Abstracts for Oral Presentations at Florida Rare Plant Task Force Rare Plant Insect Interactions Thursday, May 9, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts for Oral Presentations at Florida Rare Plant Task Force Rare Plant Insect Interactions Thursday, May 9, 2013 Abstracts for Oral Presentations at Florida Rare Plant Task Force Rare Plant Insect Interactions Thursday, May 9, 2013 Dr. Patti J. Anderson, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL., [email protected] “Regulating Interactions: DPI, Rare Plants, and Insect Pests” Florida Department of Agriculture and Consumer Services Division of Plant Industry’s mission is to protect Florida’s native and commercially grown plants and the state’s apiary industry from harmful pests and diseases. Although much of DPI’s work focuses on pests of agricultural crops, rare plants can benefit from programs for biocontrol of pests and emergency programs to eliminate exotic pests, such as fruit flies. Plant pests can be generalists, damaging a broad range of plants, or specialists, concentrating on a single species, genus or family. Biocontrol projects that target pests of commercially grown plants also benefit their rare relatives. Several of these biological control agents are now considered established in Florida and no longer require special release by DPI. A new program to control air potato (Dioscorea bulbifera), an invasive weed that alters natural habitats, will benefit Florida’s native plants, both rare and not so rare. Dr. Mark Deyrup, Archbold Biological Station, [email protected] “Riddles of Rare Plants and Insects in Florida Scrub” Using studies from Archbold Biological Station and the unusual concentration of rare plants in the Florida scrub, I show that rare plants and rare insects are usually part of some huge generalist network. Insect-flower relationships, even those that include rare plants, are likely to be part of some highly resilient network of relationships. Rare plants must frequently compete with abundant species for pollinators, like a badminton club competing for event attendance with football in a Texas town. Rare plants may also have generalist insect enemies whose populations are kept high by common plants, like a poor homeowner who is a frequent victim of burglars attracted by a surrounding community of rich and careless movie stars. The complexity of these networks in normal natural habitats is so extraordinary that it would be impossible to recreate them or restore them if they were destroyed. From an ecological point of view individual rare species are seldom likely to be “keystone species,” but there are many more rare species than one might suppose, and in the aggregate they probably have an unexpectedly large impact on ecosystem function. There have always been rare plants; why do they even exist? There are also plants that have become rare very recently; will they face a different set of problems from the traditionally rare species? Stories from the Florida scrub may help answer these riddles. Dr. John Geiger, Florida International University, [email protected] “The endangered vine Ipomoea microdactyla (Convolvulaceae): Butterflies good, caterpillars bad, and fire best.” Ipomoea microdactyla, commonly known as wild potato morning-glory, man-in-the-ground, and ‘bejuco colorado’, is a woody, perennial vine found in Cuba, the Bahamian archipelago, and in Florida. In Florida, I. microdactyla is listed as a Florida state endangered species and is restricted to Everglades National Park and to 36 of the remaining ca 400 pine rockland fragments in Miami-Dade County. Population size in most fragments is less than 50 individuals. A study was conducted from 2002-2007 to gauge the demography of this species at 8 pine rockland fragments in Miami-Dade County and at 9 continuous pine forest sites on Andros Island, the Bahamas. Flowering and fruiting was associated with natural and prescribed fires in both regions. Synchronous flowering of individuals post-fire most likely helped overcome the self- incompatible breeding system of this species. Floral visitors were nearly exclusively hummingbirds on Andros Island, while hummingbirds were rarely observed visiting flowers in Miami-Dade, where native solitary bees, introduced honey bees, and butterflies were the predominant floral visitors. Caterpillars of the Arctiid moth, Syntomeida ipomoeae, were observed consuming leaves, green stems, and green fruits from plants at 3 of the 8 Miami-Dade County sites. A similar, unidentified moth species was observed at 6 of the 9 Andros Island sites performing the same behaviors. It appears that insects exert both positive (via pollination) and negative (via herbivory, specifically seed predation) influences on this species. Overall, the main finding of this study is the necessity of fire management to promote reproduction for this endangered species. Dr. Brenda Molano-Flores. University of Illinois, [email protected] “From the Midwest to the Florida Panhandle: rare plant/insect interactions” Regardless of the geographical location, rare plants share similar issues such as habitat loss and degradation. Changes to their habitat not only have an impact on the rare plants, but also on the insects that visit them (pollinators, herbivores and prey). Through a series of examples from previous research conducted in the Midwest to new research being conducted in Florida, an assessment of the benefits and challenges of habitat management on rare plant/insect interactions will be presented. In particular, I will discuss the relationship between Minuartia patula and pollinators, Agalinis auriculata and Synthris bullii and herbivores, and Pinguicula spp. and prey. I will examine the question: Do we need to make habitat management decisions for each species individually, or are there broad recommendations that we can make that will benefit rare plant/ insect interactions in general? Dr. Pedro F Quintana-Ascencio, Elizabeth Stephens, and Matthew Tye, Department of Biology, University of Central Florida, Orlando, FL., [email protected] “Experimental demography: How field experiments and population modeling can inform restoration and management of Florida Scrub” We conducted seed removal and germination experiments for five rare (Liatris ohlingerae, Eryngium cuneifolium, Polygonella basiramia, Hypericum cumulicola, Paronychia chartacea subsp. chartacea) and two common herbs (Chamaecrista fasciculata and Balduina angustifolia) to evaluate the effect of degraded and intact scrub and microsites (bare sand, litter only, and under shrubs with litter) on population dynamics. The species with the largest seeds (L. ohlingerae) was removed in higher frequency in degraded scrub, likely by vertebrates. H. cumulicola and P. chartacea had the smallest seeds and were removed by invertebrates and in higher frequency in intact scrub. E. cuneifolium germinated more in degraded scrub and P. chartacea had significantly more germination in intact scrub. E. cuneifolium, H. cumulicola and P. chartacea had higher germination in bare sand than in litter or under shrubs. We used data from field experiments coupled with observations on seed production and plant survival to parameterize matrix models exploring the effect of habitat and microsite on demography of the common herbs. Models evaluated scenarios of successional change associated to human disturbance. Population growth was greatest in degraded habitat for C. fasciculata and similar between habitats for B. angustifolia. Bare sand had the greatest positive contributions to population growth for B. angustifolia. Our results suggest that for our study species bare sand gaps in intact scrub may not be equivalent to bare sand areas in the degraded scrub. Our study further emphasizes intact scrub is ecologically complex and this is critical to consider in the process of habitat restoration efforts. Dr. Matthew L. Richardson, USDA-ARS, Port St Lucie, FL; [email protected] “Influence of habitat on pollinators and pollination success of Lakela’s Mint” Lakela’s mint, Dicerandra immaculata Lakela var. immaculata (Lamiaceae), is a critically endangered plant known only from a few locations in Florida scrub. I identified the natural habitat of Lakela’s Mint, insect pollinators, and possible influences of habitat on pollination. Lakela’s mint tended to grow in areas with open gaps at ground and canopy-level. Over 93% of the pollinators were honeybees, which are nonnative pollinators. Native pollinators included bumblebees, butterflies and moths, true flies, and a wasp. Honeybees were more likely to visit plants in sunny habitat and those with large floral displays, whereas native pollinators were only influenced by the size of the floral display. The number of flowers visited by a honeybee within a plant was not influenced by the size of the floral display or sunlight, but honeybees visited nearly three times more flowers within a plant than native pollinators. The number of calyxes on a plant, which is an indication of how many flowers were fertilized, was not influenced by sunlight, but was influenced by the size of the plant (i.e., larger plants had more calyxes per stem). Overall, these results indicate that 1) pollinators and pollination are not limiting in shaded habitat (and therefore do not drive the spatial distribution of Lakela’s Mint); 2) larger plants experience greater pollination; and 3) Lakela’s Mint may be pollinated primarily by nonnative honeybees. The efficiency of honeybees as pollinators as well as their influence on population genetics of Lakela’s mint (honeybees may promote more selfing) should be explored. Dr. Alex Segarra, Merari Feliciano & Rosa A. Franqui. Department of Crops and Agro- Environemntal Sciences.
Recommended publications
  • Loss of Pathogens in Threatened Plant Species
    Oikos 119: 1919–1928, 2010 doi: 10.1111/j.1600-0706.2010.18616.x © 2010 Th e Authors. Oikos © 2010 Nordic Society Oikos Subject Editor: Hamish McCallum. Accepted 7 May 2010 Loss of pathogens in threatened plant species Amanda K. Gibson, Jorge I. Mena-Ali and Michael E. Hood A. K. Gibson, J. I. Mena-Ali and M. E. Hood ([email protected]), Dept of Biology, McGuire Life Sciences Building, Amherst College, Rts 9 and 116, Amherst, MA 01002-5000, USA. Global declines in biodiversity create an urgent need to address the impact of infectious disease in the small and fragmented populations that characterize threatened species. However, the paucity of empirical data provides little ability to pre- dict whether disease generally accelerates threatened species towards extinction or becomes less important as populations decline. Th is study tests whether plant species threatened with extinction exhibit lower disease frequencies and lower over- all parasite species richness while also experimentally testing for the eff ect of physiological disease resistance. Herbarium surveys of the genus Silene revealed that anther-smut disease was signifi cantly less frequent in threatened species than non-threatened species, and this eff ect was not constrained by the host phylogeny or by physiological resistance. Moreover, analysis across a much broader range of plants (using US Federal designations) revealed that species with endangered status had signifi cantly lower species richness of fungal pathogens than closely-related, non-endangered species. Th ese results support the role of host ecology, rather than physiological resistance or phylogeny, in determining overall lower incidences and diversity of diseases in plant species threatened by extinction.
    [Show full text]
  • Burn Severity in a Central Florida Sand Pine Scrub Wilderness Area
    BURN SEVERITY IN A CENTRAL FLORIDA SAND PINE SCRUB WILDERNESS AREA By DAVID ROBERT GODWIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 David Robert Godwin 2 To my family and grandparents who have worked tirelessly to provide for my education and who instilled in me an interest in the natural world. 3 ACKNOWLEDGMENTS This study would not have been possible without the encouragement, support, and guidance of my major professor (Dr. Leda Kobziar) and my supervisory committee members (Dr. Scot Smith and Dr. George Tanner). This research was funded by a grant from the University of Florida Institute of Food and Agricultural Sciences (IFAS) Innovation Fund entitled: “Fire in The Juniper Prairie Wilderness: A Viable Management Tool?” Data analysis assistance was graciously provided by Dr. Leda Kobziar and Meghan Brennan, IFAS Statistics Department. Field data were collected through the tireless assistance of University of Florida Fire Science Lab technicians and students: Erin Maehr, Mia Requensens, Chris Kinslow and Cori Peters. Remote sensing software guidance and meticulous digital aerial imagery delineations were provided by Zoltan Szantoi, with help from Dr. Alan Long and Dr. Leda Kobziar. Some spatial data were provided by the Ocala National Forest, USDA Forest Service, through the assistance of Mike Drayton and Janet Hinchee. SPOT images were purchased through funds provided by Dr. Scott Smith. Landsat images were obtained from the Multi- Resolution Land Characteristics Consortium (MRLC). Finally, I thank my loving wife, brother, parents and grandparents for their patience, encouragement and dedication to my completion of this study.
    [Show full text]
  • Post-Dispersal Seed Predation, Germination, and Seedling Survival of Five Rare Florida Scrub Species in Intact and Degraded Habitats Author(S) :Elizabeth L
    Post-Dispersal Seed Predation, Germination, and Seedling Survival of Five Rare Florida Scrub Species in Intact and Degraded Habitats Author(s) :Elizabeth L. Stephens, Luz Castro-Morales, and Pedro F. Quintana-Ascencio Source: The American Midland Naturalist, 167(2):223-239. 2012. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/0003-0031-167.2.223 URL: http://www.bioone.org/doi/full/10.1674/0003-0031-167.2.223 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2012) 167:223–239 Post-Dispersal Seed Predation, Germination, and Seedling Survival of Five Rare Florida Scrub Species in Intact and Degraded Habitats 1 ELIZABETH L. STEPHENS, LUZ CASTRO-MORALES AND PEDRO F. QUINTANA-ASCENCIO Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando 32816 ABSTRACT.—Knowledge of seed ecology is important for the restoration of ecosystems degraded by anthropogenic activities.
    [Show full text]
  • Hawkes CV (2004) Effects of Biological Soil Crusts on Seed Germination of Four Endangered Herbs in a Xeric Florida Shrubland During Drought
    Hawkes CV (2004) Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecol 170:121- 134 In a south-central Florida rosemary shrubland, the effects of biological soil crusts on the germination of four small-seeded herbs (Eryngium cuneifolium, Hypericum cumulicola, Paronychia chartacea, and Polygonella basiramia) were studied using a series of greenhouse and field experiments. This study sought to determine propitious environmental conditions for the continued survival of these four federally endangered species and further develop our limited understanding of the effects of biological soil crusts on the germination of vascular plants. In the greenhouse experiment, three of the four species (Eryngium cuneifolium, Hypericum cumulicola, and Paronychia chartacea) showed significantly greater germination in pots with crust left intact than in pots with destroyed, or autoclaved crust. The other species (Polygonella basiramia) showed no significant difference in germination between the two treatments. In the field experiment, plots were established in which resident soil crusts were either left intact, flamed, or mechanically disturbed. To investigate the effects of time since fire and distance to dominant shrub (Florida rosemary, Ceratiola ericoides), plots were set-up in three ages of postfire and two distances from the dominant shrub (away and near). Seeds of all four species were disseminated in field plots and checked monthly for germination. One species, Hypericum cumulicola, showed significant levels of increased germination in plots with crust as opposed to burned or disturbed plots. Germination was low for all four herbs and each species showed a unique response to effects of soil crust disturbance, time since fire, and distance to C.
    [Show full text]
  • Effects on Demography of Eryngium Cuneifolium (Apiaceae), a Florida Scrub Endemic Plant Author(S): Eric S
    Microhabitat and Time-Since-Fire: Effects on Demography of Eryngium cuneifolium (Apiaceae), A Florida Scrub Endemic Plant Author(s): Eric S. Menges and Jennifer Kimmich Source: American Journal of Botany, Vol. 83, No. 2 (Feb., 1996), pp. 185-191 Published by: Botanical Society of America, Inc. Stable URL: http://www.jstor.org/stable/2445937 Accessed: 28-01-2016 19:56 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America, Inc. is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org This content downloaded from 76.7.44.249 on Thu, 28 Jan 2016 19:56:08 UTC All use subject to JSTOR Terms and Conditions AmericanJournal of Botany 83(2): 185-191. 1996. MICROHABITAT AND TIME-SINCE-FIRE: EFFECTS ON DEMOGRAPHY OF ERYNGIUM CUNEIFOLIUM (APIACEAE), A FLORIDA SCRUB ENDEMIC PLANT1 ERIC S. MENGES2 AND JENNIFER KIMMICH3 ArchboldBiological Station,PO. Box 2057, Lake Placid, Florida 33862 Eryngiumcuneifolium Small. (Apiaceae) is a narrowlydistributed endemic found only in Ceratiola ericoides (Florida rosemary)-dominatedFlorida scrub, a periodicallyburned, shrub-dominated habitat. Multivariate analyses using 22 micro- habitatcharacteristics indicated significantmicrohabitat and time-since-fireeffects on survival, growth,and fecundityof 1287 individualsover a 4-yrperiod.
    [Show full text]
  • Outplanting of the Endangered Pondberry
    OUTPLANTING OF THE ENDANGERED PONDBERRY Margaret S. Devall, Nathan M. Schiff, and Stephanie A. Skojac1 Abstract—Pondberry [Lindera melissifolia (Walt) Blume, Lauraceae] is an endangered shrub that occurs in seasonally flooded wetlands in the Southeastern United States. We established new pondberry populations as an aid in conserving the species, whose distribution and abundance have been affected by habitat destruction and alteration. We dug equal numbers of young male and female pondberry stems from a natural population, planted them in pots, and translocated them to five protected locations in the field. After 1 year, 69 percent of the plants survived, with male and female plants surviving equally well. More than 90 percent of the surviving plants had stems that increased in height, although the height of the tallest stems decreased. Many of the plants produced new stems, but some older stems died during the year. Most of the present pondberry habitat is surrounded by agricultural fields, which significantly limits dispersal. This study shows that pondberry can be successfully outplanted, in efforts to assure survival of the species. INTRODUCTION Pondberry is dioecious, with small yellow flowers that bloom Pondberry [Lindera melissifolia (Walt) Blume, Lauraceae] is in spring. The plant usually occurs in clones with numerous a rare woody plant that occurs in seasonally flooded wet- stems, but because the species is clonal, colonies with lands and on the edges of sinks, ponds, and depressions abundant stems may contain few genets (genetic indivi- in the Southeastern United States (Radford and others duals) (Eriksson 1992, Oinonen 1967). Male stems out- 1968). The plant is a stoloniferous, clonal shrub that grows number female stems in most colonies, and some colonies to 2 m in height.
    [Show full text]
  • (Fabaceae) at Wild and Introduced Locations in Florida Scrub
    Plant Ecol DOI 10.1007/s11258-014-0310-6 Microhabitat of critically endangered Lupinus aridorum (Fabaceae) at wild and introduced locations in Florida scrub Matthew L. Richardson • Juliet Rynear • Cheryl L. Peterson Received: 23 September 2013 / Accepted: 30 January 2014 Ó Springer Science+Business Media Dordrecht (outside the USA) 2014 Abstract Elucidating microhabitat preferences of a Our research determined that L. aridorum is diploid and rare species are critical for its conservation. Lupinus grew, on average, in areas closer to trees and shrubs, aridorum McFarlin ex Beckner (Fabaceae) is a critically with lower soil moisture, and with a greater mixture of endangered plant known only from a few locations in detritus than random locations. Some microhabitat imperiled Florida scrub habitat and nothing is known characteristics at locations where L. aridorum were about its preferred microhabitat. Our goals were three- introduced were similar to microhabitat supporting wild fold. First, determine whether L. aridorum has multiple L. aridorum, but multiple soil characteristics differed as cytotypes because this can influence its spatial distribu- did the plant community, which contained more non- tion. Second, measure how microhabitat characteristics native plant species near introduced plants. Therefore, at locations supporting wild L. aridorum vary from the realized niche is narrower than the fundamental random locations, which will provide information about niche. Overall, information about the microhabitat of microhabitat characteristics that influence the spatial L. aridorum canbeusedtodesignappropriatemanage- distribution of individuals. Third, measure whether ment programs to conserve and restore populations of microhabitat characteristics differ between locations this plant species and species that occupy a similar niche supporting wild or introduced plants, which will provide in imperiled Florida scrub.
    [Show full text]
  • The Effect of Season of Fire on the Recovery of Florida Scrub
    2B.7 THE EFFECT OF SEASON OF FIRE ON THE RECOVERY OF FLORIDA SCRUB Tammy E. Foster* and Paul A. Schmalzer Dynamac Corporation, Kennedy Space Center, Florida 1. ABSTRACT∗ scrub, rosemary scrub, and scrubby flatwoods (Myers 1990, Abrahamson and Hartnett 1990). Florida scrub is a xeromorphic shrubland that is Florida scrub is habitat for threatened and maintained by frequent fires. Historically, these fires endangered plants and animals (Christman and Judd occurred during the summer due to lightning ignition. 1990, Stout and Marion 1993, Stout 2001). Today, Florida scrub is often managed by the use of Management of remaining scrub is critical to the survival prescribed burning. Prescribed burning of scrub has of these species. Scrub is a fire-maintained system been implemented on Kennedy Space Center/Merritt (Myers 1990, Menges 1999), and recovery after fire of Island National Wildlife Refuge (KSC/MINWR) since oak scrub and scrubby flatwoods is primarily through 1981, with burns being carried out throughout the year. sprouting and, in some species, clonal spread of the The impacts of the season of burn on recovery are not dominant shrubs (Abrahamson 1984a, 1984b, known. Long-term monitoring of scrub regeneration has Schmalzer and Hinkle 1992a, Menges and Hawkes been conducted since the early-1980’s at KSC/MINWR 1998). Scrub naturally burned during the summer using permanent 15 m line-intercept transects. We months due to lightning ignition. However, landscape obtained data from eight transects that were subjected fragmentation and fire suppression have reduced fire to a winter burn in 1986 and a summer burn in 1997 and size and frequency (Myers 1990, Duncan and compared the recovery of the stand for the first five Schmalzer 2001).
    [Show full text]
  • Liatris Ohlingerae)
    Scrub Blazingstar (Liatris ohlingerae) 5-Year Review: Summary and Evaluation Photo: David Bender / USFWS U.S. Fish and Wildlife Service Southeast Region South Florida Ecological Services Field Office Vero Beach, Florida 5-YEAR REVIEW Scrub blazingstar / Liatris ohlingerae I. GENERAL INFORMATION A. Methodology used to complete the review: This review is based on monitoring reports, surveys, and other scientific information, augmented by conversations and comments from biologists familiar with scrub blazingstar. The review was conducted by the lead recovery biologist for the species in the U.S. Fish and Wildlife Service (Service), South Florida Ecological Services Field Office. Literature and documents used for this review are on file at the South Florida Ecological Services Field Office. All recommendations resulting from this review are a result of thoroughly analyzing the best available scientific information on the scrub blazingstar. Public notice of this review was given in the Federal Register on April 9, 2009, with a 60-day public comment period (74 FR 16230). No part of the review was contracted to an outside party. Comments received and suggestions from peer reviewers were evaluated and incorporated as appropriate (see Appendix A). B. Reviewers Lead Region: Southeast Region, Kelly Bibb, 404-679-7132 Lead Field Office: South Florida Ecological Services Field Office, David Bender, 772-562- 3909 C. Background 1. Federal Register Notice citation announcing initiation of this review: April 9, 2009. 74 FR 16230. 2. Species status: (2009 Recovery Data Call). Florida Natural Areas Inventory has 91 extant occurrence records, 62 of which are protected on 23 managed areas. Fire suppression and habitat loss continue to be threats to occurrences on private land, except those owned by Archbold Biological Station and The Nature Conservancy.
    [Show full text]
  • PALM 31 3 Working.Indd
    Volume 31: Number 3 > 2014 The Quarterly Journal of the Florida Native Plant Society Palmetto Rare Plant Conservation at Bok Tower Gardens ● Yaupon Redeemed ● The Origin of Florida Scrub Plant Diversity Donna Bollenbach and Juliet Rynear A Collaboration of Passion, Purpose and Science Bok Tower Gardens Rare Plant Conservation Program “Today nearly 30 percent of the native fl ora in the United States is considered to be 1 of conservation concern. Without human intervention, many of these plants may be gone within our lifetime. Eighty percent of the at-risk species are closely related to plants with economic value somewhere in the world, and more than 50 percent are related to crop species...but it can be saved.” – Center for Plant Conservation Ask the average Florida citizen to name at least one endangered native animal in the state and they will likely mention the Florida manatee or the Florida panther. Ask the same person to name one endangered native plant and they give you a blank stare. Those of us working to conserve Florida’s unique plant species know this all 2 too well, and if the job isn’t diffi cult enough, a lack of funding and support for the conservation of land supporting imperiled plant communities makes it harder. Bok Tower Gardens Rare Plant Conservation Program is one of 39 botanical institutions throughout the United States that collaborate with the Center for Plant Conservation (CPC) to prevent the extinction of native plants in the United States. Created in 1984, CPC institutions house over 750 living specimens of the nation’s most endangered native plants, the largest living collection of rare plants in the world.
    [Show full text]
  • Menges CV------Page 1 of 26
    Menges CV--------------------------------------------------------------------------Page 1 of 26 CURRICULUM VITAE NAME: ERIC. S. MENGES Updated October 2010 ADDRESS: Archbold Biological Station P.O. Box 2057 Lake Placid, FL 33862 Office: 863-465-2571 Home: 863-471-2197 Fax: 863-699-1927 e-mail:[email protected] RESEARCH POSITIONS: Archbold Biological Station, Lake Placid, Florida 1988- Senior Research Biologist (January 1997-present) present Associate Research Biologist (June 1991-December 1996) Assistant Research Biologist (June 1988-May 1991) Current research on demography and life history of plant populations, effects of habitat fragmentation on genetic structure and ecological traits, modeling extinction probability and population viability, genetic variation in rare plants and its implications for conservation, life history adaptations of Florida scrub plants to fire, fire effects on plant population dynamics, land management effects on vegetation and rare species. Study species include scrub balm (Dicerandra frutescens), wedge-leaved Eryngium (Eryngium cuneifolium), and several other rare plant species. Community dynamics in Florida sand pine scrub, and other upland plant communities, including the role of fire. Plant and soil water relations of Florida scrub. Monitoring methods. Restoration of Florida scrub, sandhill, and other ecosystems. Ecology of reintroductions. Restoration ecology, Ecology and restoration of Blue Ridge high elevation rare plants. Biotic Resources Program, Holcomb Research Institute, Butler University, Indianapolis, Indiana 1983-1988 Research Scientist (January 1984 - May 1988) Research Associate (June 1983 - December 1983) RESEARCH ASSOCIATE: Chicago Botanic Garden (2006-present) EDUCATION: PhD.- Botany, Univ. of Wisconsin (Madison) 1983. Zoology minor. Advisor: Donald M. Waller. Thesis title: Life history, allocation, and geometry of Laportea canadensis, a clonal forest perennial, and plant strategies in floodplain forest herbs.
    [Show full text]
  • Appendix D to ERP Application Listed Species Occurrences and Project
    Appendix D to ERP Application NUCOR Steel Micro Mill Appendix D to ERP Application Listed Species Occurrences and Project Effects for Nucor Steel Micro Mill in Avon Park, Polk County, Florida This listed species occurrence information and project effects discussion is supplemental to the Wetlands and Habitat Assessment Technical Memorandum (Appendix C), which is also attached to the ERP application. See Appendix C for project description and location map. This supplemental information is provided to assist the technical review of the project’s potential effect on Federal and State listed species and/or their habitats. Included with this supplemental information are these figures: Figure D1 – Wildlife Observations Onsite and within 1 Mile Radius Figure D2 – Wildlife Observation Records and Crossings within 5 Mile Radius Figure D3 – Site Photographs May-June 2018 Wildlife and Habitat Onsite Habitat The entire area is currently managed citrus cultivation. No natural upland habitats remain in the project area. A small area of mature oak trees near the former home site remains near Pabor Lake to the south. Construction contractors’ trailers will be parked in that area. Access roads of compacted imported clay fill soil or compacted sand and densely grass, encircle and traverse the groves. These conditions can be seen in site photographs attached to this Appendix D. The citrus groves offer minimal habitat requirements for very few listed species. No wetland habitats or other surface water habitats occur within the project footprint, including the proposed rail spur, and access roads. Offsite Habitat The micro mill will be over 1000 feet from any remaining non-cultivated uplands east and west of the proposed development site.
    [Show full text]