to appLy because often the groundwater basin boundaries do not correspond to the watershed boundaries. The conceptual watershed model proposed here (Fig. 5) enables the watershed itself to remain the basic unit of study. Groundwater flux across irnaginêTy, vertical boundaries coincident with surface water boundaries of the watershed is termed groundwater inflow or groundwater outflow. At some depth, the lower boundary is defined by groundwater flow which neither recharges nor discharges within the water- shed (Fig. 5). Following the terrninology of Toth (196S), a local flow system within the watershed has its recharge area at a topographic high and its discharge area at the adjacent topographic low. I¡Ihen one or more topographic highs or lows separate the recharge and disclr-arge areas the flow system is termed intermediate.

Longitudinal Flow Pattern Beneath Intervalley Uplands Two dimensional generalizati-on of the flow patteïn (Fig. 6) along section A-41 consid.ers the upper glacial drift 18 to be isotropic. The effect of vertical exaggeration in the isotropic units has been accounted for using the procedure outlined by van Everdingen (1963). Because it is not possi- ble to accurately construct flow lines in exaggerated, aniso- tropic sections, flow directions in the anisotropic Upper Cretaceous formation u/ere estimated. The estimation pro- cedure involved taking the mean flow vector after considering vertical exaggeration only, assuming isotropic behaviour and secondly anisotropic behaviour only, following the pernea- bility ellipse procedure, assuming no exaggeration. The data indicate that the groundwater flow in the intervalley regions above the confluence of Bald Hill and Packhorse Creeks is charactetized by a downward hydraulic gradient. Maxinurn down- ward gradient in recharge areas of the upper reaches was 0.2 ft. per ft.

Details of Flow Systems Locatr and interrnediate flow systems are situated transverse to the general longitudinal flow pattern. In intervalley regions (Fig. 7) , recharge moves downward into deeper flow systems and 1ocal and internediate flow systems discharge into the strearn network. A hunmocky water table configuration in upper reaches of the watershed and ileeply dissected stream valleys in niddle reaches control the flow patterns of these 1ocal and íntermediate flow systems

(Fig. 7) . To characterize in detail groundwater flow patterns 19 in lower reaches of the watershed, a series of three, two dinensional flow diagrans were constructed (Fig. B). Alluviumrlacustrine sedirnent and lower ti11 units were considered to be isotropic. Lower bedrock units hrere assigned an estimated anisotrpy of Z0:I ($¡:fU). Again in the isotropic units flow vectors were constructed following the procedure outlined by van Everdingen (196s) and in the anisotropic unit f 1ow vectors r4iere estirnated. Groundwater flow here is characterized by sna11 vertical gradients and general lateral movement (Fig. 8) and is controlled by the relatively gentle water table slope in the alluvial fan nateri al . In middle reaches of the watershed, particular]-y in soil free areas, high values of hydraulic conductivity result in virtually no surface runoff and water table fluctu- ations are accentuated. The hydrograph of water table observa- tion well GS 5, located in such a soil-free region demon- strates these short period, large amplitude fluctuations (Fie. e). In the upper reaches of the watershed, relatively low values of hydraulic conductivity coupled with steeply sloping land surfaces and a decadent vegitative cover result in large amounts of surface runoff. Fluctuations of the water table here as exemplified by GS 1 (Fig. 9) typicaLly have longer periods and shorter arnplitudes. A comparison of the time rates of change of waterlevels in GS 1 and GS 5 20 indicates that precipitation infiltrates and groundwater discharges much more rapidly in portions of the rniddle reach. The single most inportant factor expediating rapid groundwater movement along these transverse, 1ocal flow sys- tems is the high hydraulic conductivity of the Riding Mountain formation both insitu and in the slurnped valley wa11 material. The hydraulic conductivity of the Riding Mountain formation at depth is more than two orders of rnagnitude higher than the upper glacial drift unit (Table 1). Streamflow persists throughout cold winter months along lower reaches of Bald Hill and Packhorse Creeks as well as Wilson Creek, where the regime of these streams is controlled by groundwater seepage. Preceeding the spring snohrmelt period, a two day survey (April 4 and 5, 1969) was made to measure stream and bottorn sedirnent temperatures as well as to determine the distribution of ice cover. In the upper reaches, Bald Hill and Packhorse Creeks were completely frozen with ice thicknesses from 12 to 18 inches.

Along lower reaches of Bald Hill Creek water flor^¡ed under an ice cover greater than LZ inches thick. The first snall discontinuous stretches of open water were observed near the junction with Packhorse Creek. Streambed temperatures in the ice free portions ranged from 2.0 to 3.I degrees centigrade and were consistently higher than the water temperature which ranged from 1.6 to 1.9 degrees centigrade. Downstream from Beer Bottle Park, Wilson Creek generally had 2L few continuously frozen reaches. Groundwater outflow from the basin was calculated using the Darcy equation to be .004 cfs. The flow net con- structed (Fig. 10) tacitly assumes that the water table gradient over the entire outflow depth remains constant. For this calculation, ãî outflow depth of 100 feet was chosen to extend downward and include 50 to 60 feet of the lower bedrock unit. From Figure 10, the hydraulic gradient is .02 ft. per ft. and maximum possible outflow width from the f low net r^ras estimated to be 6 r 500 feet. Suff icient data was not available to extend the flow net southward to include the total outflow width but available data has been extra- polated to include this additional area of suspected out- f1ow. A value of SxI0-7 ft. per sec. was calculated for the hydraulic conductivity by taking the mean of the hydraulic conductivities for the units involved A liberal estimate of groundwater outflow calculated using the Darcy equation with the highest measured hydraulic conductivity of 1.6x10-4 ft. per sec, and an assumed outflow depth of 200 feet, r{Ias 5 cfs. A conservative estimate of groundwater outflow of .00004 cfs rnlas calculated using the lowest neasured. hyd.raulic conductivity of S*f O-9 ft. per sec. and an outflow depth of 100 feet. Because the highest and lowest values of hydraulic conductivity aïe repïesentative of only a smal1 fraction of the total outflow depth, the most probable estimate of outflow, calculated using the mean value 22 of hydraulic conductivity, is .004 cfs. 23

GROUNDWATER GEOCHEMI STRY

The chernical characteristics of natural waters result from direct solution and chemical reaction with solids, liquids and gases with which they have come into contact during various portions of the hydrologic cyc1e. The nature of the dissolved constituents in groundwater depends upon several irnportant geochemical processes: a) chenical conposi- tion of precipitation b) gas generation in the soil zones of recharge areas c) dissolution of the porous nedia d) precipi- tation of mineral phases within the porous nedia e) ion exchanges between pore solutions and minerals of the porous media f) oxidation reduction reactions. These intirnately related processes are strongly influenced by several environ- nental and dynarnic parameters such as i) pressure ii) temperature iii) rate of fluid flor^¡ iv) chenical and structural variability of the solid phases in the poïous media v) the order in which pore fluids come in contact with the porous media. Objectives of this geochemical investigation are to describe some of the specific geo- chenical processes operating in the groundwater system and to utiLize major ion concentration to determine th-e source of ions in the streamflow.

Hydrochenical Facies A six variable graphical representation (Piper, L944) of the rnajor ions in the groundwater (Fig. 11) shows 24 the general hydrochemical variation hlithin and adjacent to Wilson Creek Watershed. On the basis of the siniLarity in the proportion of anion constituents (Fig. 11), four distinct hydrochernical facies have been recognized. Each facies type is designated by an identification number. Figure 12 is a histogram summary of the hydrochemistry of each facies, The spatial distribution of the four facies are shown in figure 13. Type I watet, a calcium-magnesium, bicarbonate facies (Back, 1966) ís found in the upper reaches predorninantly in the upper drift unit. Type II water, a calciurn-sodiun, bicarbonate-sulfate facies, is found in portions of the Riding Mountain fornation as well as the alluvium, lacustrine sedinent , and lower ti11 units. Type III water, a sodiurn, chloride or sodium, chloride-bicat- bonate facies , appeaTs confined to the lower bedrock unit. Type IV water, a calciun-sodium or sodiurn calcium, sulfate- chloride-bicarbonate facies, is found east of the watershed (Fig. 13) in the alluvium, lacustrine sediment and lower ti11 units.

Controlling Parameters A doninant influence in determining the composition of subsurface waters is the nineralogy of the solid phases with which they come into contact. Field observation indi- cates that the coarse fraction of the upper glacial drift unit is composed of dolostone, limestone and Precambrian 25

boulders. Dolomite, calcite, feldspar and cLay minerals comprise the matrix rnaterial of this unit as well fine grained fraction of the drift derivecl alluvium and lacustrine sediment units. By analogy with the surface ti11 described by Rozkowski (1967) in the Moose Mountain area of south- eastern Saskatcheüran, the probable dominant fine grained minerals aïe successive]ry quartz, plagioclase, dolomite and calcite with montmorillonite predominating among the cLay minerals, Because several Devonían evaporite members must have been eroded and material incorporated, the upper glacial drift probabLy contains rninor amounts of gypsurn, halite and other easily soluble salts. Rozkowski (1967) identified minor or trace quantities of hexahydrate, €psomite, halite and gypsun in the tills of the Moose Mountain area. The following dissolution reactions indicate the

ionic species associated with several of these minerals when in contact with an aqueous solution,

.¿r calcite: CaC03 Z Ca" + (1)

dolonite: (caMg) (c0s) 2 ¿ (2)

gypsum: casoo.2H2o Ì ca++ + s04= + ZHZ} ca)

halite: NaCl¿Na++Cl (4)

The Riding Mountain formation, lower bedrock unit and lower till unit derived frorn the bedrock are composed almost 26

exclusively of montmorillonite and i11ite (J. Eades, personal Communication, L970). Bannatyne (1963) describes minor occurences of calcium montmorillonite bentionite within the Riding Mountain formation. Type rr water has to4= concentra- tions that vary from 50 to 150 mg. per litre. water flowing through the Riding Mountain formation and alluviun unit, which contains abundant shale fragments, derives to4= from dissemi- nated gypsun that is conmon found in marine sediments of this kind (J. Eades, Personal Communication, 1970). Wickenden (1945) has described the occurence of pyrite in cores from the verrnillion River, Riding Mountain and other upper creta- ceous formations. Minor contributions of so4= could result from the oxidation of pyrite by the following reaction (Singer and Stumm, 1970).

pyrite: FeS, + 202 ? Fe** * zSo4 (s)

Solubility constraints pJ-.ay arL irnportant role in determining the chenical evolution of groundwater (schoe11er, 1956; Back, 1961). The condition of chernical equilibrium is governed by the law of mass action and is described for equations 1, 2, 3, 4, by rewriting them in terms of dissocia- tion constants , Ac"**.oaor= calcite, Kå*co, = .(6) Ac"co Jc- 27

2 A ++a ++. "'coA dolonite: r|"ug (COs) Ca "'Mg (7) z r- Ac"Mg (co") " "tc t oa"**.oroo= gYPSunt KC¿SO.. = (8) +2ZH O Acusoo.

t f/ A +A--C halite : 1 ^Nac1 Na (e) AN"ct c where t is the temperature of the solution. In general, nearly all groundwater samples weïe saturated with respect to calcite, dolomite and aragonite but undersaturated with respect to gypsun (Appendix E). The computer procedure and solubility constants utilized to calculate percent saturation r¡¡ith res- pect to calcite, dolomite, gypsum and aragonite are listed in Appendix D. Cursory inspection of the relatívely low concen- trations of Na* and C1 in the groundwater samples was suffi- cient to dismiss this reaction as a solibility constraint on the groundwater. Percent saturation values calculated for some metastable phases of the carbonate mineral-.-CaSOO

NaCl - Hzo systems (Appendix E), nesquehoni.te, MgCo ,.3ïroì hydromagnesite, Mg4 (COS) (0H) SHZO; magnesite, MgCO, 3 Z. i huntite, MgrCa(C0S) O and landsfordite MgCOS'5H20 were con- sistently less than 1 percent also disnissing them as solubility constraints on the groundwater. 28

High partial pressures of ,0, are produced in the soil zones by decaying vegetation and respiration of plant roots. Calculated values of co, partial pessures for shallow groundwater ranged between I0-2 '30 rrrd 10-1'30 atm., considerably higher than 10-5'5 atm., the atrnospheric value [Garrels and Christ, 1965). Recharge infiltrating through these zones acquires high concentrations of HCO, , Ca** and ¡r Mg" through leaching of carbonate minerals by carbonic acid.

Kinetically this reaction is very rapíd (Weyl, 1958) . contribution of ca** d.erived from the dissolution of gypsum would tend to shift the carbonate equilibria toward precipitation of calcite, dolomite or aragonite. However, these precipitation reactions aïe kineticaLly slow (Hostetler, 1963) and therefore causes supersaturation of the groundwater with respect to calcite, dolornite and aragonite (Appendix E). The observed. supersaturations cannot be cornpletely explained by the common ion effect. For example, type r water generally containing less than 10 ng. per litre of soO= is supersaturated with respect to calcite and dolomite (Appendix E). The satura- tion data (Appendix E) indicates supersaturation of calcite and dolomite is not the result of equilibriurn of the ground- vrateT with the netastable carbonates, including aragonite. Bricker and Garrels (1967) indicate that the detailed chernical and structural variability of the solid phases are most irnportant in the interpretation of chemical equilibria in natural water systems containing ca and Mg carbonate com- 29 pounds. Observation of the mineral characteristics of the surfaces of the pore network was not feasible in this investiga- tion. The dininishing concentration of SO4= and increasing concentration of HCO,- in type III water as compared to type II water is explainable in terms of sulfate reduction by aneorobic bacteria. Natural gas present in the lower bedrock unit could serve as a donor of organic hydrogen for the bacteria (Hvid-Hansen, 1951). The following equations modified from Hvid-Hansen (1951) and Hem (1959) provide an explanation of the high HCOS content combined with low SO4= content in the presence of bacteria and methane, a common constituent of natural gâs,

S04=*CH4=S=+COZ+ZHZO (10)

+ ZH|O * zCoZ = HzS + ZHCOï- ( 11) 30

HYDROCHEMISTRY OF STREAMFLOW

Source of fons in Recession Flow During extended periods with 1itt1e or no precipita- tion, streamflow is maintained by extended ïeturn flows into the stream channels. Hydrochemistry of Wilson Creek and lower reaches of Packhorse and Bald Hill Creeks during these recession flows closely resembles type II groundwater (Figs. 14, 15; Appendix E). Chernistry ð,ata fron all springs and apparent concentration of seepage along Bald Hill and Pack- Creeks in the rniddle and lower portions of the upper reaches (Newbury et ãL., 1969) indicated ionic concentrations also comparable to type II water and the streamflow. Water table observation wells, F34, F35 and F36 along the Bald Hill Creek channel in the lower portion of the rniddle reach also possessed water of a sirnilar chemical character (Appendix E). Type II water is therefore the dorninant source of recession discharge for Bald Hill, Packhorse and Wilson Creeks. Low C1- concentrations in the streamflow and in groundwater types I and II as well as piezometric data presented in Figure 6 indicate that water froln large, regional flow systems is not entering the surface water system within the watershed. These systems apparently discharge east of the escarpment. Stream water during the recession periods was highly supersaturated with respect to calcite, aragonite and dolonite and undersaturated with respect to gypsun [Appendix E). When 3L discharging groundwater comes into contact with the atmos- phere the partial pressure of C0, gas is reduced but the concentration of COr= increases. Because streanflow precipi- tation reactions for calcite and dolonite are kinetically slow (Barnes , Lg64) , supersaturation with respect to calcite, aragonite and dolomite was observed in Wilson and Packhorse Creeks

Geochernical Hydrographs Time variation (May to September, 1969) of najor ions, c"**, Mg**, N"*, K*, HCO'- + COs= and Soo= as well as electrical conductivity is depicted for Wilson and Packhorse Creeks (Figs. L4, 15). More detailed. najor ion and conducti- vity variation with time for Wilson Creek during a storrn runoff period (June 24 to July 2, 1969) is presented in Figure 16. To compare the concentration behaviour of individual ions, the dilution ratio of each was calculated and plotted versus tirne for two storm runoff periods (Figs. L7, 18). In general, Na* and SO4= concentrations are reduced considerably; while, Cu** and Mg++, behaving almost identi cal-1-y, are diluted substantially less. Precipitation falling in the watershed contains only mininal concentrations of dissolved material. Analysis of three rainfall sarnples determined maxirnum concentrations of Ca+*, Mg**, N"* and K+ to be 1.5, .45, 2.46 and r.4g rng. per 32 litre respectively with total dissolved solids less than 15 ng. per 1itre. Sulfate dilution behaviour as influenced by Bald Hill detention reservoir indicates the sensitivity of the geochemical hydrographs. At any reservoir stage except over- flow, maximum discharge is 5 to 6 cfs. During periods with 1ittle or no precipitation, the reservoir is normally ernpty. Water is however ponded during the snor^rmelt period or heavy rainfall periods. Following the rainfall period of June 25 to July 8, the detention reservoir contained water for 14 days (Fie. 19). During this time, SO4= concentrations of Bald Hill Creek remained at a stable, lorti level because the higher than normal discharges from Bald Hill Reservoir had SO4= concentra- tions on1-y as high as 3-4 rng. per litre (Fig. 19) . Concen- trations returned to pre-storm, recession 1eve1s only after the reservoir had drained completely (Fig. 19). In contrast, concentration of S04= in Packhorse Creek rebounded quickly to its pre-storm, recession 1evel [Fig. 19). Concentrations of SO4= at Wilson Creek weir increased slowly reflecting the direct cornbination of Bald Hill and Packhorse Creek discharges (Fie. 1e). Annual variation of conductivity and SOO= concentra- tion at Wilson Creek weir [Fig. 20) shows an excellent negative correlation with d.ischarge. Highest conductivity values and S0O= concentrations r^rere measured during the JJ winter nonths when Wilson Creek discharge was 1ow. Conductivity and S0O= concentration behaviour as monitored at Dead 0x and McKinnon Creeks followed dilution trends quite sinilar to other creeks investigated (Fig. 21-). However, for the entire period of observation, Dead 0x Creek consistently had the lowest SO4= concentrations of all. More d.etailed neasurements of SO4= concentration and conductivity variation of Dead Ox and McKinnon Creeks revealed dilution behavj-our comparable to Packhorse and Bald Hill Creeks (Fig. 22). However, the magnitude of the SO4= concen- tration dilution at a given time tended to be unique for each creek, controlled by several intimately related variables. The chernical comparison of Bald Hi11, Packhorse and l¡[ilson Creeks (Fig. 19) indicates that the relative effectiveness of headwater storage and the amount of streamflow conbination are two important variables.

I 34

GEOCHEMICAL HYDROGRAPH SEPARATION

Idealizatian of Hydrograph Components An important hydrologic problen is separation of the composite hydrograph into components and interpretation of these components. Traditionally, it has been recognized (Meyboom, 1961; Hal1, 1968; Pinder and Jones, 1969) that streamflow during storm runoff periods consists of three main components: direct runoff , interflortr and baseflow. Processes contributing to the fornation of the com- posite hydrograph are intirnateiy related and depend upon several independent variables. Betson and Marius (1969) found that storm runoff originates fron but a small portion of the total drainge area. Location and extent of the source area are dependent upon several parameters including rainfall in- tensity, hydraulic conductivity in the unsaturated zone and antecedent moisture conditions. Jameson and Amerrnan (1969) recognize two interflow cornponents, quick return flow, defined as rapid Tateral flow in the uppermost soil horizons and delayed return flow, defined as long terrn lateraL flow in the remaining unsaturated portion of the soi1. During recession f1ow, streamflow is sustained by extended return flows, made up of a groundwater discharge component and a delayed return flow component. Ha11 (1968) concluded that baseflow as traditionally defined prob abLy exists only in arid regions where there is negligible con- 35 tribution to the streamflow frorn prolonged non-linear drainage of the unsaturated zoîe. The najor ion concentration of Wilson and Packhorse Creeks during periods with 1ittle or no precipitation charac- teristicaLly remains stable. However, d.uring storm runoff periods additional discharge components, direct surface runoff, channel precipitation, and quick return flow are added to the streamflow. Each component possesses a unique ionic concentration deternined according to the various modes of interaction with solids, liquids and gases with which they have come into contact. Delayed return flow and quick return flow having flowed through a soil zone with high COZ partial pressures contain relatively high concentrations of Ca++, Mg**, and HCO3-. Direct surface runoff and quick return flow that have not passed through a soil zone do not contain appreciable concentrations of these ions because the partial pressuïe of CO Z Eas in the atmosphere is low. Both surface runoff and quick return flow could be expected to possess negligible concentrations of Na+, SO4= and C1- because of the slow solution rates of sulfate and sodium silicate minerals, the short contact times ínvolved. and the general unavailabiLity of the soluble sodium, sulfate and chloride salts on the ground. surface and in leached upper soil horizons. During recession flow, the hydrochernistry of Wilson Creek and lower reaches of Bald Hill and Packhorse Creeks 36 closely approximate Type II groundwater, Geochenical hydro- graphs fron these creeks indicate that during rainfaL periods contributions of direct runoff, channel precipita- tion, and quick return flow tend to chernically dilute the streamflow. Much of the surface runoff is contributed from the upper reaches where infiltration is restricted (MacKay and Stanton, 1964). Rapid infiltration into the highly permeable Riding Mountain fornation results in 1arge, transient increments in water table gradients as evidenced by the water table hydrograph of GS 5. Extended return flow contributions to the streamflow from transverse flow systems in the middle reach increase in response to increased gradi- ents. Quick return flow probably originates in the greatest quantity under large hydraulic gradients from along the very steep valley walls of the niddle reach. Direct runoff con- tribution to the streamflow ends quickly after the precipi- tation ceases.

Hydrochemical Separation The hydrochenical rnethod for hydrograph separation [Voronkov, 19633 Zektse'r, 1963) has been used frequently to yield separations more closely related to the physical system. Kunkle (1965) used conductivity to estimate the groundwater contribution to baseflow, Toler (1965a, 1965b) has distinguished two components of baseflow and estimated total contribution by means of conductivity. Pinder and JI,4

Jones (1969) deterrnined the groundwater component of total storm discharge using the dilution behaviour of several representative ions. In Wilson Creek Watershed, hydro- chemical characteristics of the system were used to identify the baseflow component of storrn runoff hydro- graphs (Newbury et ãI., 1969). Extended return flows and quick Teturn flows that have passed through a humic soil zorre possess high Ca+* and Mg** concentrations. Dilution of these ions in the stream- flow results frorn the addition of direct runoff and channel precipitation as well as a portion of the quick return flow that infiltrates in soil-free shale bank areas and is chenically sirnilar to direct runoff. Because the dilution behaviour of Ca** and Mg++ in the streamflow are very nearly identical (Figs . 17, 18), the average of Ca++ and Mg+* dil.ution ratios has been utilized to separate a combined extended. return flow and partial quick return flow component from the cornposite hydrograph. Because only minor concentrations of SOO= and Na+ are contributed by quick return flow and because the dilution behaviour of Na+ closely approxinates that of S04= (Figs. L7, 18), direct surface runoff and. channel precipitation, the dilution of SO4= and Na+ can separate the extended return flow contribution to the streamflow. In general, the extent to which SO4= and Na+ are present in aqueous solutíon depends upon the availability 5B of sulfate and sodium containing minerals for dissolution and the length of time groundwater has been in contact with these minerals. Hydrochemical measurements of groundwater and streamflow indicate that during storm runoff periods the increases in the extended return flows must result from rapid, transient flow in the Riding Mountain formation. The expected pattern with S04= and Na+ concentration dilution greater than the aveïage of Ca++ * Mg** dilution results from the dual source of Ca+* and Mg** in quick return flow and extended return flow as conpared to a single, extended return flow source for So4= and Na+. A dilution pattern of this kind was observed for ltrilson and Packhorse Creek during aLL storm runoff periods. Three hydrograph components were separated in the composite hydrographs of Wilson and Packhorse Creeks (Figs. 23, 24). A single ratio characterizing dilution of Ca** and

¿I Mg** at a particular time was determined by averaging Ca*+ and Mg--II concentrations, to separate fron the total discharge hydrograph a cornbined extended return flow and partial quick return flow cornponent as well as a combined channel precipitation and direct runoff component that includes some quick return f1ow. Because atomic absorption spectro- photometer determinations of Na+ concentrations are consi- derably nore accurate than the field turbidonetric procedure for SO4= concentration, N"* has been utilized in this study to separate an extended return flow component. 39

Subtle concentration changes obvious in tr{lilson and Packhorse creeks 'hrere not apparent with respect to so4= concentration. The extended return flow component üias separated for Dead Ox and McKinnon Creeks using SO4= dilution (Figs. 25, 26). The detailed procedure for the hydrochemical method of hydrograph separation is outlined in Appendix G. The ions chosen to characterize a particular compon- ent or group of hydrograph components at Wilson Creek water- shed relate closely to the physical system. The characteris- tic ions for any watershed tend to be unique depending in part upon the geohydrologic setting. 0n the basis of infornation d.erived from this study, the hydrochenical hydrograph separation as developed at Wilson Creek watershed could. be applied to many sinilar watersheds along the Manitoba Escarpment utilizing easily obtainable data. Rapid accurate analyses of C r** , Mg** and Na+ concentration can be made using atomic absorption spec- trophotometer techniques. Stream discharge can be measured relatively easily using staff gauges and rating curves. fnvestigators (Kunkle, 1965; Toler, 1965a, 1965b; Newbury et ãI., 1969) have utilized conductivity dilution to obtain hydrograph separations in part because of the ease with which these measurements nay be made. Conductivity dilution as deternined. at Wilson Creek (Figs 17, 1S) and Packhorse Creek represents an average of the ion dilutions weighted according to the mass concentration of the individual 40 ions. Because the conductivity dilution is consistently 5 to 15 percent lower than the average of Ca++ and Mg++ (Figs . L7, 18), s€parations resulting are a combination of extended return flow plus a smal1 proportion of quick return f 1ow. 4L

SUMMARY OF CONCLUSIONS

Six hydrostratigraphic units have been distinguished in the Wilson Creek watershed, a surficial alluvium unit, ãî upper ti1l unit, a lacustrine silt-clay unit, a lower till unit, the Riding Mountain formation and. a unit cornprising the Cretaceous bedrock formations underlying the Riding Mountain formation. In general, groundwater flow in the Wilson Creek watershed above the confluence of Bald Hill and Packhorse Creeks is characterized by a downward hydraulic gradient. Transverse, 1ocal and internediate flow systems develop in the deeply dissected niddle and hummocky upper reaches of the watershed and discharge into the surface water system. Recharge to deeper flow systems predoninates in the inter- valley regions of the niddle and upper reaches. In lower reaches of the watershed, the gentle, relatively constant water table slope results principally in lateral flow with only minor vertical flow. Groundwater outflow from the watershed was estinated to be between 5 and .00004 cfs. , with a best estimate of .004 cfs. Four distinct hydrochenical facies occur in and adjacent to the watershed. The chemical character of the natural water evolves as a result of direct solution and chernical reactions with solids, liquids and gases with v¡hich it has come into contact. Hydrochenical comparisons of the 42 groundwater and streamflow reveals that extended return flows from the upper glacial drift unit and the Riding Moun- tain formation in nid.dle reaches of the watershed as well as from the glacial drift at the base of the escarpment are the major sources of recession strean flow. Groundwater flow patterns and hydrochemical measurements indicate that deep groundwater does not enter the surface water system within the watershed but rather discharges east of the es carprnent . The tine variation of conductivity and major ions, Ca**, Mg**, N"*, K*, HC03- * CO3= ancl SoO= in Packhorse and Wilson Creeks displayed a distinct, negative correlation with strearn discharge. Dilution behaviour of the major ions in the stream flow during storm runoff periods is depen- dent upon its concentration in each of the streamflow sources, direct runoff, channel precipitation, quick return flow and extended return flow. Conductivity and concentration of SO4= in Dead Ox and McKinnon Creeks also correlate well with stream discharge. Average dilution of Ca** and Mg** was util izeð. to separate from the composite hydrograph an extended return flow and partì-al quick return flow component as well as a cornbined channel precipitation and direct runoff component that includes some q.uick return fIow. Dilution of Na+ and SO4= was indicative of the extended return flow contribution 43 to the streamflow. The hydrochemical rnethod of hydrograph separation as developed in Wilson Creek watershed was applied to Dead Ox and McKinnon Creeks situated in a sinilar physical setting along the Manitoba Escarpment. With a few sinple and readily obtainable measure- ments of chenistry and discharge, the hydrochemical nethod of hydrograph separation can be applied to numerous streams along the Manitoba Escarpment. These techniques rnay better represent the physical system than more arbittaty graphical methods. 44

REFERENCES CITED

Back, W. 1961. Calcium carbonate saturation in groundwater from routine analyses. U.S. Geol. Survey Water Supply Paper 1535-D. . 1963. Prelininary results of a study of calciun carbonate saturation of groundwater in Central Florida. I.A.S.H. Pub1., 8, pp. 45-51. , Cherry, R.N., and Hanshaw B.B. 1966. Chemical equi 1 ib ri a between the water and rninerals of a carbonate aquifer. Nat1. Speleol. Soc. 8u11. , 28, July. Bannatyne, B.B. L963. Cretaceous bentonite deposits of Manitoba. Manitoba Mines Branch 62-5. Barnes, I. 1964. Field measurement of alkalinity and pH. U.S. Geo1. Survey Water Supply Paper 1535-H. . 1965. Geochemistry of Birch Creek. Inyo County, , a travertine depositing creek in a arid clinate. Geochim. et Cosmoðhirn. Actar 29, pp. 85-112. Berner, R.A. 1967 . Comparative dissolution characteristics of carbonate minerals in the presence and absence of aqueous magnesiun ion. An. J. Sci., 265, pp. 45-70. Betson, R.P., and Marius, J.B. 1969. Source areas of Res . 5 pp. 57 4-582 . storm runoff. Water Resour. , ' Bricker, 0.P., and Garrels, R.M. L967. Mineralogic factors in natural water equilibria. in Principles and Appli- cations of Water Chemistry. ed. S.D. Faust and J.V. Hunter, John Wiley and Sons. New York, PP. 449-469. Cherry, J.A. 1968. Chemical equilibriun between gypsurn and brackish and slightly saline waters at low temperatures and pressures. Chern. Geo1., 3, pp. 239- 247 . Cox,' R.A. 1969. Groundwater--streamflow systerns in Wilson Creek Experimental Watershed, Manitoba. unpublished M. Sc. thesis, University of Manitoba. 4s

Elsono J.A. L967. Geology of glacial Lake Agassiz. in Life, Land and Water, ed. W.J. Mayer-0akès. Proceedings of the 1966 Conference on Environmental Studies of Glacial Lake Agassiz, Region. University of Manitoba Press. Winnipeg , L967 . pp. 37 -96. Fishnan, M.J. 1966. The use of atomic absorption for analysis of natural waters. Atomic Absorption News- letter, 5, No. 5. Freeze, R.A. L967. Quantitative interpretation of regional groundwater flow patterns as an aid to water balance ðtudies. Extract- of "Ground Water". , and Witherspoon, P.A. 1966. Theoretical analysis bf regional groundwater f1ow. 1. Analytical and numerical solutions to the mathematical mode1. Water Resour. Res., 2, pp. 641 656. , and Witherspoon, P.A, 1967. Theoretical analysis of regional groundwater flow. 2. Effect of water- table configuration and subsurface perme abiLtty variation. I{Iater Resour. Res., 3, pp. 623-634. Garrels, R.F., and Christ, C.L. 1965. Solutions, minerals and equilibria. Harper and Row, New York. Hal1, F. R. 1968. Base-f 1ow recessions - - a review. I^later Resour. Res. , 4, pp. 973- 981. Halstead, E.C. 1957. Ground-water resources of the Brandon nap-area, Manitoba. Geol. Surv. Canada, Memoir 300. Hem, J.D. 1959. Study and interpretation of chemical charac- teristics of natural waters. U.S. Geo1. Survey water Supply Paper L473. Hostetler, P.B. 1963. The degree of saturation of magnesium and calcium carbonate minerals in natural waters. Publ. 64, Int. Assoc. Scient. Hydrol. , Comn. Subterranean l4laters , pp. 34- 49 . Hubbert, M.K. 1940. Theory of groundwater motion. J. Geol., 48, pp. 785-944. Hvid-Hansen, N. 1951. Sulphate-reducing and hydrocarbon producing bacteria in groundwater. Acta Path. Microbio. Scand., 29, pp. 3L4-334. 46

Hvorslev, M.J. 1951. Time 1ag and soil perrneabiLity in groundwater observations. U.S. Arrny Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, Bull . 36. Jarnieson, D.G., and Arnermarl, C.R. 1969. Quick-return subsurface flow. J. Hydrol., 8, pp. L22-I36. Johnston, W.A. L946. Glacial Lake Agassiz. with special reference to the mode of deformation of the beaches. Geol. Surv. Canada, 8u11., 7.

Kunkle, G. R. 1965. Cornputation of ground-water discharge to streams duriñg floods, or to individual reaches during base flow by use of specific conductance. U.S. Geol. Surv. Prof. Paper 525-D, pp. 207-2L0. Langmuir, D. 1965. Stability of carbonates in t!e_system MgO - C0Z - HZO. Jour. Geo1., 73, pp. 730-754. MacKay, G.H.. and Stanton, C.R. 1965. Wilson Creek study, erosion and sedirnentation control. Proceedings of Hydrology Symposiun No. 4. Water Resources Branch, Dept. of Northern Affairs and National Resources, pp. 4L-7L.

Maxey, G. B. 1964 . Hydros tratigraphic units . J. Hydrol. , 2, pp. IZ4-I29. Meyboom, P. 1966. Groundwater studies in the Assiniboine River drainage basin. Geo1. Survey of Canada 8u11., L39. . 1961. Estimating ground-water recharge from stream hydrographs. J. Geophys. Res., 66, pp. L204- T2T4 Newbury, R.W. , Cherry, J.A, , and Cox, R.A. 1969. Ground- water-streamflow systems in Wilson Creek experimental Watershed, Manitoba. Can. J. Earth Sci., 6, pp. 6L3- 623. Pinder, G. F. , and Jones , J. F . 1969 . Determination of the ground-water component of peak discharge frorn the chernistry of total runoff. Water Resour. Res,, 5, pp. 438-44s. Piper, A.M. Ig44. A graphical procedure in the geochemical interpretatioñ ol water analyses. An. Geophys. Union trans . , 25, pp. 9L4-923. 47

Rozkowski, A. 1g67. The origin of hydrochenical patterns in hummocky moraine. Can. J. Earth Sci., 4, pp. 1065-1092. Schoeller, H. 1956. Geochemie des eaux souterraines. Editions Technic, Paris. Singer, P.C. and Stumm, W. 1970. Acidic mine drainage:, !h" rate determining step. Science, 167 r PP. LI2L^LL23. Sippel, R.F. and Glover, E.D. 1964. Tlie solution alteration of carbonate rocks, the effects of tenperature and pressure . Geochirn. et Cosrnochim. Acta , 28 , pp . 1401-r4L7. Theissen, A.H. 1911. Precipitation for large areas. Monthly Weather Rev. , 39, pp. 1082-1084. Toler, L.G. 1965. Use of specific conductance to distinguish two base-flow components in Econfina Creek, Florida. Geo1. Surv. Prof. Paper 525-C¡ pp. 206-208. . 1965. Relation between chenical quality and water discharge in Spring Creek, Southwestern Georgia. Geol. Surv. Prof. Paper 525-C, pp. 209-2L3. Toth, J . 1963. A theoretical analysis of groundwater flow in snall drainage basins. J. Geophys. Res., 68, pp. 4795-4811. Voronkov, P.P. 1963. Hydrochenical basis for segregating local runoff and a method of separating its discharge hydrograph. Soviet Hydrol., No. 4, pp. 409- 4I4. Westgate, J.A. 1969. The Quaternary geology of the Edrnonton area, Alberta. Pedology and Quaternary Research, University of Alberta Printing Dept., pp. 129-151. Wey1, P.K. 1958. Solution kinetics of calcite, J. Geo1., 66, pp. 163-L76. Zektser, I.S. 1965. Role of artesian water in feeding large rivers as exemplified by the niddle and lower reaches of the Neman River. Soviet Hydrol., No. 1, pp. 94-98. FIGURES L-28 'È..Lake Manitoba

DEAO O X

4l; ì,s ^/ .q xÀ,+ì 9) o(

",)'"",:-"/

physiography. Þ Fig.1 Location of watershed and regional (o :-. .

'(.'t Fig. 2 Topography and location of instrumentation. ,.1 o 'Þ 2400 GEoLoGrc cRoss'sEC.'ro, n-"1

2200 oredsninontly lill,colcoreous w¡?h cloy ond sill molrlx' 'occã!'onot li:nsei ofqrovel ond sond

2 000 o r 800 o

r600 q d¡scúlin¡û.6 v!il¿r of drifl oçdon in Þbca \ by olluvium ød colluvlum o r400 o o ond colæreouq occosionol bmtdnilic inlerbeds o r 200

o md ælæ@E sæd€,occ¡sprcl llin sholy limeslone beds roo o I ASHVILLE FORI\4ATION 1965 (mocliñed ofl€r tursmslar6S Acr uæuioea) shole,sholy limeslone ond limeslone

Fig. 3 Geologic cross-section through the watershed.

(¡r H 52

1 goo I lA¡.tuvur;poonLy 8frTEolsLfyr8aruf; AE'HoAilT ROIJXDEo fnAor¿Þllt grrs [Tl r^cratm{E DEp o ; ErLryr cLAyEy S|LT AilD Ct¡Yi I INÌERA€DoEO, C¡LC¡lÆo|¡ eoo fffil r-ow¡r îLL: .LAYEY.'LTY.BÁ¡ô^ l-.¡.-¡¡¿¡ ' AAUNDÁltf 3HAL! 3 FRAOTE'III^xCJL¡i u¡ [-l c^.t .Eqre ¡^nrNE 8,^r€s

UJ 11c)0 J

.I ¡EST Iþ. ô TE81 HOL€ 'IEZOflEIERl¡ca1¡o¡ uJ (n 1 POO tol T rr. It, tU 50 0 FT. o (n 110c] FAVEL FOFIMATION

f- IU r ooo ASHVILLE FORMATION IU 5 z a 1300 3 IU VERM I LIO-Ì$ J RIVER tu 1e oo EqMALOÀL

FAVEL FOTMATION . 1100

Fig. 4 Three detailed geologic cross-sêctions through the lower reaches of the watershed. GL LocAL C'RoUNDWATER FLow GI I.¡TERM€DATE GRqJNDWATER FI-oTV . GrN GROL}¡OI¡/ATER TNFLOW GOF GRCT,JNDì¡¿ATER OUTFLO¡/ GT GROIJNDWATER SUBFLOW GL BOLINDARIES WATERSHED BOUNDARIES

Flg' s Conceptual groundwater rnodel of an open watershed sys tem

(Jt UI EX PNIMEN T/'L I"ATENSH ED PROJECTED PROFILE OF BALD HILL CREEK --.._./ ÉQIIPOTENTI¡L U NEs - APPROXMAfE FLO,Y DnECTION I erezouerea r,esr .OGIC TESI HOLE -- \"' lYru '. '- RIDING M.'NTAIN * -'' FORMATION

J U ÈJ U V ERMILION RIVER FOR¡,IATION 6 ----tl____ U FAVEL FORMATION o ao

UF U L.

Fig. 6 Longitudinal flow pattern beneath uplands.

ÞU1 NORTH

.. . LOCAL FLOW SYSTEH. o I o ;l o o B .ô PACKHORSE '.o I o o z l-I tlj ¡ Jl lr¡ HORIZONTAL SCALE 5OO fEET

Fig. 7 Schenatic interpretation of groundwater flow pattern in a section transverse to val1ey trends.

LN u¡ s6

r300 @ erezoueren NEsr No. -\,-- tdATER TABLE

EQUIPOTENTIAL LINE r200 ,- BOUNDARY OF HYOROGEq-GIC UNIT

. rr.... HYffiAUUC PoTENT|AL Af PIEZOMEfER frP (SEPTEMBER I,t969)

pRoJEcttoil 0,, \ --t aPpROxtÀ,TaIECOMPONENT FORMATION (u FAVEL o À G€NERÁL DIRECTIOI.I OF GRqJNDWATER q) V MovEMENT an r 200 (l) o -oo

o) (¡) z o ro oo ASHVILLE FORMATION

l¡J J l¡J r 300 wrLs0N CRE EK

r200 ur^',Jîi^,ur^or"S i t2.4O --..i__ råeoi FAVEL FORf{A1I.01{ iloo

Fig. 8 Three geohydrologic cross-sections through lower reaches of the watershed. WATER TABLE FLUCTUATIONS

oÞ- o : otL (t, J s \J É. lrj ,,-__\r//-_____ F.z / ______/GSI /

GEODETIC'€LEVÂIIOil REFEREIIC€

ø I d

1.

2.5 AT RAIN GAUGE NO. IO PRECIPITATION 20 3 r.5 s l.o .Ëo.s (J¡ 30 ro t5 2025 31 5 lO .-t

Fig. 9 Water table fluctuations in upper glacial drift and Riding Mountain formation. 58

;"q'----ìj::i

--.---Woler Toble Conlou¡ (2lO) Elevo tion Approximole Direclion ./<-y' of Flow ¡ Woter Tobte Observolion m Nqfjq¡61 Pork Boundory -."--'Troil

Fig. 10 Interpretation of water table contours and flow lines as basis of outflow computations. TYPE I . TYPE II .

TYPE Itr ^ TYPE E.

90- Ð 8o:r 70J

U1 (o

50 70 80 90 90 80 70 ó0+ 50 40 50 20 l0 l0 20 50 40 >ó0 Co** c1- CATIONS ANIONS Fig. 11 Piper diagrarn of hydrochenical facies ¡¡. ¡l.r(Cotl tar .e. ¡a, l¡t., ll¡gr+l ñ9. D.¡ ll?.r (tlo' ¡ ñT t.r l¡¡.r(8COi+COjJ rg. p.rr¡rú(SO¡ I hg P.r lil..(Cf )

Fig. TZ Histogram summaïy_of cation and anion concentrations in water types I-IV.

o\ O -_,. EQUTPOTENTTAL Lt NES .,, APmOXTMATE FLOW DIRECTION ' GEOLOGIC FORMATION BOUNDARY - PROJEGTED PROFILE OF BALD HILL CREEK J - FI|tRMIEMICAL FACI ES BOUNDARY l¡J - l¡J J ,aó-'"]**"[-'--:. RIOING MOUNTAIN FORMATION ÙJa l¡J o @ VERMILION RIVER FOR MATION l- t¡J l¡J lL

Fig. L3 Location of hydrochemical facies in cross-section o\ H

' :-). 62

CONDUCTI VITY

(¡) .= 300 b z7s o- z z5o or 9E 225 200 HC0; + 66- t75 t- ' 150

roo æ. 75 F- 50

25 oo UJ 75 () 50 25 Z o---

30- - 2 o to- 50 AT WILSON CREEK WEIR

DISGHARGE

th lo 9 o

t.o

v, 2.5 PRECIPITATION q) 2,O AT RAIN GAUGE NO.I IO c(J t.5 L to o.5 o 5.MAY rot5 20 253t5 r015202530510152025 3l 5 r015 æ25 3l JUNE JULY. UGUS T t969 fA Fig. L4 Tirne variation of ionic concentration and conduc- tivity of streamflow at Wilson Creek Weir. 63

E I 600 clob(' õoo urO 4,OO ÊN boC- 300 .Þt 200 - IOO' 2f5 250 225 (¡, 200 ncol+ca5 175

150 o cl r25 too Ctr 75 E 50 z 25 o o l- 75

É. 50 F. 25 z 30 UJ 20 o to z 30-0. o IO- 0 -^- o K+ AT PACKHORSE CREEK WEIR ro0 50 D ¡ SCHARGE to U'5 þ (.)

¡ 2.5 o 2.o AT RAIN GAUGE NO.IO q.) t.5 PRECIPITATION € r.o .c 0.5 .o 15 20?5, 305 to tã 02s l0 r5 ?oâ MAY J ULY AUGUST r969 Fig. 15 Tine variation of najor ion concentration and conductivity of streamflow at Packhorse Weir AT WILSON CREEK WEIR o co ô¡

C, b i o o E8 2 E HGO;+ 69= 500 o êO .9 ö E E 00 z r50 l- o 500 l- 200 ; É () F z r00 f ()l¡J ô z 0 z o o o ()

508

il(, l¡, EC' (, o5 É 5 ^EE I 'i^4r o9 'o (J .5 o: 2. oo9ä .o .r åò

J UNE .J U LY o\ I 969 Þ Fig.16 Time variation of naj or ion concentration and conductivity for Wilson Creek during najor storm 65

o .8 t-- .7 E .6 z .5 9 .4 F :) J .3 Õ .2'

Fls. L7 Tine variation of maj or ion and conductivity dilution ratios f,or Wilson Creek (May 30 to June 10). ?.o t.9 ,1 CALCIUM ¡4AGNeS/UM r.8 It .

28 sroa;: /é 29 o\ J^tlbY. 1969 o\

Fig. 18 Tine variation of najor ion and conductivity dilution ratios for Wilson Creek (June ZS to July 1). to .tt NT ANI_O HILL RESERVOIR 5 ð BALD HILL CREEK so; .E roo E- ro Eo $ roo kcu- l-oÉ. z WILSON CREEK roo zf! ()o50 2.5 AT RAINGAUGE NO IO 2.o 3 r.5 t, l'o c O.5 o lo t5 20 ro 15 ro 15 J UNE J U LY Â UGUS T

Fig.19 Effect of Bald Hill reservoir on SO,-= concentration of Wifton Creek flow following rnajor stor* period.

{o\ CONDJCTIVITY

AT WILSON CREEK

OISCH ARGE o ro 5 o

AT RAIN GAUGE NO. IO PRECIPITATION o & oc

AU G. SEPT. OCT. NOV. DEC. o\ oo fig. Z0 Annua1 variation of SO4= and conductivity, 19ó9. 69

ù CI MCKINNON CREEK t¡t öE J -cc CONDUCTIVITY 5.r+ o0 o\,L2 00 'Ezoo 00 b 0 50 L (¡) o, or 25 so;" E o r00 DISCHARGE 4l ,¡^^ \^-a =--- d lo .._-- I ô.o, DEAD OX CREEK ,DEô 500 -c.Ê¿,+00 Eõ¿300 .Þz200 E¡r00 0 È 50 (¡) ô 25 or LVso; o 2l r00 d 'to

I ?5 AT RAIN GAUGE N0 t0 tt 2D o 1.5 PRECIPITATION o LO .= o5 0 .J I - rr t t5 20 25.30 5 rO I 20 ro 20 3 J JU LY I 9 69

Fig. 2L Tine variation of SO4- concentration and conductivity for McKinnon and Dead Ox Creeks 70

(¡) MCKINNON CREEK 600 CI roo 400 gÈ 50 -CONDUCTIVÍTY 200 0 dl oo t0 (, o I DEAD 600- o roo OX CREEK 3 4oo R ó,b 50 200- _ o >o u, ._Ë C) CJ

I o, BALD HILL CREEK 600 t roo 400t è gÞ so ø, 2OO -o- 0 !¡ roo o o to (, (, I 600o Ë 3. roo PACKHORSE CREEK 400(¡" gÞ so 200 0 ro0 at l.:c to I tt, (¡, AVERAGE PRECIPITATION (,

I 28 29 J U NE 1969 Fig. 22 Tine variation of SO4-= concentration and . conductivity. for Packhorse, Bald Hi 11, Dead Ox and McKinnon Creeks *,!, d - t.o LrJ (r' É.

5 Lq-tÞ 2025 3t 5 ts to 2025305 to t5 20 25 3t 5 ro t520 25 3t MAy Juñr J U LY AUGUST t969

--l Fig. 23 Geochemical hydrograph separation for Wilson and Packhorse Creeks H using Na+, Ca++ and Mg++ average -500 WILSON CREEK l¡J roo (t fr 50

28 J UNE I969

Fie. 24 Detailed geochemical hydrograph sep.aration for Wilson Creek using Na*, Ca++ and Mg+* average

--J N) a

I SE PARAT I ON l¡, I (9 500 É,

too (' 50 o, ô so¡ SEPARAT|OT{

--e-Fis. ZS Geochernical hydrograph sgparation for McKinnon and Dead 0x Creek-s using SO4= dilution' .\¡ (}l ,1,.;:-:;rt{l'',."' so¡ seeanlrròì''--ì-iír" ./}i::==- a d lr¡ I t5oo E :i ì - ,¡ 5o att */ i -'---?-.-..-..-----/,.,^-_ìì ---__ -¡Oô¡ "'.r.----,/ so; serñor,õir'------ll-.-,,"' -\-----_-

JUNE r9ó9

Fig. 26 Detailed geochemical hydrograph separation for McKinnon and Dead Ox Creeks using S04= dilution.

.\¡ è b = 400 (¡)o sÈt .Èttr ã .oo :l Io otrl ìo zoo v) (/) õ J roo Éo l--

zòo 5oo 4oo soo CôÑðUcf rvnV t micromhos per cm' ol 2o'G) --J (J¡ Fig. 27 Piezometer design. 76

WATER TA B LE OBSERVATION WELL

VENTED CAP

cf,orrr

r"rorT"uf,Th9ropnr

PLUG(8fi lo lOfll

SEA,II.RIGID H.ASTIC r*nJU#l$9ror",

Fig. 28 Scatter diagran of tot.al dissoLved solids VS conductivi ty . H E EI z t 6) H t) FI

c-n 78

APPENDIX A

Description of the stratigraphy and lithology of dePosits in the lower reachei añd east of the watershed

oldest Pleistocene deposits in western Manitoba are Wisonsinan in age and consist of one to two tills overlying bedrock (Elson , 1967). Gradual retreat of the ice sheet and blockage of northward drainage resulted in formation of Glacial Lake Agassiz. Although evidenced in an aTea of nearly 200 1000 square miles, the surface extent of aîY one phase of Lake Agassiz did not exceed 80,000 square rniles (Elson, L967)' Along the Manitoba Escarpment, near McCrearY, Lake Agassiz strandlines are preserved. The Campbell beach is the highest found at a present elevation of II20 feet above sea leve1 in the vicinity of Wilson Creek watershed (Johnston, 1946). The Lower Carnpbell beach has an elevation of approxi- mately 1080 feet above sea level in the same aTea (Johnston,

1e46) . At the base of the escarpment a black [5 YR,2/L) compact silty cJ.ay ti11 overlies shale bedrock. This unit sanpled close to bedrock surface had a strong petroliferous odour. Overlying the till and underlying the a11uvia1 depo- sits (Fig. 4) , a thick sequence of waterlaid sedinents was described consisting of well bedded silts with minor thinly interbedded clays. In general, the colour is a dark grey (5Y 3/L) but variations included olive grey (5Y 4/2), dark 79 grey (5Y 4/L) and dark greyish brown (10 YR 4/2). Because of their thickness, appearar:ce and stratigtaphic position, they appear to be lacustrine deposits of Glacial Lake Agas s:-z. The thickness of Lake Agassiz sediments in the loweï reaches of Wilson Creek is much greater than anticipated by Elson (1967) who described the near shore deposits along the base of the Manitoba Escarpment as an apron of silt a few feet thick and a dozen miles wide occuring downslope from the areas of wave action as indi cated by terraces. Within Wilson Creek watershed, all sediments attributed to deposi- tion in Lake Agassiz are found 10 to 110 feet above the elevation of the highest knor¡¡n beach. However, these deposits nowhere outcrop. A process of alluvial fan formation has persisted, at least since the deposition of Lake Agassiz sediments, blanketing them to a rnaximum depth of approximately 35 feet (Fig. 4). In general, the alluviun is variabl-y sorted with silt-size material predominating. Sub-rounded, silicerus shale fragnents are conmon. i: Aooerr.[,^)' t3 iìe:orr',ek'-r' loc.^{it)rr'-,, .ie'* Í1. .ard te:,tte l'\ci|,,le lÕ\1j.i 80 : .i I l:i ;n ì i?irz,¡v,ch. E\qt\q,c¡ho rcillr d ct fc'.l -hL\ftì. c,t lf,."o*.{.jt*ilr*uon'.^1,[err1i\r n o\ lccli clv'rrn. oi : .) slot\eJ hc{e, ô_f lll)¿- i1,r¡.:.{ | h.olè ìN' l' f,t I llh I i--_-- Iteef-.---¡.-'-.-l -in¿ l:,e,5 I i )t/,, 7 lir \, -t /,;/(r'/,?(, .lJ J. l,ro'- /,1, l/ß,5e o31,loi 3l 'fl : I I 1 '. ,a ft-R li\r, Ll(t/ /-) 7, $ zlrrrs,rìi 40 /ti I : þu'e\, "iDr, l .11 - r¡t-J /'.)h,oj Àili 50. 5, b I't+- t IVt?r,6tl,J/,r úl \t (7 ' I 4 i'',?:/ /,1-þ'.t,57 J /g .i ¿llrr¿Ì,,&Lc-|,/"v I J i 'P'l*1, lrr- u t41; ., .r- I 2 j : (Á 4 À3J, tt d3 .l f,l'tt rþsrs;ù'rl[ tçi I i 4 .e ,fi't ¿1'J0._1U, 4t v J -/lrrþsøe(/&3 \/. ,l/ I /,5 'Wr | t /,? 2'12., //, : -^7/ t\r"L t ú.¡b t / tf/7-/ Þe. / ),;.¡ 6 / þv/t615 i /ti td tf¡-I ,} i / ¿1)/1,tÒ7 40 J €" V,pt lltbrc-¡ìrr¿s /2ii.J I i I i 1;t-o io4-,47 nî8 /t. j,J J' t þszzà',!8 I /or I I Yy-,4 I fu) e ":6 /,?'li.'lf oL/ \-), ('' r i 'f3'.t T ': tf&-/ I [ustø|,t õ3/ /", I ì '/ Òl ',F(- / ?il,5?tl,5l3 fo J; $:, ' .-. '''; yYro,lfl I l"¡ I /r/ l /*',tr I l ¡l-U 4 /; - /3///3ly,sSs 7:?,J :) b' ..-.i -4'rþffitò, a3;tl f,p/ /7 li,] i I '[os't /ilJl,/ilJl,a, //r1tv 1 fc-: / 0o --l rþnà,I a3,3 | iî,,/ id I "J ^1 i 'a l /4s//"ß/,1,0Lt ¿/ \, ,. -{/,:,3 i /4,5 z /r , / w,i/:lß*I ff- : Vøt ia ,, ,, n! .ì r/ '1 v:5'J 'd1ti/,t fral a/ // ó'' V,tztry'a-ta,r I 6l .l \t ' ¡- ì I I ì ,/lt > t 4- ; , 2 lt ,4,04 (/ (ø'. ' .-, ;- 2li,;t'll,t;,1 Q"lõ i \./ lt- 4,Ji,, F¿r'tl .itb i i .i f6:/ ,lil,tt/71 \2U ú, ú, eVanrio'ó53: ú* i/ t-. I lonetr I - 1e '4, /î/"t,t'J,/51 /t;s' // €: y,n- /4rleoa,af 4ló'; ¿7 l i ió I ,> ,- :: -s /?/3,¿r,þþlt/i ù/ 6i 'l-- t 80 .l / v/ït,/x' o20 /o,i6 i I fun1 )t y¿,/270,ç'0,,J'Ti i trpr-el , -? 'í7 -/ ,-.-,. ¡ 3 .l , tV(trurþ #0 ,'l u) .þ j l I 1 J tr¿¡e'l /$F.ó/.ról .Jr 'fr-J ZI JT 6 \rl ': lþr,nl 8/,f i i6 þr ,l . ,ft- I a tptsf,relLl fî éi r a0 /0;'ié i ¡?rî,r i '¡ Pr'rlftrs";f lí,t t / t 'ii - / pt tr7ê4;:, ,3'l \2. .o, .--,,1. 2{D/-r I 3l oii / lö (õ1i, I I ltl _l i_ I f ,5'z Ftr À/Á þ lD, 6" --..i sþanrol oli ì v-vfiIrt r:;:Å ,r/'ó i I -tl 'Fr'.; l¡so-t-l t, v3fi.'/(r4 rt,Í(l ,f ¿l tl Vru, roll3s I,st .. ¿\ I YE' ti itl'/ li, n I 'ça-al / (/fcl:'rl /íq 7A -l À, 3, .:., alrrou,) i A) t_ I i l*0 i j 7z c-- i n' -¿ ,r.l rl 'riru:,r\ | l L {f vi,Vtt;u)r¿,) ,I /o qJ. ^t l.s,-tl i- l.t"/0 I 'iJ t 7á.t5f,-t. sl,¿ 6 I ,zfilr,roll-,1 b irt-'1 ¿i v. I' kt'.¿l l3-: -ì I tt I V,, i /r:' I I 4 2 // '1t ,74 t {to r ß1 \t i' .. i / iasali.7; I '(/t,,(t I I Yu-,1rrúty4 t: Þ,u¿ ltrl, tJ.?7i /Ò .1 Vft'l,lltul ,2" ,-: ? ii"3 ó, iI í !/5s5,Y4I' I Y,¡¿'a lr i -j ' ?/"gli gs,ø, 65r.l tô /,gi f (t+e3 ¡,fr.fßl i I f,o's Irrft,1,, I ¡, | ,t iJ 'fi/ 1a).t "r/'") ) "/ / trl -i,\.i.Yiif. // J, lí¿e- tVr"nÅ \) V,,V, tt. |, lnzii¡r -¿ ), rylry, 4U 6, l' Vtt (', íÌ' V;rtl Ii¿o : tlçur| rfü, ., l¿o j ii/î -/ i/i rYt,.7 n/ ll&*t''/', {2 i/,, i6/ i, Õ 3, /fzl,r)ipa:;QÒ , nÅ-,< /)'))) /t /3 'F36 '/;/J'{l¿/t r¿Ò ,, '/¿/ti/i"¿ I'i t. ,gÒ c) tt$/,li ,! :i FJl-/ /t./ lS z FJy- !.l?flry ,i' :. b 'í fitf,"?- (^ i!: j /,?f 7,,?7 1ô ^7 .. .' '''".; ! I

-- a ..-' i ii ,

I I ll : -i" tl ì litt ì I lt .i I 1.. .., -. I I ; I ii

'I ilrl ...:,, l.l ì l,ltt ': ' I

..1. -

l.l : I . :... I tt .' ': ?l el sþ W'øoÅ / --V:/ ?- I '1 I -c I ós lro'z ì, þh,, ',t'l f l0/+ lno'z ì, ú"- /¡h-, 1l otl ,l/ loo,zf t- llø 7l-Ç vsç Vo'o-ç¿:4 t/'L.71= ' ?l /t/l0Y V*otq /-îl: niþ- ):J-- r I s,' lðit'o* (/¿ f tø¡ 't tl /f/¿ l//'î/î/1 -/ -(,,/7a l'w ,t , -{tl t'ø brøl't-rH ?l I I tnÅ| I Tl9tloritlnr lu t¿/'//,- otr l/ 0// ?';'itI /?ì'4i L'M'y' l{/ l.'ô..-I l c'/'/?J/It' t.-tX- 1t-#) t þ"4I l/^Lr/ I ltrr'sf,7 l. .._...._- ... . . ì I I 'Àr tl ,*,,-.'. lrapuoz.;'¡ I8 I I 82

TEST HOLE LOGS

MondayrJulyTr1969 1: 50 F10-3 0-13t sandy, gravely, alluviun, abundant stones, poorly s orted . L3-231 grey, silty cLay, lacustrine ?,3-36' stoney, silty ti11 beconing at 27' very cLayey and stone free C0L0R (5 YR 2/1) looks very impermeable. 10 YR 3/T 36-40' possible bedrock cLay or silt lens 40-46 (sarnple'faiïLy taken here) -48' glacial ti11, very stif f stoney, w. c1.ay Ê silt same color 5 YR 2/L ' slightly more stones. SMALL & LARGE SAMPLE sanple e 46 ' has a dry appearance,r, very -stiff , brittle when broken, fine-rned. pebbles abundant. t 48-53-65' drilling is very stiff, could be very hard dry, t no stones. I bedrock, ûo stones , c1-ay rich, appears to be I fossilate petroliferous I I 53' Drilling slightly softer, ûo stones t t 56t softer naterial, drilling easier, no stones I t 65' depth of hole Piez is slotted 5' very dry in appeaïance looks like calcareous bonds of snatê F.avel- Formation? SI4ALL SAMPLE length of pipe in the hole 64.8 | 83

Monday, July 7 1969 11:35 F9-3 0-241 sandy, stoney a1luvium, gravel size

241 lacus trine si1t, greenish, occasional grits gerogenous, becorning 1es s green - more greI, calcareous, less iron. LARGE SAMPLE COLOR 5 Y 4/2 - but slightly more blueish 33-51' ti11? grey-black C0L0R 10 YR 3/L abundant coarse sand-sized pebbles, cLayey, silty (clay rich. 45-50' lower portion of the till is sandy, with snall pebbles, very little silt Ç claYeY. 51-65' probabLy bedrock, very hard drilling no ! ti11 instead.

1:30 p.n. - 2220 p.m. hole caved in about 10' hole dug 65r re drill hole to 65r pipe slit 5r pipe was 80' cut off 28.4 length of pipe 51.6'

2230 By the Farm F6-1 30' West F6-2 16 L/2' East F6-3 E.E. F6-5

0-15' s andy, graveLy, alluviun 15-331 grey-b1ue lacustrine silt with-twigs of woocl etc. SUnLl SAMPLE no stones, towards the last 10 | very greasy f1 sticky, very fine, ro stones, no Plant material. 15-50' lake silt sti11 LARGE SAI4PLE (Bottorn pieces of sanple polluted) 84

July 7 , 1969 2:30 By the Farm (Continued)

50 or 60r bedrock, possibly layered, hard and soft layers fine grained, non consolidated, petroliferous with calcite, carbonate spots and spotting, very dry. LARGE SAMPLE.

Hole dug 80 I pipe in just about 80' pipe silt at botton for 5r

5:00 F3-3 (close to the road) 0-25 stoney L/Z - 1 inch, sandy, alluvium

25-631 grey, silty lacustrine rnaterial. there is some shale fragments tending to become gritty. 63' till? no! its missirg, didntt observe arly ti11, therefore bedrock. Hole driLled 80' pipe silt for 5' at bottom Upper layers of bedrock very clay rich, unconsolidated with sand bands

65 | 65 = 130 20 well 80 80 sTS

July 8, 1969 11:00

F2-4 at Rain Gauge 7 0-Lzf stoney, sandy alluviun L2' - silty, lacustrine sediments, iron staining, ro stones, oxidized neat the surface becomes grey and unoxidized farther down, possible organic material 85

July 8, 1969 11:00 (Continued) 43' - hit hard naterial with the dri11, bedrock petrolifer- ous, dark, grey-b1ack, with white calcareous material. hole dug 65t length of pipe 66.7

11:40 Beer Bottle Park

Nest #1 F38 0-22' very sandy, a1luvium, with gravel sized pebbles, seems poorly sorted 23-631 blue-grey si1t, fragments of organic material trees -wood hole drilled to 40r pipe silt 3t till L2:30 -30' of pipe in the hole.

1:00 Beer Bottle Park 0-22t same as prevíous

22_ 631 rr rr rr

72t - very hard dri1ling, probab1-y bedrock. LARGE SAI4PLE hole dug to 73t (hard drilling, therefore stop) no sand in the bottom of this pi-ez, therefore hole caved in. length of pipe in the hole: 80 - 2L.8 587' pipe in the hole pipe silt for 5r at the bottom. WATER TABLE pipe slit 15.2' at the bottom total length 18.1

3:00 South of Beer Bottle Park Dug 25', hit rock 6 stop. 86

July 8, 1969 3:30 Turn-Around Spot on Bald Hi11. vicinity rain gapge I Dug 15t, hit rock.

4:10

F1- 3 0-17t sandy, gravely, alluvium 17-38' lacustrine silts COLOR 5Y 3/L possible plant material 38-50' bedrock COLOR 10 YR 2/I LARGE SAMPLE hole dug to 50 | pipe cut off at 50.6' pipe sliced for 5'

5:15 - 6:20 F5-4 0-25t buff brown, gravely alluvium, shale fragments possibly 1" in diam. 25-46' lacustrine si1t, mottled grey-brown color, f.airLy uniform C0L0R 5Y 3/1 46-47t bedrock, some fine grained shale, unconsolidated rest is petroliferous , dry, fine grained bedrock nateri al . hole dug to 47' p ipe length 491 pipe slotted 5r at bottom F5-3 Water table well pipe 31' long driller hit water at 15r? ho 1e dug 30t pipe s lotted 11 t at the bottorn 87

July 8, 1969 6:35 By Rain Gauge 2I F44 0-9' buff, silty a11uvium, hit HZO at 7t 9-22' blue, green, buff, lacustrine silt 22t - stoney, BrittY, clayey silt till LARGE SAMPLE at 35t the ti1l becomes very stoney' approx. coarse sancl size ! Pipe slit for 5r after 35r till resembles the lst varietY, less stones, veTy clayey, and silty' occasional gritts and snall pebbles. Color 2.5Y 3/0 56' approx. start of bedrock

59 I hit bedrock Some portions of the till contain medium sized sand pebbles length of pipe put in = approx. 59.6 Pipe slit for 5' at bottom hole dug 59 I

Thurs d^y, July 10, 1969 9:00 By Rain Gauge 2L F44

Hole dug to 401 (redug the hole) Pipe 40' long Pipe sit 3 ft. at botton L/2 of a 5 gal. pail of sand

10:00 by the 2 GS Piez near Weir hole dug 251 0-9' poorly sorted' stoney alluviurn, gravel size stones 9-T7 ' blue lacustrine silt Color 5Y 4/I 88

Thurs day, July 10, 1969 10:00 (Continued) L7-24' harder dri11ing, probably ti11? 24' hit bedrock hole caved in 6 I - put in L/2 bucket of sand length of pipe 40 -20 m, Pipe slit 3t from botton

10 :50 - 11 :00 well hole - 20'

11:10 - L2:LS Measurement l F4-1 29.r l F4- 2 4.7 l mà depth l 0-16t brown, very silty alluvial to H20 l material, stones not abundant. 18-36' brown, lacustrine silt, ilo stonesr â few gritts LARGE SAMPLE. Color 10 YR 4/2 shale fragments become abundant towards the bottom of the lake sedinents sequence.

75t nor,\r encountering stones end of hole in bedrock at 80' bedrock encountered 77' 60' - till - grey, unweathered' stoney - silty till hole dug 80' *?. ¡rr t 7TZ = final length of pipe Pipe silt 3t at bottom 89

Thursday, July 10, 1969 12:55 - 2:L5 Up Packhorse Trail before F7-3 0- 32' sandy, silty a1luvium, abundant shale fragments, poorly sorted, soft and not very stiff. Color 2.5Y 5/2

20-25l LARGE SAMPLE 32-541 brown, si1ty, lacustrine deposit, occasional shale fragments, continue down c0L0R 2. sY 5/2 to 54' - this could be an alluvial type deposit have red iron staining in the lacustrine sediments. 54f possible ti11 lacustrine silt becomes blue and unweathered or unoxidized as you go down. COLOR 2.5Y 4/0 Hole dug 65 feet hole caved in so about 58r left Pipe 80' long, cut off at 59' Pipe slit for 5' at bottom 5 gal. of sand and L/2 of a sma11 bucket and fine sand

2:20 Down the Right Fork on Bald Hill Trail F8-1 0-11r Bluff brown stoney, silty alluviun, mostly shale pebb les . 11-351 brown lacustrine silt with shale pebbles 35r COLOR Z.5Y 4/2, a brown silty, very shaley alluvial type of material material coming fron the auger at times looks like a shaley gravel. 45-50' apparently alluvia1 material, very stoney and silty. c0L0R 10 YR 4/2 LARGE SAMPLE 55-60r apparently gravely material 60-65r sand and gravel 90

Thursday, July 10, 1969 2:20 (continued) at 65' just penetrated into bedrock. C0L0R 7.5 YR 2/0 black- grey unconsolidated cLay the bottom 15' was a ti11 fairly stoney grey, unoxidized. Hole dug to 65' Used a pipe 80' cut off 23.21 Final length of pipe - 56.81 Pipe slit at bottom for 5 I 5 gal. of sand and I/2 of sand and fine sand.

3220 - 3:45

F8-2 q 5 Hole dug to 38 ' - hole caved in some Depth to Hro approx I2l Cut!ip" offry?t_4q: 5.4' length of pipe left 34.6' Pipe slit for 3t at bottom I/Z of 5 gal. of coarse sand Going to add an HrO table one.

4:00 Packhorse Weir 10' Stop

4:30 Move down to side of old trail across frorn Rain Gauge #34

F43

Hole dug 15 I stone hit, stop 4:50 Start again 0-23 I coarse very stoney alluviun materiaL, cobble q pebb 1e size, very difficult drilling almost like gravel.

231 the alluvium seems to be giving away to a siLty, lacustrine deposit. 91

Thurs day, July 10, 1969 4:30 (continued) 27-35r blue, - hit bedrock at 27' (porous shale?) coloR 7.5 YR 2/0 2 LARGE SAMPLES (1 sample 27-35' another 35-40') b1ack, unconsolidated shale bedrock, very fine grained. 35-40f In the upper 10' of the bedrock is more moist lower stretch or sanples become drier and petroliferous final 10' of bedrock is becoming very dry

Pipe was 60 I Hole Dug 55 | cut off 4.4' length of pipe 55.6 I Going to add a HrO table one pipe slit 5r at bottom HrO pipe = 20t lõng stit I4l 5 gal. of coarse sand and fine sand.

7:00 - 8:20 Near Packhorse Crossing F41 0-24r interbedded sands and other materials alluvial s equence 24t - grey, lacustrine silt very occasional grits the bedding is very obvious COLOR 5Y 4/1 LARGE SAMPLE fron 45' at 62' till COLOR 10 YR 2/I a few pebbles 6 grits, :rery silty, grades into bedrock at 70' 701 bedrock

Hole dug 701 Caved in length of pipe 41.8 | slit 5' at bottom HrO table pipe slit ten feet at bottorn Léngth of pipe = 201 92

Friday, July 11, 1969 9:40 Ridge Dam Location

F27 Hole some seepage HZO in the hole length-dug_251, of pipe 25.5r 2 I/2 gaL. coarse sand I/2 gal. fine sand. Dug a hole 25t - hit rocks Ç stop. 0-20' light brown C0L0R 10 YR 4/4 stoney, sandy, silty tí11 (quite moist) Z0-25' get ti11, slightly darker than above c0L0R 2.s YR 4/2 (LARGE SAMPLE TAKEN) The tills are the same, but therers color changes going downwards.

25-35' greyer looking till COLOR 2.5 YR 3/2 LARGE SAMPLE Color of Ti11s: 0-20' 10 YR 4/4 20-25' 2.5 YR 4/Z 2,5-35' 2.5 YR 3/2 Around 48r the till is grading into very soft, ETey, COLOR 5Y 4/I, ti1l was encountered very moist, only fine stones in it. 50-60r LARGE SAMPLE C0L0R 2.5Y 4/2 a light brown very silty ti11. pebbles are abundant. Hole caved in Put in sma1l pail of coerse sand pushed pipe about 7t in rnud

Hole dug 80 1 length of pipe in hole = 80 - I4.7 = 65.3r Pipe slit 5r at bottom 93

Friday, July 11, 1969 12:50 - Iz25 3t hole, little blue pípe slit for lt length of pipe in hole = 4.7' Length of pipe slit 1' at bottom I I hole length of pipe in hole = 10' length of pipe slit 2t

15 | hole Shove pipe 18r long 3' of holes Move farther up the hill

Hole dug 30 I and caved in

Pipe length 40 ' cut off 10.4 Length of pipe in the hole = 29.61 Pipe slit for 3' L/2 of a 5 gal. pail of sand.

2:45 - 3:45 Tried by Rain Gauge 33

5:45 - 5:20 Top of the Big Hill on Jet Trail down from Rain Gauge 33

F28 0-15; yeTlowish-orange-brown stoney silty ti11 abundant water COLOR 2.5 Y 5/4 15 ' - gïey, unrnreathered, stiff stoney till, does not appear as permeable C0L0R 2.5 Y 4/0 Approx 45' the till is silty, very compact COLOR 2.5 Y 4/0 LARGE SAMPLE Hole dug to 80' Pipe 100' 1ong, final length of pipe: 81.4r Pipe slit ft. 5 ga1. and 1 snall bucket of sand. 94

Friday, July 11, 1969 5:20 --6:00- On top of Big Hill on Jet Trail (sarne as previous one) : move uP closer to the road. length of hole = 40 pipe length = 40' pipe slit = 3' 5 gal. and srnall pail of coarse sand Move down a bit closer to the road - nake a Z0' HZO table we11. Pipe 7,0' long slit for 10'

6:35 At the Bottorn of the Big Hill on the Jet Trail Hole near Rain Gauge 11

F29 0-11' brown color 2.5 Y 5/4 silty till 11' COLOR5YS/L 50-60' ti11 LARGE SAMPLE, EreY, stoney silty ti11, fairly compact. Redug hole to 80'. lst time 9n1y 25t open Pipe-80-32.4 = 47.6 feet of pipe in the- hole use 1 sma1l bucket of coaTse sand and some fine sand 3 feet of the pipe = in mud 5 gal. and 1 snall bucket of coarse sand.

Saturday, July 12, 1969 9:29-10:05 gôttoñ of Big Hill on Jet Trail by Gauge 11

0r Hole dug + approx. pr.pe length 40r slit for 3t pipe length 2o', slit for 1or

I/2 of a 5 gal. pail of sand and some fine sand. 95

Saturday, July 12, 1969 L0:25 - 11:05 Further down Jet Trai1, West of Rain Gauge 10

F30 0-15' brown iron stained ti11? coloR 10 YR 4/3 pebbles fairly abundant, sandy & silty. 15-37' COLOR 2.5 Y 4/0 grey, cLay - till? pebbles are only occasional and smallrvery c1-ay rich, at about 331 the till is becoming very stiff, cobble sized boulders are being encountered. 30-3 7' LARGE SAMPLE rill C0L0R 2.5 Y 4/0

Ho 1e dug 37' Pipe 40' slir for 3t

LL:20 Hole #2 At Location West of Rain Gauge 10.

F30 Very coarse cobbles - stopped drilling at 40' , unable to penetrate, had to cover in the 40' to 20t anð. then put in an H2O table piezometer. 20t pipe Silt for 10 I

1:40 - 2:20 Along the Jet Trai1.

F31 0-16' brown very silty shale, pebbles COLOR 10 YR 4/4 alluvium or ti11? 16' C0L0R 2.5 Y 3/2 hard, shale bedrock, dty. Hole dug 35', unable to drill, therefore very dry.

LEFT OPEN 96

Saturday, JuLy L2, 1969 2:20 - 5i05 Mulligan's Creek, along the Jet Trail. F32

10-16I LARGE SAMPLE 0-L7 ' brown COLOR 10 YR 4/4 silty , f.airly stoney til1, near saturated with HZO. 20' hard, dry shale bedrock Hole dug Z5l Pipe 33t 1ong, cut off 7.8 = 25.21 long

LEFT OPEN

3:05 Znd hole, same place as before. F32 Hole dug for 17 | Length of pipe = 201 - 3.1r = 16.9r long Pipe slit for 3t

LEFT OPEN

In the last hole which was before Mulliganrs Creek on the Jet Trail the till was fairly moist but shale was drY.

Down Jet Trail Bet. B. Bottle Park and Gauge 8. F37

0 - 13 t ve ry coars e grave 1 al luviurn 13l Hole dug 20' An I{.0 table piez. put in Tlt long pipe¿s1it for 10 feet, 97

Saturday, July 12, 1969 4:50 Above Beer Bottle Park on Acces Trail F58

10*15' LARGE SAMPLE COLOR 3 10 YR 4/Z O-37' stoney, si1ty, alluvium material lower portions beconing blue unoxidized. - 37 ' grey-bIue lacustrine silt with clay c0L0R s Y 3/r

45- 50 I LARGE SAMPLE going downwards, the lacustrine sediments become nearly pure silt with occasional fine stones.

74' Bedrock LARGE SAMPLE about 60' the lacustrine becomes very silty and clayey again, bedding obvious C0L0R 5 Y 4/L

60' LARGE SAMPLE 74' LARGE SAMPLE bedrock with calcite crystals Hole dug 75' , cut off 10.6 - final length of pipe - 69.4 Pipe slit 5r 5 gal. and a sma1l bucket of coarse sand and some fine sand.

6:30 2nd hole here Hole dug 45' Lake clay at 37t instead of 441 Pipe length 50.3 - 5.1 WT feet long (Hro not in yet) 40r q 10r of s 1it. Pipe slit for 3t

7:10 Water table piez. 20' long sawed for 15' across the creek at Beer Bottle Park beside the other one aLready there. 98

Tues day, July 22, 1969 12:00 - 6:15 By the 40' piezometer. Deers Trail #A F33

Hole dug 90 I pipe slit 5 I length of pipe 100' 0-16' silty brown COLOR 2.5 Y 5/2 alluviun, abundant shale pebbles L/2 inch and smaller. 16-38' probable lacustrine sediments, sandy and silty brown and unweathered. becomes grey and unweathered, C0L0R 5 Y 4/L of the occasional bands of clay up to 2" thick, greI, night be present. 38- 50' grey-brown, silty a11uviun, shale fragrnents present, very difficult to decide what it exactly is. 50-90t b1ack, cLay bedrock, unconsolidated, gas sne11 LARGE SAPIPLE Occasional white calcareous? specks. Hole caved in, re-dug

- no sand, therefore piez in the mud length of pipe in the hole = 30.8' .

F45 Hole at Yakumchuk's Farm 0-13' brown pebbly (sha1e) alluvium 13-51r lacastrine sandy silt - blueish green in color brownish grey in color for the most part - bands of 2" of dark green cTayey silt - occasional grits present approx. med. sand size, lower down - grey with purple tint lacustrine silty cLay stiffer than upper units. 51*80' black cLay bedrock, pa].e yel1ow x line veins present, bands of light blue material 75*80r bedrock appears to be layered, hard and soft bands 6J1-7tt

Piezometer depth 251 99

APPENDIX C

Hydraulic Conductivity Data: Results of Hvorslev tests

Piezometer location Hydraul ic Conductivity ft. / sec.

-5 F1- 5 2.5 x 10 -8 F2-T 7 x 10

F2- 2 X 10-5 _'7 F2- 4 1.6 x 10 t

F3- 1 1 x 10-6 -o F3- 3 x 10J

F4-2 3 x 10-6 -6 Fs-4 3 X 10 -6 F6-1 X 10 -'7 F6-3 X 10t F7-1 x 10-8 -L F8-1 X 10

F9-3 X 10-6 F10-1 1.6 x 10-8 F10-3 7 x 10-o r

FLL- 2 x 10-6 FIz -L x 10- I -9 F13-1 X 10 -4 F14- I 1.6 x 10 100

Piezometer location Hydraulic Conductivity ft . /s ec. F27-2 3 x LO-7 -7 F27 -3 3 x10 -8 F28- 3 7 X 10

F29-2 X 10 -7 F29-3 X 10 -¿" F38- 2 x10 F38-3 x 10-6 _'7 F39-2 x10t

F39-3 3 x 10-4 _tr F4T- 3 1.6 x 10¿ F44-2 x 10-.7 t

F44- 3 X 10-5

GS5 1.6 x 10-6 -a- GS7 x 10

GS9 1.6 x 10- 6

GS 12 1 x 10-4

GS 14 1.6 x 10-8 -o F43- 2 X 10J 101

APPENDIX D

Computer program for chenistry computations

The chenistry program was developed to facilitate rapid evaluation of hydrochernical data. The program output includes the following

1) total parts per million 2) naj or ion concentration in molality 3) comparison of cation and anion equivalents per rnillion 4) ionic strength s) calculation of pertinent ion ratios 6) determination of activity coefficients 7) determination of equilibriurn constants for a given temperature 8) percent saturation, calcite, dolornite, gypsum aragonite, neglecting ion complexing e) calculation of concentrations of complex ions 10) percent saturation including ion complexing

Input Format Results of a single, complete analysis requires one data card. The following data is typed on the card in this order a) sample number - F 5.1 format b) concentration in parts per million of Ca** , Mg**, N"*, K*, I-ICOS- , SO4 and Cl- in that order - F 7 .I forrnat r02 c) pH measurement - F 6.2 format d) temperature in degrees centigrade between 0.0 and 25.0 - F 4.I format e) concentration in parts per rnillion COS= - F 7.L format The total number of data cards to a maximun of 90 is als o required imput, or a data separate card, 16 format.

Thi s information is the first data card preceding the chenis- try data cards.

Calculation Procedures

Comparison of cation and anion total is presented as a percentage, €pfl cations/epm anions X 100. Ratios calculated by the program are as follows. RA = lca** * Mg* )/Na* ¿¿ a+ RB = Ca" /Me' RC = SO4=/C1- RD = so4=/HCog- RF = Ca"/Na'¿I¿

RG = HCO s- / Gt- * S04=) RH = HCO-- 5 /CI- Percent saturation, the ratio of the ion acttvity product and the dissolution constant expressed as a percent, are calculated for calcite, dolomite, gypsum and aragonite. Activity coefficients for aLL equilibria reactions are line ar1_y interpolatecl from graphical relationships of ionic strength versus activity coefficient given by Garrels and 103

Christ (1965) for Ca*+, Mg**, HC03 , SO4= and Na+ for 1 atmosphere total pressuïe and ZS"C. Dissociation constants varying with temperatures are as follows:

Temp. "C. 0.0 5.0 10.0 15 .0 20.0 25.0 pK calcite 8.31 8.91 B.SZ g.S4 8.s7 8.40 (Langmuir, IgT0 written communicationj pK _dolomite 16 . S T 16 .65 16.TI L6 .Tg 16.89 17.00 (Langmuir, LgZ0 written communicationj pK 4 .7L 4;69 4 (Cherry,1968)-gypsum .66 4.65 4.64 4.62 pK aragonite 9.11 9.11 B.LT I .20 (Berner, Lg67) pK _Þic_arbonate 10 . 615 10. S66 10 . 488 L0 .4Zg L0.376 I0.329 (Back , 196I, 1963)

The following reactions involving several metastable carbonates were also considered

Magnesite: MgCOS Ì Mg** * CO3 Huntite: tg, ca(coì+Ì sMg** + ca** * 4co3 . Landsfordite: MgCO3 SHZO I Mg** * CO3 + SH2O

Nesquehonite: MgCO, 3HZO 3 Mg** * COS + SHZO Hydromagnesire: (co Mg* Ð s oïz s1zo ? 4Mg++ * 3CO3 + ZOH- + 3H20 To obtain saturation percentages of groundwater solutions with respect to the above mineral species, ion activity products conputed frorn chenical analyses of each sample were compared to the following dissociation constants at 25"C. obtained from Langnuir (1g65), 104

pK e 25oC magnesite: 5.10

Landsfordite: S .46 mesquehonite: 5.59 hydromagnesite: 30.2 huntite : 7. 80 In all of these equilibria calculations, the effects of pressure greather than 1 atn. has been neglected. Sippel and Glover, (1964) have shown that variations in hydrostatic fluid pressures between 0 and 6000 feet cause calcite solu- bility changes less than 1 percent at coz partial pressures of 0.1 and 0.3 atm. Concentrations of complex ions were calculated fo1- lowing an interative procedure again outlined by Garrels and christ (1965). The solution was found to converge within the ten interations specified. Percent saturation based on the concentration of uncomplexed ions is recalculated for a re- vised saturation value. List of variables:

PSUM total parts per rnillion ++ CCAL concentration in molality LA^ CMAG tl tt tt uel* CSOD tl tt tt Na- rr tt tt CPOT ¡ç+ tt CBIC tt tt HCOg CSUL lt tt tt so+ - CCHL rt tt tt cl- tt tt tt CCAB co s= ACTCA activity coefficient LA^++ 105

ACTB I C activity coefficient HCO5 ACTMG rtil Mg** ACTSUL So+- ACTNA Na+

BKA equilibriun constants ranging from 0.0 q 25.0"C calci te tt tt tt BKB tt tt b i carb onate tt It BKC tt tt tt do l.oni te BKD tt ll tt tt. tt gypsun BKE tt l? tt lt tr ara gonite tt BKF It tt It tt H2CO3 BKG It tt tr tr rr coz BKT temperature range 0.0 to 25.0oC BKS l? tr Ît tt tt

EQCAL interpolated equilibriurn cons tant calcite EQBIC tr tr rt bicarbonate tt tt EQDOL tt dol orni te EQGYP It tt tt gypsun EQARG tt tt tt aragonite SATCAL percent saturation (IAP/K) calcite It tt SATDOL tt do lomi te SATARG tt tt tt aragonite SATGYP tt tt rt gypsum FCAL concentration in rnolality of free ca** FMAG tt tt tt tr tr Mg** FSOD tt tt tr tt tt Na+ tt tt FBIC tt tr It HCO3- FSUL tt tt tt tt tt so4= FCAB tt tt tt tt tt cos= BD 13 values of activity coefficients BA 13 corresponding activity coefficients Ca++ rt for BB tt tt tt " HCOs- BC lt tt tt tr il -'òMo++ tt tt rt tt BE il so4__ tt tt tt BF tr , Na+

SMAG percent saturation (IAP/K) magnes i te SNESQ Ir tt tt nesquehonite tt tt tr SLANS 1 ands fordi te SHYD It tt tt hydromagnes ite App"nclix l= Ti¡bulqlion .:f <:lneryrrccrl crvro/ySeS irrciuct,'y¡q s¿,-{u.v r.t{ i(-,r, .lrT.1 J iorr c.hcrrx3e . locrlqvrce,

l

trrutau I Co+t Àicrh 'ÀTE HCo* 5ûÍ= TEHP, CQr. i /-¿1c/ r¡oty' NL'. ,c ¡HCO.'. jt Ct.- j ¿l ô,4,//7,P/.¿ rAl -_--i------i I A)t 5¿¡ ó?/, s J,tg,o )?.¿¡ ¿, /ú7ço,t C, I t,6 ",?, { r I z,llt /r o Ð- 5 o lrue,oi ó g - /o/ it,i /t, /{, û,37 ¿Ò3, 670 J'r I t-o¿ /ö o I e¿t.t) D-5 r /j/ /6/.0 t7, b /1, + 428, 7t0 g, l,ól Q,ó- I /7, /ó. o I prtri D-.t ,r ß¿ /8,, faz I,t ¿,Q "750.o 3t, o ,3, 0 ll8, st, /2,1 o ol D-g l;,ta, [. /? JV" Q, /t,0 /0, Q, tî dlt,0 610 4, / ó- lf, ast /5 o v¿/,Òl t)-t 7 /(,/ ía,p tf,¿ //, s a,{/ Qfl,0 7?, ô 4,î /f t)-.f g lg,Jtt o le*l //7 3[.0 úJ¿ ta l,3s &Ò 6/ 4.î 1r.36 /f D-5 / ldar I ? /2 f0, / û,/ //, { 4,/? &3p. 6.? 3,t l t.¿t /2 D--5 8 llk, I /0 /t2 fo.3 /t,2 /3,/ J.4a l/a, ,fl 3,ó- lv,3¡t 6 D-s J l¿rr I t/ f¡, l¿ ¿ ry./ ß.7 c23/ a5Ò 6þ' 3,î ig.,J2 î /o D-s laø f /4. l0'/ f), t Po,3 /{,1 Q,5s a2Y, 7/ 3, ô lg, /{ /CI D-s la¡f l B a'2 ¿d.¿ /27 4,5' ó8 í¿f l6i a,s lF.er¿i /r 2 l¿zo I D-5 // ùJ íJ.6 1/,7 0,/ Q,7a îøo át J,0 lr,¡uti ll ó l¿¿¿l />5 E 1/,/ ft¿ 4/, y' /ct 4,?Ò aóé 7g p., t, ,zti to D-5 I ¿ l*tt ! /4 /at ,fl,t / /6.o p,7¿ {.5 D-3 "//, "?68 tf lr.34t /./ 6 l¿zY I /7 il6 Ò t,to 1l,f J,?, ú,sc- 7/ *,r |tr ,*oi lt r l¿¿-o i D-s 4a t/ "ll,/ .a (7 /g ó/,7 dí,'/ ¿,!, 1, ò' 83 .¿5 rl/ r "¿ó'7 lt,r¿rl I .r l¿¿" ! Ð-5 /r kJ8 t4, J7. / ú/. / 4./ to ¿7t r/ "1,0 | f, lto I t¡ o D-s lzzo i ,?6 tul Jg.6 t/.3 4tt 4,t,s t6t s7 "t,Ò l/,to7i Z ? o løri t)-s 4/ Ø/Ò 5t/ ,l/,7 /Z¿ &, r( 27a 77 õ.ô ¿¡sj u,s o t,azz D-s lf i qd,4/1 ,1 t! Ittt f,l, o a¿ //,9 '.1î l7Ò 88 ,45 I /4,5 n-t r*îál / i t)- lazl /r) k)/2 64, I P/,2 /2,, 3.0 7 p6( D-5 t/ e,/ lt.æl o'.¿ Æ iQft i {r tù/J 5e, / a/.8 /fl¿ 4,rc 16? 7o J.0 8.Jsti ó- D-S | î"2 iau i ?f tùt / ¿0, &.78 D-Jí ñt ? ß/ olTo 85 J,o I {,/sri / iaryi I ^ {6 t,t)/5 57.r P"?, / /l,J 3, /J orlf tò oJ,o Ì,[!|| ,l"r D-5 n-7 I 8 ip#i ú/ rt tó 18,6 dJ, ç /á,r- Æa i D-¡ ^1,/,1 % ,v.ô I e.éf7t // ¿/ lli¿r¿ ag l¡Jt7 6t, I ît, t 18, / oj,ô7 62 7î G.0 l. îØ/i la,r ù5 '? 6 !4$ I t7 /,1/g )/, €/.7 tu= -{ D-s; / tl¡ J.u 4ót 8,¡rsl /tf Þ i.,J7Ò i JO /u/l f8.l Qg,7 úÒ.:l 3,/7 Q6/ Eq srrcl/t¿ 6 iae z' Ès at aQo í8,/ d/,/ /(,3 4,?/ a7¿ 8/ f,,noird/c.l tq/4 ö i ,?zz, D-s i

I JNÉ i a!/ ,15.0 /(,/ tfl¿ /,7 .1 ,?07 l"j I r.ilpãl.í/;tS /f.5/r. 0 D5 ¿) "/t7 Uí¿2 #t.s /þ,1 g/ /?¿ t, t) t,2i /,0 /, JS i tta ¡'*t t(Ë D-ô' tù,!3 lt, c- //.a, s.7/ Q,p5 ',J,10 60 at 0 ¿.?() ùs 4 is,/il; /¿ î/ 46, î /28 fl/ 4,eo &Jo óo l,aloi atc-p¿ ,/.- å37 D-r ir,api i Ì -1q7 _ t ) ,l ! TË l5At1h\Lt f'tt rrl TEflr? c.o,; lHcc- ,(ocrl¡ra'tl ø' No. P i ì i i la( ¡ ctr" I !Ë i -"-- ---f.t."-- I lt 9?nP¿E /)- n a,Jl fr.5 /t, a &. '.o /ts {,/6 dJ 5/ itotll*ot1J / l,2t; D-s ) taJI 5J, / tî/ /tc ,(,6/ 6¿ :J/7 | ¿'t,:1,2 { D-5 "25¿ | la¿o 7 tU,,¿7 P/,5 /é, 6 lru ll, )- d,3l ,!tô óø 7i11 2 0 lpa o D-5 'I 4// tì -7 .- l,nu ) úp,l þIa c(L l) /23 l6s d ,/J 68 ',/3ol" l/t,:7 o þr" Ð-5 i p? (.7. tu t; .?!, / /1, ¿ ,l,ll ,?76 7,J- tu¡lI aa.5/,ó 0 D-5 I 147é ) tÐ 30 dv,reon/ !./,2. atÒ 6r, { /f,/ lÖ ß¿l /)5 4 l;¿ fo D-s pç, " lpa iù3/ 7C, / î /?, 7 qZl T J16 r? :"?¿61 /f70 ¿ ú D-5 'a | þrr { iljJ 7t,7 ,W.8 J¿.I {,r 4 t6 "??0 /¿61| /2olo 0 D-5 2 laro AJJ t8,,t aA,,/ ,?0,9 I'la Jfo 7t :al/l" rc:s'ç 0 I | ¿ro >5 p,/8 '1 L- luJ/ /0./ l_71 J/,2 rl/ 8/ , tfsl ir) ¿ D-5 p78 læs l"??/ 5 a35 zt./ ú¿7 4/, 3, &3 Q,?,710 (. D-5 / /f I I 146 6 þ"7'( 74,/ "//À ,1 aJ,/ l¿t ;],J? ,¿&g 8? "10 ç,14I Bo.,).9 4 lpzo >5 '7 /)n '- /) /og l ftó a a,? o(1, J 3, // "?78 r? t,pt|lI at."t:p 4 L¿r¿ D-5 g aJy {3,e pJ,8 Qz7 2 2As õ, t ?t ,w4 ,e,i o,) I ¿ro D-s '.$A| ? ú).),/ ál/ âî.6 4!,6 3, /É prl r/ I t¿s,.5 D-r ^3 latr t) Lu)/Ò 6/,/ 4J,.r p,?,1 /8 a78 y) ,fi1 prt "J, c I D^s ï lø uy'/ 67/ ,Æ,/ J3,/ 3,tz pt& 78 þrl é lft D-5 g l;¿ 2 4p.o ¿,8 '/,d aft 6t? I /(, I dó6 ó6 Jtû1,lat.r / | D-5 I "¿lo ') p, ) lu /¡ 7"1, J3,2 Jl 2, 3,çq r3 U.o , /)-f JîI alrlit/.0 lar^z /,/) rd ¡ )?n / // v/tu AJ,,? e,t, t 3.ff t??/ /Ò ," /t/1, o () D-5 I ld3. I¿rr ) ût 7J, ,20 /; /J t ''t / el/ 3,35- d?Z t/ ,Æ1 /20 ô lprz D- þ- : tu 1ó #/,I 1.1, f 2 /,, /,7[ /óo '74À',QloYo 0 o 0-5 / "(7 ltø g -t /).,1., 4 ll rr /"1, ¡ /,t, f.3? ße 4C 6ôÒ1,{d,44,{ ^ ¿ tt:, u-b 7 "?.î3 I ) tufl 13,/ /6, b,tJ Q,/r /6[ 3S () / 7 74,"?/.0'/.0 i tøa ò-s 7 t//(î 58,5 /t, / l3/ a,ry /72 #ô ô/01,/roVo o I tzz ù-l ) (, gf p6 /u5 D (lr H8 /.76 /t6 ,0r1,¿/,T,Ô ô 0 Irca Ð-5 I J I )) --j- LV o I tù lJ3 1.70 7,5 f/ //,7 ¿,/ /t( 36 /. /0//0/1,1r,¡ 0 lua D-5 Wst ,il.8 /s8 õ,c /,73 &ûÒ (/ r. //¿ 4/,1t,"? 0 Ò-s pôF l, i l*ö-, /,U53 5(, s /7,1 7, I /,7x {/ //8 I '3 n Ð-5 I /tt "?3" I wcf tiUSf /ó, &.ô t /Ao /,9,3 Qto r0 /?r/?rl"å,1,?,xi X. 0 ùs n/i;s l*,a l I 50,8 /¿t, / &,9 /, 7/ 8oa lf /ó/r ttlr17' 0 D--s-' I L .J/I ipo¿l ltu 5á ô-ú,/ u,8 /0" 3 ,X ', pttt.ú 9l 4// 53 /7é//élá I o D-s "?rj I i.?//,t I /5 I At- iøs z fÒ.7 85 tr,ó tUr) aö8 50 , /lôi./1, &lsrr-i () ,{t,\'I D-5 , ilo 53 {0.7 /t,? 6,/ /,4? /tro 3ö //8/lgl,i,?/.¿. ssi'l 0 ', ßo! D-5 itd 5? I i¿() D-S; tlr /6,0 tr,6 4,ô6 &ô/ #t ?&tv&/l ,^'/. ! o /! :lri{o : 56. s /z/ /43 e.al ,?á( s7 t4¿'#¿1"¿o.g ã i,-j 7f', D-s I'lon I tû6/ é,t 0 y7 ', i //r //, 7 ¿, 4ao 63 e6?6t1"4/g ,¿ tx.á..1--. I D-r ,u/ó2 51, 7 / 7,3 //, / ,f,50 p33 ót a,? e \"psf ?/1"{/. i D-5 108 .- -._-t ¡ -!-^..-...-.,-.- - i" I :t ¡ATe u(t+r I lo(rrro, i:iAtlrlLE lt t13*t Naf trn. i U),' I rttlc:ö, i N0, ,l I I Pt1 i I CA: I 'ci I i or 6nmP/-E -t - - - *----*,1 ---f *--_- .:.Y1 r"{LV I lrc - J i3 t'U ,, t7, ti, p, â38 Qt2 D-s i 63 5i,iT { z í3 f,ao I I ó l¿ I I "&g "2/s | I Ì /r é{ 58,,?l //,3 /3, 3 {,5t/ ,1ls ¿ra t. rotl Ò .7/?/3 D-5 itu 4/rl t; 3 {-I ß,5 ¿,68 I .¿Fo2r/o /5 itu ó5 58, /7,3 ¿37 6F 8,3{6 I .?/3i / 1o-5 I i /6 i nt¿:e .tff,"II'r 7l /28 /33 il, ¿î 4tr ÓZ Y,nzl flf. ¡l t ¿/l2/l I D-f I

llr'67 (( I // I t7, /t,g /3,y ¿, Jl¿ rî ,, ru, 2â¿[email protected]/ D-¡ i 'róI // I lo p,6¡ ! /{,/ Jó, I /il | óg ;/ 176 /3.7 J/g 57 r.#/l ¿l¿l o I ¿/82/8 D-5 I I ',/ I /J, a,6g 44 t/ -4.1t.+ I D-5 /? u6f 6t, tZi / da( ó-7 r.?s/ I lXX.)'X.) I I "ual / - ¿11 2n,2 4.¡ l0 lút70 J-r, ,1,70 dd4- Ú 4,4i11Ú4 D-5 '4 /6,f /3,x ry t, nol "?J. Òl ' 4 (/ a7/ 5/,.sl /¿,5 /1,7 ,2¿/ ,!/¿ r/ f, /?21 pü lo I å/áo(/?/á ù5 I /3. I /// D-f a Ulz 5/,,-l3l t7,4 t {, le tt( ^t'/ f, #o! a6l ,? {/6{, \O lu //, S, 20,â6 73 t4, t /3,6 t, // J4¿ 5é asol arl o 2â6 I D-5 '") | I i /l/ 7ç ',á /7,7 ô .1,lo i 6¿, //. I a,óf 4/0 f7 8,2lfl a-zt I Clod1 I ùr | /O -t .4 t71 -1 ró 75 étt /Í:2 d7 a6t ó7 s.4//l .?A, Òl ¿ I¿6¿¿¿26¿ Ð-s vu !,1 'dó /) I ?¿ itu z¿ 6J, U,O it2 f, /681 a xe 7"¿ D-s J,N /a 6/ 42úl zlz I I a. 27 I utr b7, nrli ß,¿ /"7,0 {,7 r Jóo tó r,pßl),d ¿ ,?/"f 2áo<-t?áo />l t I I 4//)t1 4 lu lt 7Ò, /fl* /26 4,?/ '6r 67 Íi,fzr8,f¡ 4/./ ð !¿ã o¿) D-5 I | ?î 477 /4,-.1 'll.J0,ú ß,rT J,d & &77 7t f,aaolf,a; d/ lo I ¿7)¿?77 I D-f 3o i,/lÒ 7s.,,4 &0, /28 pil l.q po. D-5 I / 3,a4 8/ t.p06l rl o Ð82)78 /1 '/ plc /'/ t)r r,arrll,â: o I 2&ð /t Y/ "xa 2 /îs 3,0? "?trÒ 76 ap,íl J, tls I I ru,( I I 7f,7 y,oldly,0, I l¿ J0,3 "?¿,9 3,-lo a7/ W e/.rl t ,2Vl D-t I ltl, ,7_ gó a?¿- iw, 75,7 JOt åt/ 3.? ãt r6 n/tr,/i TlBr 4ò L) D-5 .? p?7 lô I pl0 8,/ I 4?7 D-¡ "2 ltil,3l /Ð,J a/,7 3,lt l7 f0l {"t pq{ lo I f t,,8s 76, á d/,6 &,3 s./á 81 8,&, /ßl/' .?¿ io Q? p, D-5 J- gó 76,7 a/, Jl, o-î;fl t,8,4, I D-e IW¿ / I 7/ apl aa lo I r2/ ( p?s"9f l,u,ft 71,3 4/, f 3,60 87 t.,st.tf, ,l aQ 2r3 | 0-ç "?J,/ lc l 7 la t8 76,f e/,6 3¿E ð, a?8 8/ 8,1ûô-l8, l, Q.?s | 0 I plt I D-s ç ,1,7,2. I o Ir'il l'/t å0.1 &/,, 3, JH I7 8t;Yr-to 4tlo s¿.zl D-l 1 i /u) lwr?/ /r, / ,t /,/ ,?3.¿ 3,16 J?8 zrzzl7,?) /^t/i o ¿2/ | D-5 rÍ I 'o4 I // 78, / J/,7 !3. S .3,70 a?t E, /, ts, ð pf/ D-5 lw ?r s.ßll c] I | /"? I l,u''?3 78,ô- &/, 7 o?3,J /oa 3trz /ü 9,"8,4t7 i6,o I I Jo¿!,D-5 s 84 I tJ l*'', 70,? /?,î 43. J 3,8 p80 ?e 8,t7f8,/ /7.6 I o 4tro?ro Il, D-5D -5 lrl .'l r/ luç'rl 7/,5 4Q.t 43, / 3,8t) J80 85 r.473i0.4 ,ztl a I a,lez1e Ir, ø-st>-s I /ú/ i /ç /4, z"?,0 J5.7 J3. 8,J/ói9,J,, (7.0 toe- i D-5 lø / 3,96 "??8 å7 ! / ! ez iD-5 I /6 ttt, ,1,23 I 'i l>-.5 i 7t u,g !3,I 3,lg e?ó 8B 8.sstt,3.s, /zs i r .+mt3¿a ,?g p/6 I /7 /,?,0 3.7Ò ?3 8,J8,Jf/\, /zs i# I lø "?a./ "2/Ò i I /8 ,fl ! ,",217 p% U,/ 76,1 J3.2 3,82 V¿ 3,393i3,3, /8.3 / t/r/) i tl ll/tUV ,lc) o 4/ /, J3, !. ,3,82 a?s V¡ 8,Qtoi8,& a"?,0 i 0 /ô/ ?o i,' 7r/ â,?,I JJ,p J,g6 P8"7 lt l, Jó4J¿ o2¿. ', 6 c?flyi D-í i-l ilti ll ii tltt lÌ il I ta (- ;cÐê r0/ i osf ),,olr-'of 2 þ-( i ¿i Ål 7/r !2i-c7t-Ç cr/ /t t/-a ,ç | ¿'tt¡i o¡ tri ot't s?/ë n ¿ rre 4t¿ ,Q,C .^t 8// l,t*æ i/'a"l l/,te )d þ-( ¿' /8 ctn t' rct¡ r 'aFo, ziv7¿Y ¿ö 'tç¿¡'"-*'t'4 I /r!'t I I 8// P Q) *-ø ri 8g '.Q'î /'e4 tt7ã 7¿ rht¡ lzi //¿ /'u iuii/t,+ Vîà I ,?r, I I c7/ it ztzyl /?t þ-( ët rl I ?+,! lwr /.0'î I stæl I ,+'tl/+'/ 7 7/,/ /¿ asui I ol,r 7',?,r'1,+r:c i-( r I ¡rtl,+'fl f 3¿ h'f I €'?+rl e'n / r:c su 7ë ê0 '/nâ')\t1r þ-( orii s'l'fi, P I o;#l sa cls l, w làr olr 1e ls /4 ef ,r( 0 | _cariir¡s'À 0'g -9ot l,tsæ 7o'r Irælzo'or l77',{T {e îu /r 'n2ç /-( 77 o'?' ioll,st, 9'Þ o// ¿0? sin" ls'o¿ O'N r/d Eë I i i ttr I lorc (./þ/ 1r.v ,CF / -v 708 u(), ¿ /*ç /a þa 1st il-raç'sl /at I stF /'oels'e l4/-ç rt 0 '8 /707'.8 9.P '/)rþIJU g'81 ù_( s'8 lt 2ß I lst lr'(, I t'of lë ot, I s'gr 0// tå r'-a J ;'0/7/ 0Èç>.,ß 9'P ó¿ ó8'ò' t 4/. aà s' lo, lur I t'rfi sa I 3lss¡s // f-0 g'è/a2 góë,rg ,l ,r;/ë / ð PI is, 0'? /'ó ?, /('* rnrl 3'Í,t 8/ /j T flt )'9 Isu lr-(/ I 99'ëtët!t//'/41 0'c o-{7/ 8€P ¿8'F 8'orl,ç lft¿ lf'ëÇf 'ëç // ,9/ 'rt ,/ | þ'0 I çst/ lot1,a",asl _9',F só 88d ot'å I T'lP I ,ç'o¿OP I t's, ,t 2'sc e/ // þ4 2 órl/ iz¿,7/t' 0'c óK lttr oß'à I ou,lyo,'0tr ,l Ir/r'tS r" S/ 9/ þ_( U ^ 0/ Ut,#/', -9'¿o /Í 8 Ì1å //'è I s's,l,tç¿9f I'f_ç I { ,g ll't-c ld Þ-a /,(z g/ ;Ørzlti sr o3 2ø so'/., '// lsc c/ tt tA É ltss lo'' lt ^Hl, "çiolTtud. '' I ! t-__ { tt I ,g 5 2/' I Tltg Ir+l' ht,fl I eel i î0/ | ¿t'tl r/'/' lu'/ €¿ I i ó7/ I t '9'9' l,zor út;^l t2 it, %'rl I 7QE l/ 75hl't'J e¿ eal 38's 7F it ,14 ç4 z l I z'tÈt ¿ n | -ç'ë'ß lv7t//, F ç-0 t0g O s'// /roQ't go/ ?og lg'f t'ti7f I s'rt f//t//fill 'i Ir"rrl Ir _td3f I i I I /óæ æ(/ y's ',Þp l> ,lrl4 9< 8l/ btt /¿ sóF ó/'gl,'r,l r*QU t'u1',It/t /Ê l ,/twl 9-a 2af a ó/ l'g ó,3 7OE à8'r' 7f, it,/// t nc le'æltn I /rr:'8 lolB e-8 ilc P /P i?rry ¿/ 2ó /óf ¡ tr \7F87, I tü/ o///40/, /ö rl I .lY 9Q cl€ S/ is¿c ',æl , r,/(, l, Ø/,,'1,r/ 8ë I t- t8 /ó ?r El'r lb ,t ¡'?t it¿ I 9-A /// O t9/ tl/t(.'/ | .t,ry| /k 7¿ /// 8/E I o'r l¿'¿ët l- -/ i8,lot, Lí, '7a€ , j.p "'r, cl.a Ç-ç 0 ë9t lttoQ'9 zAt lo r /(/ rr af só r+ l rrl /'/¿ isT r /tl titnt' r/.xr' i/ì '-P,'l- 'f.'y /r4 g,n,ol,ù, c.k ç-( 2 i cxr Qt?t ?4c" t- I /t¡rl / 7¿IU lsrr ,nl JU i a; ¿-l 7,?î 0 I I ?/F l¡ 'Q/r)i'.11 Jx or* i r///'g 30 roî W't+ l t'trl t 2 io'Er l- 9Q, I ,r/n i 't, I s-Q / Qt" '? lé/ isrtr'r /Á ot/ I r çr'çt s lt /ot:C/,ìi;) çt I -Ç¿r ll'c 'rt',3 I f"( i>+t: /0/ 7'/6,

I\TÉ s'/ì11PLE Hgt' HC0; , /.¿rr?r rttu , l-l il.¡e i [n- ,*l/, N0. Iru' l j: ,llvtr l_t Ç":=-:: '1./zt{â I let /a.s /ó,3 lM l"r¡- ftjo|otao.4 () 2-4 ry," I lrua 1a '¡? Ê¿o A ( /ã''{ 1.5:5 /ya I 3r"/ I as r,øoløoln,,s y a iiz¿ i¿2-4 z¡V lpt /t. o /z/ 307 1 ls atÀ141/n I 0 D-4 I l;ar 1,, ft?/ 16, ? /t, 7 q?pol óô ,3/|1 .?o o / D-4 qzR lr,c4, ! latT¡o' t los /y,5 .t-zY I ?o ln #zltrzl oo, Fl 'r?fo l o'D-4 i/.tt 50, ó /'/ ? ,çr¿ D-4o I zl V uo/ø/¿a.ri / lare I 7 6 /,3 /.# t,*fr 2-4 lpç, ely I // rnlrrol aa, ¡ I 0 t- I l'. ¡ I lpE '¿3, 6[, Ò / 4s'/ I Z6 lf.'?r4'?r¿lPo sl U lp,rr I D-4D- o Pt/ ,!/ 7/, t / {y8 I S7 Ir,trÀ:7 7l "ø.c'l I D-4 ,Ò () /¡o /0,/ 4a,o ;í21 ro6 stf -tt, o ð I::;1,;/>4 4n.t lr,sfi I /¿t 70,5' dq/s2 i¿/ I 7s V.sarla/F/,o / lsuloD4 n I lsz 7t,6 aJ,l I 7s î atl aa. 3l f D-+ t.7 'g/ lxsatl lasTlo J rc3 7t? wb &sá /05 tf,stol1?ol*ot,P o-D-F 1 / I'teo I ott / A'q¿t) /1 r ls/ /p,6 -?,f8 /0/ V.s*wtlpro tl I (/- þøa lu'ò-r CI tr /¿s 7Æ qú, b &r7 /0a nzrl aaol () o'D-F t/ lrnrl l"lt c ¡ Ø ls¿ 7A2 ,4J, v qzf 3 P- to/ le./,r4ral/í, r I J '€sel D-+ 7 Pst 7/á a3o aáô //7 srlt36/¡a4,31 .2 o'D-/ ,o lK, lp¿z I õ fst //,ó- AJ, ? e(,2 /ls />y rf {,Yal'atltø.sl I r la¿r l, Psf JJ, .?lÕ () I zlr /03 /t:l l,^r¿à D-/o' 7A V4!34 Pro 73, :23, 467 /og V,3a,9l3-?q /s / l,e zr ,-D-f z/ i l o t2// 7¿ó ,43,/ as¿ 7& ß. rzàfzà r? I F D-f 7? pe6 |"á f lD- h ( {6ó /ra 7p, /ô3 I o^Ço- V,ryÀrrÀaf;o r Bzo I )2 lrs 7t6 CJF á2 /Òt lLts)*) tu.zl / a¿r I D-yo- T P// 7,J, 9se 36a rrsl ps. D-yD- / to3 V,trsl il "2 ^.¿/ | I fus 7t).7 4J, U rsel o'D-y ""?6ö tt{ t. c I f Plt I )/ ''{,utl U r/6 3fs /J,a /72. /-7 ¡z zrsluozrtr () tzz I o-D-4 )? ply I 0 /as i,t, Z /fg 38 lx oroltrl ir,r o ,rr D-lo' I I a I pÍ I ftf /¿,; //6 /7e ¡tti ¿d./ o D-4 I Vrrol ! 4z lo A /.ro J?.,í L.t ,ra I tîJ õ,2. r o /rZ, | )-4)- {'uaii"tc I ,LY ltti ll ii I 63,6 A I /¡t /ó ,l ryt l/ tfii a¿ a U Ð-+ V,/r^i I i,rt t /,f,2 / poó l,t'assl pt."t ,10( 112 //, 6ô usl i 4 þ-4 i i lss ) ó/,0 /9,7 &&/ 7z iS,"1o¡ito/dt ¡1, ú l, 0-4 I '?'t/ I I i I /;/ ó/, í //,8 I 66 f,a,rqi D-4 i 'pai4s i i tg, i r/.¿ t6¿'1 \,'

2 I I /t6 s{,( /7, / t?P,f /ó ?lo:.ç/.çi Ò-4 i it,,çro, ;p,t¿ I , l c/,..r t.ll ,Q0,1 r D-4 /4/ ã5 l,//8I , 0 i ,,..:t(),{ ^¡l¿-ti I t,,1. I lsS I //,7 tf,8 (J ¡ e/3 37 / Jôi,7¿', ti\'/-l I D-4 I ''î/.,? i I i I i l¡f st0 tfrK ,?0Í þo zt{i'i () I t¡-4 zrt{ii /z o i '*2¿8 I ,..1 '''i i fr r¡ I Ë /2^0 , I o / l|o), ¡rc'xl Çtt/ r I !* 8:r i'-l l?t9p ¡te;,r rl t ìol-¿'i, // ) il l,n i h-0 oLè ///u r î /:v -çrfÊ2fl l¡gæ i0i;È i4't't' 8/ài/// I ?4/JI H i,otr+'fii ' I å l-( /¿r,' 2 //1 rlsr;l -l:l o'l'r e:ct _Ç¿/ 't tr rylsrP I I it ,, lorr ì 40xr lo i $J r ,/ l./,4 _Çë/ ¿loi i t-a ,ç 8// I àts /'ol'tt I'ot I l/¿ Ct | i/t,aßl lTsf i /l "lrti ì fi ö' r 9r9f;r ?ti 'çi d-a 3/ o I zrt lrt'ti i tzr 7€? I s'¿ç-i r ¿'ts\ s.il î4//i ú/ fr I I jt-O 7/F 2 x:cr' *r'xl OÇI'/lnrr llëh ç'i t'æló'î/ j il/tl fr I I ',- | lrrr (2 'çl ì fi ñ-a l?à l 2;/t yct ori {€// llvæ,lnø ! rre 7/rlo'-c,: I /// 0/ i ,Vrs _i ¡ fr zrl7 rtf/: 'f -l ñ-a ?t b'-çr 2i rt/ult¿r ó?r l¡'st I o4/ ó H lt* ñ-( 2/r 0/ I ço'/, el¿l ü 'V*zl 7/// " óorþ rt : /t/ ß lre lfzEtI j il f-a" 4-A ?13çç,'fr, ,+i I Tlë # 8¿: u't l'tr1.l o tæ]f '/l I / l> l"tr ltzr"l I 8t/ (t oi $ 7t-q //è 'Lr/ r'tl, î//r "lltrr I rsrl rlflt'-z L8/ ? lc'rr I {t ltr f ,tf I # 11^Q olð oà/ a,í ¡ ä / l t;t,'ltæ'gi r " s'îls'oçi orcl rsz 2r/ _c l7?r il I iI { /r'( €/r //// l¿ed' l',lr /'/f t'rlt I ?, / lçe'lt¿r'sl Ior* 't"lI I 'i I I vl I H rt-0 y'¿r o ' rr .t i*o llt r'li t// "ls?'{' 'tslrl t'orl trz /ß/ L. l//F i d -o ,ltot t¡t h-0 t/t 0 ,J0t?/ /?àvlrz a 2'!f î8/ ( lt, sl I i i orrltrt # 0 'sl -l,q^'î I d ú-ct 8/ë Lçt¿ T//ul s¿r i trri;I t'orl / ît rÍ/ I ¡ l7* I 9'!1 ìÍ I I t ti I t I li 1 I # ?t 'le '1, ,rl pl s /r-( I lzæ o, 70/ , r* o lE /t(/ /t 'lt,læ lrwlI 17'.à/ H A "lorr pl ,l I ?+ // r ¡-a lzr 7i Tlrw lttl'f , I -ctri,t î'op i s'04 0f 'l¿ót yffwyff ,t 'ç'tri /-ol 2 ti ?8ryl :l't t'orl ,t'al /¿t 6¿ H lrn i $ ,1-( ,l g'1 Q, g I ,t Iorc'lur',lt ?"î,r i o2ëYIU s /rrl 3'lr l ¿ / ¡lI I VZLl'l ozæ,ltot'r1 ,l ã ¡-a 9 I z/t lr? 5',?tl,/l t iltlo:ct /li LT f i,tsir tt/?.f ño Ftë'rJí or/'/ " r fl I '(',tr I.LçÈ zrivi ¿'Qrlru ?// ?¿ # aZpl72þ h-ct I a 17/å'lst'gl ft// i7eë'lz*t 4 tr¡,'l l'atr | o'tt c s¿ ä ozr07r ? '+o9æ. /-n I 0 'lotn'gl 4¿tt* -s?'fi z'orlo'åL I lrzæ o'8 Fl l/d l¿ ü zzrl72C ô ñ-a 1rø lt ulrco",l og'f' 0,2r1 ,ç:Nz'/2 t7/i ¿¿ fi I l9'æ i g ,l 7/ Xr ä ,z"l72ë trr,ì1 I ¿sto (/l h-( I Irrr î0/ 'httn ,tsfl rlrlr n i T//l I 22n72F et l r,^,n'f/ ,tl oræ fl r-o I {''tl /0/ {'/f A rlål o'/? ri¿i /ò I "ls"'t i ü vlórl:o q', o¿¿l at\ i-0 I *rlt9d 'lo¡r';yl 7//ryl ¿tæ f }tnl c'/F I 7',! ç,( fr t ;,i'" I (I i o'tp 'r ',1l' H t /2ål ?t trs¿c',4 ¿0/ul¡ry,vl ts lr'lfl /)'úf | /,2¿ I 4t g t'" lo (t y .rl ô ¡-c I 0-tà í7'oå tt 'r t'rlàl r'0è s'99 8/r rl ót | i ñal )/ ä.! r lv¡r i d 'r I ,(sþt, n-o + f"'// olß'f /'tf t'orl Lt I l¿t ts* ,'r,, l'rt'ti I i itui /-( os*'.1zr't ,i a | /so"I /ç i as, lo/ E'ttrl /'(?à I ?'2? i ¡srrri r I i ztli .à ,l ¡-o I 2 lr'qæ P// lsF 7 I S/+è'lwr r rrlI t rrl s:nli s9/l _)/ I i ¡rsî,ß1, I it )i i l,t o¿" ro/, or t'{/ /5Ei / 'it'ot'Ål !o-; *'lrtlt ttæl1 o I ryll ,tt/ 1 i lr/ g ,rt a'*l,lc*Å t, "l 'lr rul ri B ¡ f¿ loæ"l 0/,f ,+'/ål f I t'9îi, r2/i 9/ r I /-o z¡* (J rrrl'V'tt ,r ,l r'1 i sA'ã' cztl o'l?! 7.rr,i ¿'/ i i f 'eØ | lfr,f szt I I i i: ': ì,ã /-o oøl (/ i s'/¿l,lrrf a//,!xæ'l w'r rrrl /,t/1.0'l/i /t i i /ui, { n l,t'*'ti i LÇç''l l/ '1ly'o'8i 't)' i Qr ,t h-ol _Ç/t lssr':'|l¡t l'f / /'.f/ 7/-Ç 0?,/: I| i .Ù | i , l I -,t---_i.-t -*-- -.---. ----- *^lI .,d 2?.-/¿¿Dr¡1 *i -: .)0) i.ll ì { Ii 'r'l\l ii I i--- r'û ztto,t¿ 6 _,r.¡r',1¡l i ...Q i ¿i utcT ,, j ll\f fl ì i',íi,-i - t;) +)ì +l'l'l i *rD) ill-ltll,ltlcl: ir, .1 =ho';'; l-toau | ;l '¡ 1l ITT I rJ,rz i".* - * /.a ¿4 r/¿ // \TË sÀl$t-e Ccil Ht* No+ Kt- I Hcq ll:' tvô, tY {'cr" 5,//,///PLë ' JG j t1 /rf ry7 N/,1 (,0.1 J76 /3ö ./ l",l,l0 D-/ I tg Prr l/;1c ,ii.3 /. /2 ,;261 /40 I l,P zo D-/ I 4c4 I // /t¿r¿ //8 ,?/ //c 6 l,? I D-F f '?6 r )/ I I I 4n > 4/4 tx (J I I ?0 4at 73,5 d{'.) /,,?,¡ u1., f/r: 6 t--?t,r l /)"/ t ! Ò 43ô 0 b"ç /iot 73. '?/.,J al/ //o an l't¿'t î {Ð< lto¡ lp,s &1, I (.6t "?/g /lr a la,f/ 1)-(L ?3 lto/ 7i.ó ,î15 /..fr ,gll "?6ó /rr -ì,I )-y 2/ ltos /3,s &/.3 /,,ré J63 /tô .fb y ,t> y 4- (J 70ó 73's' -?/, / {lt JSZ /ss 6 fze'zl D-4 nt â Ø t70 / /,4 /,5F e5/ /62. I ,?39 D-v ?7 ltoy 5,?, Q //.2 l",l/ /7/ //o 0 r?l D"F /0Ca ltor 76,( o??¿ f,¿o dg8 /4,t 4 e?o D-/ 77 /tto 77, / ¿p,f ls¿ p7/ /lt I p77 D-þ f r't Pat 77. / a"?,6 1"30 J7t t/s' ¿ &78 D-F t4 / ,7 c/ fit z 76./ ^4'b /.at J€; /lo 2 2?7 D.V :Pt '255 ltt 3 ep, ( /st î6a /lo 6 ,27 t/)2 D-v ),,t .Xc 7/,8 ú?,5 /, 3o //ç ,l D-r t6 "27,? -< Qzl -7 /lo lt5 tz7 ,1,50 353 /z / / D-7 7 åJ.l 6 (/ Õ ru,7 3,zz "5,3 3/ D-¿ LT3 _íI ) H$*t ñat Heo. sy)q Hco Aët4za// ¿F i t-)i , ¡ i+(u,.'l.çnnntr 'i" -*t' ' 15 I /;to 7. ,3, f /t/l 6,/,s a/.s 13,6 tt .?r I ' I | f 1.3 tr,/ú Z r0. á 0 io'" //,/Eo,(Í ,} 'o'ã5ftÅ 6?, / ?o,l Jl6 13.e6 e6/ trS o ,-I' /5 /7/l 3 6/; o t7, / ,?0,2 ls.¿o asd 77 9,t5?l,pt s 0 D.5 i,:t;tc';( 'l/ 't I 64,0 /î.s ß,7 lJ,rc 4/6 OJ 8, /J5 a¡/.9 o 0,5 \) 6J. o ß tdl 17.0 ß,7 ls,tt "?36 77 2 /25 0 D.'þ ?t,4íi 6 fr.5 /r. ô n, 7 l{.76 p3l 7ff f.Òs"/f / $.0 ¿ D-î rrl øZl 7 6î,s /1,2 /,t 3l¿t ,¿31; y3 z71s /fl3 o 0,5 ,rsf ll t 6t, o 8,7 /3.] 14,óg 4"? 3 u å/. Ò /) 9-5 îc a rts,l4¡ 7 /t, ó It,2 1,1ls .?J8 6/ LtJ t0. 7 0 D-5 .w'rltl /ô f3,Ò /5s fl 3 14."?2 /F6 /? 77, 44/ t D-5 ',r0 44 5å.t /{7 8, ô lJ'Bz /95 r7 2?/3 /,J ô D-5 y'6,0 t.;l\ /, l3, Q Z75l/.7c- ß2. a7 2ga /2r ú D.5 ,;l5r/4 /3 {p,( /î,lt z/ l/.ta /2Ò a7 tt?s a0.¿ 0 D-5 'plirì, /4 /ra /Q.ó' z/5 l/.7é /60 J/ z/¿ 4/,o o D-5 .7F |'6 4 /5' //. t H,3 [."10 I /óÒ /ós 43 7 p D-5 ltïl "?ô. U 7/s//À /6 3{. ? //t l.o l/6r /7t ¿/ Ò D5 ,nrd /7 "19. é /l,o zVçl /ør /ó'7 ,?¿ 4/,a ¿ D5 ',;, /1 /4 /8 //, 9 6,76 lp, Eo t7é 4 '.0ô0"014 ,E I lf, o 0 o-5 ^U, Pd /? 31, Q //,5 6, lo I {,ta /f6 30 ô D-5 úo //,ô 6, /s l&,1, téú 3,? 7,7ot 2ô.ç ,.1 fr,rh {/ /0. o /o'lS f,5 ll.Za {8 2o 7.771| /,î5 0 u-5 ?/s tq J¿ 38, 7 7,81 f, t lS,fl lz 3o 77A / 7.s Ò D.T tn 42 /4 4¿ 9,7 7Ss é, 8 fl î7[ /3o 37 tt %11/S ô Ð-1 ¿50 rr4l /,x, 3 6,60 16./5 /pa 30 0 ù-5 4 !0,4 4.' 4,i.2 /p.7 /,rtlf, % /,?,2 a7 0 D5 ,3ô,4H 4 g u /7, 4,7 /J5 ls,ø //7 ,!6 7.sÍî ws,s U D-5 4 li,:. d z./'t 4 ;/f44 /4,8 /-371s,a /_71 a5 zt,f¿ 43.a 0 l,s',)5 no l^ ':6Pr/, ¿¿ð /P, Q /t,/ tá /lQ,7a /-la ,t2& út,o / )-5 ZB3/l Y: /v4 t? /e s- /3'/ /.c-At,6e ßa a7 7t7o .2/l Õ D-1 y1ay't l/)- "30 lfc 4.í /,74"^2,lA //a J3 () ù_ç 'rl,/r,41/ it> stt¡;ls /t8 3;8 7lA z¿ /5é 33 '7, 8fr a/. o ó )-5 ':Pt'f4 lo- Qlre,o /6, / 6.4,^ p,3, /øa 3€ 27 /7 p/,0 () lD-.D-5 ?:t¿/ñ J ðt, 67, 3 t7, î 6.¡o ld,lA /66 J8 tß? p,?,Ò ó D-r I lt- g tssDT Jli6,t.s /7, ó,7o I P.#B /t/, 37 . /D/ ,43, o o lD')5 t olll aslí7, 6 /(t, ó 7//1,?, Jz /75 33 B,Ó .4ú.o 0 )5 /') () I D= 1.'?5'tlll gi r'/. t t7,/ 7,t4 l"?.A7 / 7,3 3f 73// *tS -0 ô i¡-D-t D-ç .i|l'fs,l /t.3 l,*f I J,tø i63 /L) 774/ t?,t c.¿ l¿- 15, J14 >-l i|i ít,l / ft / I ,t,/# lô, l,Òlo /'7,0 o t.-lr- rÍ1 //o /5;t loll^?,/2 /ór Õ6 âp () lD-¡.:5

,t I LL4 CcJ t i flîtr l.)i+ Oo-- /.úcfi7tctu ¿l PH Trrr11, 5 "L SitlntP¿c ' ,-rrl p,o 5-lo /{,s /3,7 4,Ò / JE 7%Òl 4..?,o () D'.s , *!, 4/ 4/,,/ /3.7 4 t:,1 /, 77 ,?ó' Loo2 aa.4 ð D5 .l -ì 4r) ') '/ :r/r( ll4 tlt /,U /,7¿, q¿) ) 0t.5 ,?/, ö 0 D-5 tì7 4:j fô.5 /1.3 "1.,r¿ ./,, ß',5 3ô r.ßÒ ?o. 5 o D'5 )') t'rt /Y 6¿,5 tr7 5;7Á /¿13 JÇ) l, úfi ,?O.S ¿ D'l ,4 /5 3î, o /20 b,/ 7 /,17 3r' 2ïry /2/ t D-5 2/' TAl, /6 53,3 /q, 6,y' t. Vo stØ f, /a/ /7,5 o D-6 20 /t f/.5 //,1 7z q,Ò ,Qo ry U p-5 F B þ:

H l¡ 115 F E \ SA/VPLE n/0, /s /tttu lænrrc¡zt E] I

I Ë &ì tr !ì ri9¡¡3 t:. Q.,**lq-lNa' t{ú0.- | soy= IÉHP, ìU..f "L (/ Ë r t?, / lÍs 8'; Zfltt ,!p ú Ë llr- 1/"t,/ l';?P,'t $l E: ft, z l?-r / lat, / &t, /. ¡¿ .3 /ç /4/ é 2J0 ?,3, 0 Þ lrr- f s Íi 1A? /7, ó ó22 F'ë l{3' t lat e ó7 7o z 5'/,. a/ t Ë ' 4/ F 'ito{ I u,/- þ?, í¿ //.7 lFt- / Jte /al Kb 2¿V ¿¿ ð F, t_ ,lß,é | ¿s,¿ &/, Vc' z ,l?,f ¿ Ë rc-¿ î /ro 3só lî ?lt ts ,l,o,r 4¿ Ê: Fp-r J¿¿ /3, €o ,1¿ Ò7a 4,J ¿ F t_ 'l/¿,v / 7/a ft 'l¿,z fJ- t s rl3 7î /7 zg70 34,r Ò t- - 1ru.t tr trJ-2. i t¿ø lar r lá,1 /31 I z/50 &lô ô l¡t-s H ?l óÍ. I lat t 3y7 ,# ó'7Ò 7.59ö 4/s ¿ l4'ttþs o , t at7 37 /0,^, ZSrf Ò Ë t- la,t /1f å l-{- ¡ .)À H \, lel 7 J/, ; /3/ /e.c- zlv XU, ô ÞI tfs-yl" lreo 'ltn's r ô5a. ?? /C- /zr Ò tr t_, laa gr r6-/ l7t. ¿ las,a /y, ¿ /08 /s K,5 à tf-/ ä -¿'lt"', e l¿e s ?7,2 /2î f,r ß Ò ff 1L,/t- a B { b',t i aoa u /ó?t ¿^Ò 3Q2ö 4/. Õ I t ln ffi -, 'l ,,Ó '(r i+r't- /á, 7 U.l /ó / 0 tr Ë ft- s i7r,o la¿l /&. I 6/ r /¿, I U ffi '-3 Its¿ ,f¿,¿ îf ilt.¿ lo tr,0 /é,r ô H 'rq- t lrt,t lsz 7A 37d ß () Ioru ffi ?r-t ltor I lz'l 48,8 7f 7 4a ô H tr -e, aV, (', - ts /t{ ^3 òt) // QAt 0 'f? ',i Ir+'a H i t¿¡ t z¿ 70,o þð ?t,s () F r/0'/t- I 37 F, 'frc'e Þi i tor l:t,ø AZL (¿ ZA 3A, < Ò þ t- &ì f/0-5'i+r's rzz Jp3 78 ,tÒs ô I 43i tr 'frt't I tct o?8,,U 76 7a Õ tr i l"?rs 44el tF-/-.t tr,ó l aa/ JI, L y3 á,ô ¿3.5i Ò iF/p-t I H /3,8 Ío Q/,î ¿3i ó H i- ¡toa laasi tr N a ¿E/ i W, "/4 i/tollps, /o/ 7î ô :tr1,J-/ "?/ I lrs lsr;I úo/ /3t flSJ ffi t3 i it¿ g 1'/j'2 ltn i 13, //,? 6,o I ûô. o !t42 ),- I i tr | AJ l//- t Itru ll/.0 ,2 /01 {t .?t 0 B': Ftl't 4/,/ /4& i a i l,ut i*¿,¡ 1 îl ^fl.siI H p/ &r 7-/ (/ N. I| to t zl /.tá 6l 43 ô hl 1sa.I I ontl H | ¿tr,o1 1,v,7 | ¿,?g /J a.gf o F; "?l d. Ft7 Ë, -/ iI ay i rr, si 2tS i JÍ /0 I J3 o ffi ll tt Ë¡ 116

-\IìHtlr-Ë Nt\^: l-t('¡.- CU; NC', + LocArtoil

- l;i;:, f/, / ,#,R 6,/ô J, tg ì 5//- /0 U l,:,,,', 10,./ JZ3 /, éZ /,77 /;3o 6 Õ ll'a4-/l- ttã a-<_) I t ts, * ,P/,7 4/é Ç, J3 3lR 0 u/ .^ r /.13 x)þ,.1 \2, t {, s7 5q2 ,l 3 llsl Ò f,tttfJY't c..f,(" / {.,t 7,5o 3,ry Jc(' // o3 ttai ô i- ,'1 ,1 fí5 / b/.{ ,17'/ /,¿ 7 ,6 _%0 I t Õ i '7,7,21 F&-/ i/o .Jî,1 fíto ,f/ Ð /7 2 dd,2l ô

rp7-/ ?J,/ a/7 ú,6 8 /,c, 3*o á P/o I t ^2 I 'ffi r. 37.6 ,6ô 6/ /Í55- 3,9 I q4 /r/ "72 I i- _ 58,f ,nQ3 ,!,1Á Ó- fJ/'e /ó; / l/2 e/ // I ó t- I ,(Jtr. ,/1 / ú6, 2 ,f¿s 4,14 l¿7 4.) aO/ v o "?ts I &'e //3 úÍc l7/ ,i.// 5s¿ /5 I t{l 0 F¿t's l2 4?, o €, s¿ 1,5? 3ls J3 ó /l ö I fJ?-/ll /03 /25 //7 l8o 4aa ¿og 7 tÒ.51 oI I Fsr-¿l 6, 07 3,Ò /16 //.03 7F tof /r5 #¿ | rst- rl 7þ,7 ú*t 57, ? f,76 J lo I a3 o I rso- /i /Ò7 31,ô 7,45 ê,56 lps QJ2¡ r ¿0 I t) -) lt;-/l lt,o /:), J 8,?4 ,{,77 /Fl &t -3 4tl ô FxTl tto at7 Rl, o .ífl 3,so 7/ 5 ,l/ a I rtr- rl 7?,8 ¿t/ 6,5:3 ô;17 (c,2 8t v t/dI à 41./ Ço I /) r,{-/ îs1( â0,a s73 f,lo v/Ø ¿4- 7 g | 4rl _4 r3z /03 alo t7.J 3, 6J 6 Ò l/ //l å2 I fß'A ß^r -27 I 6,t( t/6 ta ô "tl2 3ro I rsrJl 3á,Ò ,fl5 s70 /6 .?o Ò /27 4/,e /7 I fj/-J.l 7tt '0, g û1, /, 3o-a //_3 / ets ô ¡ 7R I I to ß7_,?i H6 /2ó ZT /,6? .215 /// tr¡ | 0 I rø-rl /0/ '/, 7 â4e /,ø 33ö 7¿. 6 o¿, ll o -2 pt,? Fyt.al /02 /,ß J/2 //t r t/.o Lr I -eo /> ,, lyt- A 7/6 J0,g / fr¿. /5, / /o / ô i pr.5 '0/,,5 "?f tq3-/i /0,9 feo /7, CI é6A // &t,s i ¿./ I ¡ rß-21 , /p/ 43, ,t:/6 t? t (5.J J3 þ,t / ?/ ¡ 4r -1. i=//1 4o /é,6 /0,0 //0 // 4/,J i 1 786 lof // pfla ! Fyr-C /?5 ¿/3 /p,l *to 377 /?//:tf /zs Ò ¡ trql',À t36 /s. t 7/5 B/.8 ry/ u?o g.)úaJ-10 /9,ài 'ô i ruf /i /78 sí %,0 6Be ,p ?6 õr?/ õ?b 4fro'1 Õ

j

i

ì i

i Ë,

H LT7 Ê. åi i#ñJ ndi Nqt KT dco. g !tricnrø,N I F., --- vt A: /7. *15Ò /, J þi, lrr ,lat,el 2 î7 /69 4 I /,f ó F 8,t71 4 H, És S I 3 6,/{ ús/ fâ0 o<, "?,? / "?ë,K c ffij jc..s a q1,?,t(\ n' Ir.r,r;l ?6.o 6',9,2 t0/ /î /2s ,{ a. H ,3¿ 'Gs t lø. al /c,,J ó?Z / Q,/ /le .?3 3t,Ò ffi uæ ,l/ ffi 6s tlr,¿ | ,06 /73 5,tl Hi w: / 6s rlrce I ,il,7 k5, lc, //¿ /r t/,0 o tçs pÒÒ pü,0 ffi ¿ol S û &t t,s I lô, Itr,0 ?,zr '?l () () le's nl /t, z I /,0/ ,?# //, /'0/ /î.0 tr g,6? 5s ¡il x,t I /,% 8!, f 4/0 /Í. o 3ë ffi B H ß, ffi & &

H ltltit Ë Ë rtt¡tt tl ttt Ë

ffi K ft ilt LI hi ffi ffi h! & rit Ë ffi h

ffi ffi ltl !Þ: F,I

ffi iI Elì H

tr

å1

Ë þì H} Il ffi å[

ffi èii ltltit tr ffi !tt tì 9! ill ff ñr fr ß iii Ë tr

tr H lil Ë tll H ffi tli Ë :lr4lî/U_fg j ,-tì t, t \ \l\{ \ '.ì .\n I <- ,\)..{) þ- rrr ! ,Q. \ \l \ :\ I ù 1] 1\ l= \ì' Jì 118 $ a*l \ \ .+ \ì \\ :5 ù .ts { ù t¡J \ \rs \ s.ì

-// //Ì'c¡l t(,'. I 1,7 tl,0 d,/ url L'tt C t2.tt l't¿'| tl -el j,4 c,o zlt¡a,/ß lltl ru, ' 4 3,9 0,Ll /,/ ¿)/ c), i) lol'";l,.au .,/ .a{,s,olÒl tl7, 7t,t t.2 Lt, / U'. / 0,2 0,0 o,0 I a- I '-tlilzzt¿2t.Llrlas, /// i,i'i,5 4'/ C)'.0 ot/ ô,/ O, (t tr,O z-.r-izl,¡U,^i irt, jl¡l ¡o¿,' t¿,ÞÞ; 3,/ 0,¿) (),/ 0,0 Ò,n "ç(r, 1_ ili+17aiti /). *r/l'l'ør,z 275t/ i "5 01 5 û,/ 0,/ ^ o.o ?--/ titøti 7Ðí :\ttY, 45f .1,.1 t,l Ò,2) O,O | i 0'/ o'o ')¿ ,"2i2iilt"r ,/l''l¡f't l+'t1 4,t Ò,0 0,/ trO o,o o,õ -3i 3" 3 tf t,lr, /J4'4, 'á t,/ 0,2. O,/ o.0 O, ¡,'t itfi ?vt'tI q-,'2li2VJ2./J2,717l t"20. 8f,Ll û,O 0,/ ú,/ OtO o,0 - al t-.5-5-Jls l¡t/' f I øt,, ¿L. O ot/ o,,o i|t flt-. //9'li ö,0 0;/ 00 í'4f-t,41rl'rr'// /,tl¿1,,1Ì, rco,tl ],8 0,O t,/ ó¡/ O,O oÕ -. I l-l-tltlz/2,2/2,r1t 15q3, tff.f 3,¿ ¿,,/ 0,/ n,'7 a,0 L'Ll I t¡ -tl2 | rc/,716/, 'Vrt', 3, k, at/ l'¿ | /of,7i ê,0 0:/ o'o ô.o 'rl ,Jè,GI L-:,Ô -JlJV¡ß nl, tl'â'î,, l,-ttti t'/J o.¿l O'o '1- '/l /if I a/ 0,/ 0,2 t-, I -t 7,41 7-ttl4-,.,U,fl ,,2,, î,41 ô,j 0¡Ð 0,Ò ot0 (r¿(, C,,0 I 7-37--)lsÚ¡r,"l /5(,,21zl/t/'r'¿./' / iral,Fil,Fi 2:o 0'Ô 0,/ Ct,/ Lro | -t tìo E-:E--tlßo7l'1.;liî;/.ir4 r7o/ 1,/ t1 / "l 'o/ i /,ú ó,o L"V ??::, r f-t''/lI l//J{",/i/,/l '/,Sfi ili,lil¿,li dl/> (), C,-7 O,O f- I o,ô li/,:.t / e,ç I 4-4-1.¿l Ll/îV.óvzl.l/fs,'îl,ll/"a'il/'jl 3,2 0,0 ô,/ 0'/ o,o ¿t'0 q- ol ,l/,7.,ú/,,/i tl?,o.9,o 1'ttlt;ttíl.al ) 2r/ ûo t:/ &/ O.(> û,'¿) 'ô /0/0', -l-llt lì/3'ìþ,4À.rot,/,fl il¿,11b,l1 /,8 Ò,/ t:Z 0,,/ Lt.Ò 0,o ,t l \ t0t0-) -)l-; /30,J ?t .,ô tl3o,, '.1ltsI çl su,¿ i 2'7 û;t 0:/ 0,/ o,ô ,4,0 ^ i i()., t.3l1l 4il.44¿t, t 'ut,+l"l )ct,liu,li t,2 Ü,/ u'z d'2 o.Ò Ò,0 ,/- 1,701,: t^ . I -tt I i/Ze_l ,l'li'tti'J¡,,À7l i/2" lz,ol/,0 t ?.6 û0 c,/ O,/ 0:,0 00 'z--o I /¿-¡zlrlV| ttvyl,\ufl,ttult//.1ttl | J,,/ O,O t,/ 0:/ ô.Ò. 0.0 t?-t:-/ictl'lituu '/4 xuu /tlnt'ui,yl /5/ 4 f:f O,o 0,/ O,/ 0,o I 0,0 ?"ll' /] t' i2-;7" ¿lt. ' qq': )r.) ût0 I ü./ I /q,fl þ61t6l C'tJ {r./ a0 o,0 I 'z¿/ i ,5" 'jlyrl I ,." I I'tl Y Irw,wllu.rE,l I /,1 0'/ 2:? /,ó ¿), Ò ¿,ð /-í li (f ,/:A 4/ ;'lt22i/îz/32.¿l ' :l/f /,/,Ál /n'/l ö,O üt/ ¿,,/ oL) 0'¿ I : I / :t.¡iàt .l i /// -tt/r,4,,-, ,rr,:l /ûrril il 1,/ 0' ¿' ..C!,/ 0,/ o.o c,0 ' l'"" ! ,, i I 'Llt-)-,'Z,l¡¿ tlo'ùl/ i1l.ql 'ltt¿t¿ I 'l F¿'/l , ¿"ll O,Ð .d'/ u'l O,() ¿'l f 7-lt'li 7:t¡Dl7t'¡ ,l ßc,,ß¿,,1 t/s,)l5,J',-l o,q- A,Z t),0 I o'/ t,z t'0 Å,t-li í: jií';ií,1, ?4,Ál i titfl,/fJ,li /2j,Ál l,¿ 0:/ ItZ 0,/ O,¿) t {)'0 I ,20""ii /"5/5,71tltr/7'/l t,, 'i7v'¿ií,¿i o'j 0'ô 0:/ Ot/ û,ò t,Ò '/ ?/-,-ti-tt t/),1¡//1, l¡t;r',,s /i/5'til,fi t,z ötO ¿,/ Lt, / 0'0 O,O 22-,'l't' 2- l' t2/,f/2/, íii/ i / *,*,/t: 7f,1?,1 ó,1 ùÐ o,/ 0,o i| ¿,/. ú'0 .)1 /-') -, ,r/t,Ii 1-1,-l't//.tly'.ot /'/"' i| /'ti/'li o'/ ó,¿'¡ 0,Ò 0:o ' , C,/ 0,/ 2l-l-!-! /{.t,/{ t, i¿/,ié/,1,t t/¿,,2i't:r,Zi ô,.1 ¿ro ë,/ 0¡/ u.0 0,0 tí-,-r ,/ç,1,,/1, l/,L>/,r, t,l (), o,¿) )-! / l,/,l,/,'l , i 0,0 / ¿,/ 0,o .t 'iî' l-t /i//j1 / ,7 ', t:I Ò,0 /'), 2¿- / /io, //,[: i 0,t n,/ / t.c) O,(J '27 'o,lt 7-l-l- //'/,7,/y'', .¿].iiij.ii / ' /?),f, ¿)'Z o:o ð,/ tt,l 0,Õ C,: 0 "7 'Ltt f 't li'¿ s ì lr, u \i' { \: I 119 t' '{ì' Ì:\ '¡. \l\ {. - ñir ì\'\ ;",\ì \-IJ ù îò \_) '\ \ "*J \

04, o,t) ô.ö o¿ ¿,4) ¿0 (),Ö ll,J ;15,i ¿),(, ct,0 t,/ ¿'t,l û,(, [/ , (.' //4,î ,F ,21'/, ú,9 O,/ i1 o,:¿ 0,0 0,o (/,( çQ,7 0,1 O,O Ò,1 0'/ ¿¡,C¡ c\c) /'t6 .;¡ 7 ') t/,/,¿ 1L-') /,Ò é),0 ¿),/ 4,/ d,¿ 0rû .t: t,)' .7, s () ';: 0,/ /,f c,0 0,t ///,/ /'2 0,0 t),O ( )i¿l C,¿) Ð,ô "y.4/ /.i:;, t,/ C:?- ó:/ ô'o c,ó /Cr''/ ).¿ /) t,o ÒP Ò,õ O,0 O,0 /q,7 //'t,ó 3,r o,o /;: / 0t/ ó,0 ¿), ¿) //!'/ .t-3,1 .?'.f ê.,,0 0,/ 0,0 a.A d,0 /o/,2 7t,/ ,?'/ c,o O,/ O,/ O,O érO /Ì,y 4l ,') ,?,/ 0,c Or/ 4rC /r, /\ /f'tt l¿o;/ _1, / o,l 0,/ 0,2 ¿t,tl (/.Lt /03,2 /j'¿,3 (/'¿ i,j 0,/ tl'/ L4L o,Ò ll:Ì /t1 ) /1 2/., :)¡(, úto Ot/ d).O L>, O /uì,¿ t 7t,p J,D Ò,t) o,¿ ü,/ Ò'O 0,o //-l t//, 2.5- t:,/ a:! a!/ 0'ð 0:0 //0'þ ¡r'tr,2 3,f 41,Ð ¿¡,/ (/, / 4tÒ t.'Ò /t'1,/ (?¿. ) / ñ' 2, ,ri7 i).0 ,/vû -)L.l /r5 c./ 0,0 És',, 0r/ ð,"/ C,7 L,'IL 4¡o O,(':) {/'/ ,tl, r; )'f (+'.4t /,0 ¿), / oi;a t),0 t?i ;il (/'6 /,1 tiq L;,U drQ //,i t'/,tl ü,/ LI,L Ò,/ 0'o t,() /çl /,1,t /'l 4"/, ?r t- ¿i0 t),0 f1,l f ¿').L') ^ Ll ¿),/ o'/ û,t, 0,0 /t7,F t'/ 0tÒ û,{l /'t) oio 0,0 /ô!'t 0,/ /, () 1,/ 'lin C,l ¿',0 rf,/ ':) 0 tt) o"t) ¡Jttt f),0 U,D ft,0 e,(" C'ô 0,ô 0,o 0,O ðrO 5V,¡ 0tl t,,0 t:/ 0,L: o,D t)tÒ //,¿. i,{ ùtÔ ú,,1) ú,ù 0:ò þ.{) /4r _; : i l -i

d'/ ¡J¿"2 ' t/7,8 /'f a,3 L "¿.' 0 ,¿1 u, "2 /'7 L:,¿- ¿).¿ 4,Jr o.Ò (,,ô vç,¿- ¿,L û,¿ 0:7 ü,,1 t'a o,() ,,?,t- Á.1 t'f û'/ u'., (), j (r 'l-., (), o ,l,t)l l'ó ¿\,) o"f f,i'7 ¿i ,O Ò'o ,q,7 /,7 C,5' /'¿, Q¡(l a)'ô /'¿ 'i.t.t, t,ù' ð,J ¿\, û ¿),¿) '{t'(-t i,l ü,2- ¿j'( tl,Å !,i> X:t 1, . i: '-/ ¿^'t I 0"¡ (),/. CL' UL: i,!/, Ò.7 ú',.) :,], i) t.,¡ . t.t {ç't )_ "2 Lì'L. 0'ü L,,,1 i't tt ¿),i) ù1,:j-tr.- I

l /)¿ þ;,/) / /U:4 r¿¿',t/ ^'(/:tti/' ñ \\I \ 120 Ìù \ \. ,\ t-t 'Q. \ r\ $ \ \ ìS \\) N \ fl\ .U õ ,È !iì.

I :){ /sç tç çs lóß,,s 3,:) Ò'v â,15 Ò.6 lø'o 00 3./ )/.f u/;ií15,s.I 7,v 0'z C; ,'/ d's l¿,0 0'o .;j 7-(ct //i/ lØy /.'y ù,2 t,/ Ò,5- | a,o 0:ú '.2Y ç't .t tS tf I jl) 2,? 0.2 Ò,! ¿'/ I o,o l:0 qqy L'(0 /5j(/ | JÐÍi 2,/ 0,/ 0,ç /,k I t't O,O ,q/ tt'l 6t t)il.ç2 ¿,-, /), ) ó'ô 0.ó 10,ð o'ô ,q.2. 5oa ¿t2 l5¿o /,t 0,2 ¿,/ o,t' I o'ô a,0 u(j (oz rü ls,y z,'/ ó:Ì Ò,7 a,( lo,o ¿,ó ,a o4( 76¿, q///l v_rÐ 2'ô O,Z O,6 0,3- lo ê,ô )vl 7[ ',4Ell s/6 t-L ô,2 Ò-? ô'fIrs'o o,0 ,% /f¿ /1rg lioZ 0,6 0,0 Ò,/ o,/ lo,o o,o .,(7 t// rlv I il 0,1 o,o Ò, / ê,/ I o'o o'o i+8 2/6 ]/f v//,9 ô,t o,/ ô,2 û'Òlo,o o,o )(/ zvz t77li¿/,2: /'o ô'/ ô,2 ê,1 lo, o o,o ,lc /f¿ vot 116,¿ 0,,1 0'/ o'z o,/lo'o 0,D t¡-5I fta rs( v//,/ ó,r ô'l ô,L 0,zlû,o O,O /'C o;3 ð,Llô, ù O,.O ¡lZ 9v3 î7f lz2V- . Ò,/ ';J)/a zç7 rS?lz/ I t-z o,/ ô,t ô,Zlota O,Õ) ,g{ (/-y/ /5fi1tl/ /,2 Ò,/ ó,ç a'3lo'o õ'Ò t(i' ]vþ ftt lt f /r0 0,/ 0,t p,/lô.o, o,ö 7ir- 25yol u{Ò /,¿-n) a,¿ 0-ó 4,{l Ò,0 ô'o '80 ¿61 ßóz 77 lísé L:ô Ò,2 0'ó ó|s1 ú'o 4,0 r62 ss/ o// l.%ö 2,, ö,/ Õ.,y 0,3 I a,Q 4,0 ,//ó .ç3 77(' | //g 2,, 0,¿ 0,6 û,(- | o,o O, t) :6V zc7 qzol vJ-( 2,( ö,2 0,-l aF | Ò,Ò o,o ¿'65 70F ?Ø/.lt/s¿ 2,ç 0,) 0,5 ô' vl 0'0 o,o LI6 gZS lúSa l5j ¿ 2.6 ô,/ ¿,é o'fl c'Ò o.c) €óç 5/6tl55l t,3 Ò,2 0,ó 6,5 | o,o ð:ô "'65 )íf 90j vL^/tl5t¿ U¿L 0,6 ó,V lc-t,o 6,ô 'sv þ0t qsSAstf L,V (s,z Ò,é o'v I o.o ë,0 ¡-tf r7l.s /{/ | ¿l/, 0,é ¿1,Ò ô,/ '/ lO,ó Atb f -7u /27 rtt'Yl f 3, O,ó ö,ó ó,./ A,ô I o,ó ô:O l-z/ tlY ¿ s5.zl ¿/,7 o.ó q,Ò o./ o '/ 10.0 0,Ò l-z'¿ ///,s 7q,sl7 r,á ô,6 o,o o'/ ô'/ l ¿,Ò Ò,Ö '5-23 QBc -ß')l 6)'7 Ò'7 0,ô ô:/ ô,o10 ,o O;O vl; n /47(/ ú;/ç1#( /.3 0,ç /,7 [,{la.o )tLJ u¿2 a'ì Cr 5fz 27tzl nq /,ö t,/ o,l 0,jla o ó.4 à-7 .2 t/. ''la 7;¡, 2,/ i,9 0,/ O'/la.¿¡ o'Ò a./ f líf6 //5 {{i ! //5ló2ç t,f Ò,3 (),/ Ò,7 I o, ,, o.L> ? /,/ t, 11 ttlrclíc I Z'?- Õ,3 t,8 I o'a 0.t ?,7 ftc, ]?tiçi 4q7 t'í ó,2 o,7 ú,ó I o,ô d.0 .2.. 1 lJ 1 qt.í .'l 'tl, It+ v :3,c ú.3 Ltl ó c!,L | û, ê d,o ¿'l ?1 | ¡-t ,(: tt tlz-/ 2tl ul iLtt ¿, 1,/ o,3 0.6t ôu'te |vo'1 únú i^,:1 ,7 .'l ",\ I I ?.f (),() tL)I t i i*s Ò,L 0r'7 ô's'lø,o Pqa ill ïíYllsol ),f O,3 i,c Ð,/!a.c ¿!,0 ' \r l: /\¡r¡;r 'r: x. ,- .iiy;LriLi,rlic---!reao{-ii(1'J {oi' p-i e..:t,yï.rc{.:l :, Þ pl\Jo-via{cc--t-est-1-t$ r*--rsí!---qf-rr1'j ¡ LzL I ^g +* (tV;'t '"lulu'.1e. s/¡l S l/¿/a r ',..",,or.,-lÞr+e " la,tc'.dl-'l!/vl lrr^\., :___i | ' i_*-_____l-___ -__j- t:i, I /,', l';'Í n,70 l-'';l-;,i:;--8,8 0 8" 5'0 1-,t';-t" á'{ i t'lt=/ -4-J_1 ,r /5- ?'st ?to /,70r, /5- | ?,€t l ntn i zo I i=t - 7 ? o' qn.- I /'t-3 1 &, fou,, I ò',,5-f.-.- I 2tts L, 7, /o,,\ í.t- / ,4 ¿- /5;65' /Z 4o ,/;Jþ zt;0 , '1 /z r,?-2 , /ó, b0 //, ão /,60 . ,/r, ) t= n- l . 7 ')t\ tA t/ /3-.(,ö- ü'/s-) 760 ./. /V

: F"t -/ /á, /0 /t.0 ' l, rJO ltrJ- / /E'71 ff, i0 f,3o "(3Ò?,4t- t3-2 ,{/' ¡; */, ú0 ,1Å,/f //, ?€

13'4 ß,8 : /r,ls , 3,'fÒ l'{o t4 ' -J :1'/;/ ;17'7 ' //'Ra , tÌ-/ 37.¿t ,.''.ao. i , 'IO "/8',40, ,'f,/o '7,uh), ,/,,31 F¡-t 7,3Ò' , 7,,9.f. F 5-:¿ 2,er DÊT D;Êr .òÊr. , , f5_?, : ftt'c): t/ ,ftt ß,3í,, ''/'2'4 t g ' f-4 '4-, (,('ct f,/o i /,/5' tó -/ ("'/,tl b,8.f 7,âo ', 7:i'3o - ' l[-2 f '45 ./t,./5 /ls ,þo 1 /o,{,o .-À ¡4 (2O t, Fó.¿ /6' ss /,) t^Þ ¡t'J, ;/ 3' üo .'4 t tâ./ åf'¿r ,?ø'/'l 'aç' ' .a/: jo r7-t ÐÊr 'p6.51 /.7,o5 /7,a.7 t/¿,,5á- rl-4 4o t"s1 ât. t5 ,2 f ,(ç rg -/ Ð/J/ 3/.70 3/,fr ',2/:lt 'l í(-') øzl :;"Ð,er, //,3t , |â/'+fi rb-:)aît - "'iL{'31 ,t¡l'251 9* sa 3(,7c>:, | .- ',,, t 4,4'r-q ' t f-/ tè / /þ,0f 6,5û, ' 1,8o, :fl ',, ). -z /.5,15 iJ'18i, 1-, /5- , t:/s íi/ -4 /5,:5 t . :/¿,7ç, ,l'Zts 5/t l. íta t i3, to í! /o,, ..;.'., È'Ço ',, 8,/a I f: ;,/1,,?(r' i i /ú'(ìb' /o,fo //,.!o t './4'/Ò ¡ ílc-S i co' /3'C: ¡ /,î'fa 'l l, i t 2,f5 3, /L> I ftt-l :J,of . 3,20 I I ítt-21 ' 3.40 a,.)o ì 3'?o 3'20 ¡ i t' i 1t 1¿) I Ð=-rl .7 -trV p,{r) ,2,50 ,?' 53 , I ît:-2': t/,30 t,20 4,'31 I .l 4,50 ! ,to n n,- fn-tl 7',1í ó t'fc /, ì15 i I rt.1^2t I Ð'b7 5,st 5,9¿t ,5,90 i I l _l l l-- .-_ ltpfl:f h*--to ru¿dr'r: t¡,L-_------.------r r2z t. 'u,,: l,n^r, (,j¿/'.Q izo'rr, ùL.c.. û';g ì)-,i¿3 ¡*+er .r/,ç../',! t!¿:/ t" i ùrle.. I { t : _L __i ,t- r-7/-/l ,'a', ¡t-,l5 5: i5' .:;, t 5* '/'/ -21 /.?? ,;íO. t 1,0 5' 3'ç'î 3,70 ,, t7./ti 7,,ry5 ò'7.2.') , t,- lj,¿,s- 7,"21 /' / ¿i-ti ilv,.:,t,:r 4,¿ltt ,?,3{ ' 3, /¿, .,/-/l +t.2.f a,/r, l,/{ ,1,,/0 'j ::¿0-/l 1 ìf jlo ' /',ø ,?,^J.5" c,

't ::tf -zl ' {2f'óo /,3f , ','i/.2a ' ,f'/a ' zs-gl 8,l,q { f 'øo 4a'f5 ', 11,óo ', ,ertl 7,/,/3 ,,t ,35', ,(,lE: ,Ø.îo', -t i , ,t,1 ,ø- /0;/ô', xi.zl /o,/,t'. ,l'îa , ,1f .31 "Ò'63: '//'þ-o /t) i 1/, 4'l', .,//'60 , 'DE,{ Dt>fr å,1,40', , 'p-tl . ?¿Y : r'** '/,i,,95 ,, 'f ',8,óÇ, 2l 1,,-CI 'So , íiirl t",,/? /ø '4f :, /o ,f-5 /a,'l {', ?)<- tt,]rE, ', : r x'"t J.5o l1t,t¡ ry-ll i -35'/ /l, 3'ô0 3'/s-, 3",?o' I t Í i

;ta-/y á'i';f ó '6r, ', ' 7l{ .71,ef:, ,.?tf l,.¡i ' c- I lt' ( ',/a , 1/,l:y' : -(/.1-f ,>t,>¿ /' ', /f'-5 'f ,70 l òE ¡", 't7i't \ , .sî-zl : /ll,a 'tî ,s s:, ,/R'L -35'-3i /l'ss- ,4, ûl E,/.ç ','l ¡i <,-i /i, 7 'lç 3',oo '3{. , '/'t'¿' i ¿,i/ --t l,lu ¡t,(l i/,F S'{a '') [i a t '+s t40 '/, /f 7,3 s* L23 p,¿¿ r.:,lrclr ,ìi,tc (/u.;!t-i."' u,t.., i'i ¡. '/yt',:l ,so F/'/d,-i /)i'¿¿/) /,5û "l ,/¡'?uD //,iÌ¿, Ftil-/ /O ,5 t¡, ,r'Q,1{t 10,¿o ,:y'/-') () , /:j' /,,:ts /¿', 7s /a'/o rl¿¡c-l tl 'ir flo'.rr' /a'/,() /0.8 0 lu¡-? , g0 l/,oo /9,3 t /f 'ç€ ¡1,, i ,ß"> c(3 - | /'û Òa /r:? 'tr\ 0 3'fìo a t://-)^2 /);'os- /8,¿,5. {/,,,/o ' y',¿o Fqq-/ 0, 4,) i/,¿,¿ / /,'"2¿t , //,(: ' 4'q -" 4,¿;5 / I ,l(r i/,',( { //,/s- ¿ ,,. -? "ql'-> /t'E //,fo :/R'Jo ' /l' l.5- ¡.(t"l ?,srt 9,6ç ), lt't/ ' //t" 1z ri ili

I

i\

I TZ4

APPENDIX G

Deta.iled description of the hyd.rograph separation technique.

Discharge at a-rLy tine t during the storm runoff period for a given component is as follows:

Qc=

where Qc is the discharge contribution from the source under consideration. Cst is the total concentration of the characteris tic ion in the streamflow Qst is the total stream discharge

Cc concentration of the characteristic ion in the groundwater

Expressing the above relationship in another manner, the discharge contribution to the streamflow is equal to the product of the dilution ratio and strearn discharge. For each data point, the above calculation is made. It is necessaTy to assume a linear variation in concentration of the characteristic ion during the storm runoff period from a value before to a value after the storm runoff period.