1 Extensive Loss of Cell Cycle and DNA Repair Genes in an Ancient Lineage of Bipolar Budding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Absorption of Mutational Trends by Prion-Forming Domains During Saccharomycetes Evolution
Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution Paul M. Harrison Department of Biology, McGill University, Monteal, Quebec, Canada ABSTRACT Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions. -
Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
| YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. -
Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review
fermentation Review Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review Valentina Martin, Maria Jose Valera , Karina Medina, Eduardo Boido and Francisco Carrau * Enology and Fermentation Biotechnology Area, Food Science and Technology Department, Facultad de Quimica, Universidad de la Republica, Montevideo 11800, Uruguay; [email protected] (V.M.); [email protected] (M.J.V.); [email protected] (K.M.); [email protected] (E.B.) * Correspondence: [email protected]; Tel.: +598-292-481-94 Received: 7 August 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on mature grapes and play a significant role at the beginning of fermentation, producing enzymes and aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis, H. guilliermondii, H. uvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae, H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive contribution to winemaking. Some consistent results have shown more intense flavors and complex, full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases in alcohols and acids have been reported, due to different fermentation pathways compared to conventional wine yeasts. -
Identification and Phylogeny of Ascomycetous Yeasts from Analysis
Antonie van Leeuwenhoek 73: 331–371, 1998. 331 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences Cletus P. Kurtzman∗ & Christie J. Robnett Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Ser- vice, U.S. Department of Agriculture, Peoria, Illinois 61604, USA (∗ author for correspondence) E-mail: [email protected] Received 19 June 1998; accepted 19 June 1998 Key words: Ascomycetous yeasts, phylogeny, ribosomal DNA, systematics Abstract Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported. Introduction lesser ranges of nDNA relatedness than those found among heterothallic species. Disadvantages of nDNA reassociation studies in- Procedures commonly used for yeast identification clude the need for pairwise comparisons of all isolates rely on the appearance of cellular morphology and dis- under study and that resolution is limited to the ge- tinctive reactions on a standardized set of fermentation netic distance of sister species, i.e., closely related and assimilation tests. -
Use of Conventional Taxonomy, Electrophoretic Karyotyping and DNA–DNA Hybridization for the Classification of Fermentative Apiculate Yeasts
International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1665–1672 Printed in Great Britain Use of conventional taxonomy, electrophoretic karyotyping and DNA–DNA hybridization for the classification of fermentative apiculate yeasts Ann Vaughan-Martini, Paola Angelini and Gianluigi Cardinali Author for correspondence: Ann Vaughan-Martini. Tel: j39 075 585 6479. Fax: j39 075 585 6470. e-mail: avaughan!unipg.it Industrial Yeasts Collection A taxonomic study was conducted that considered strains of the genera (DBVPG), Dipartimento di Hanseniaspora/Kloeckera held in the Industrial Yeasts Collection (DBVPG) of Biologia Vegetale, ' Universita' di Perugia, Sez. the Dipartimento di Biologia Vegetale of the Universita di Perugia, Italy. Microbiologia Applicata, Standard phenotypic as well as molecular criteria were considered in a effort Borgo XX Giugno 74, to revisit the classification of these strains, some of which have been in the 06121 Perugia, Italy collection for about 50 years. Results of salient physiological tests showed that some of the DBVPG and type strains could not be identified by current taxonomic keys. Electrophoretic karyotypes were identical for some species, with the type strains of the seven accepted species showing only five distinct chromosomal patterns. DNA–DNA hybridization analyses, using a non- radioactive dot-blot technique, allowed for the distinction of taxa. The taxonomic implications of these results are discussed. Keywords: Hanseniaspora, conventional and molecular taxonomy, non-radioactive dot-blot DNA reassociation, pulsed-field gel electrophoresis INTRODUCTION confirm sporulation in some strains of Hansenia and therefore assigned it to an anamorphic taxon of The genus Hanseniaspora was created when Klo$ cker fermenting, apiculate yeasts. He then proposed the (1912) described the species Hanseniaspora valbyensis, generic name Hanseniaspora for the perfect taxa. -
1 Extensive Loss of Cell Cycle and DNA Repair Genes in an Ancient Lineage of Bipolar Budding
bioRxiv preprint doi: https://doi.org/10.1101/546366; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Extensive loss of cell cycle and DNA repair genes in an ancient lineage of bipolar budding 2 yeasts 3 4 Jacob L. Steenwyk1, Dana A. Opulente2, Jacek Kominek2, Xing-Xing Shen1, Xiaofan Zhou3, 5 Abigail L. Labella1, Noah P. Bradley1, Brandt F. Eichman1, Neža Čadež5, Diego Libkind6, 6 Jeremy DeVirgilio7, Amanda Beth Hulfachor4, Cletus P. Kurtzman7, Chris Todd Hittinger2*, and 7 Antonis Rokas1* 8 9 1. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 10 2. Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research 11 Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of 12 Wisconsin–Madison, Wisconsin 53706, USA 13 3. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative 14 Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China 15 4. Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow 16 Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, 17 USA 18 5. University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, 19 Jamnikarjeva 101, 1000 Ljubljana, Slovenia 20 6. Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino 21 Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del 22 Comahue - CONICET, San Carlos de Bariloche, 8400, Río Negro, Argentina 1 bioRxiv preprint doi: https://doi.org/10.1101/546366; this version posted February 11, 2019. -
The Numerical Taxonomy of Pathogenic Species of Candida
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1985 The numerical taxonomy of pathogenic species of candida William James Crozier University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Crozier, William James, The numerical taxonomy of pathogenic species of candida, Master of Science thesis, Department of Biology, University of Wollongong, 1985. https://ro.uow.edu.au/theses/2618 Research Online is the open access institutional repository for the University of Wollongong. -
Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics .............................................................................................................................. -
C. P. Kurtzman's Evolving Concepts of Species, Genus and Higher Categories
FEMS Yeast Research, 18, 2018, foy103 doi: 10.1093/femsyr/foy103 Advance Access Publication Date: 20 September 2018 Minireview MINIREVIEW C. P. Kurtzman’s evolving concepts of species, genus Downloaded from https://academic.oup.com/femsyr/article/18/8/foy103/5104380 by guest on 29 September 2021 and higher categories Marc-Andre´ Lachance Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada Corresponding author: Tel. 1-519-661-3752; E-mail: [email protected] One sentence summary: Cletus P. Kurtzman revolutionised yeast systematics; this is an overview of the evolution of his thoughts on yeast species, genera and higher categories. Editor: Teun Boekhout ABSTRACT Cletus P. Kurtzman transformed the way yeast systematists practice their trade and how they perceive the yeast species. He redefined many genera of ascomycetous yeasts and provided a sound basis upon which to base higher taxonomic categories. Within his extraordinary corpus lies a trail of elements that can be used to reconstruct his evolving vision of the concepts that underlie the species and the genus, rarely set in a theoretical framework. While occasionally tipping his hat to the biological and phylogenetic species, Kurtzman espoused a concept founded primarily on genetic distance, even when claiming otherwise. In contrast, his notion of genus incorporated components of both genetic distance and phylogenetic structure, and possibly a size consideration. A phylogenetic approach predominated with higher taxa. Keywords: Cletus P. Kurtzman; yeast species; yeast genus; genetic distance; phylogenetics; Ascomycetes INTRODUCTION Kurtzman’s laboratory lived up to the highest standards and implemented forefront methodologies for imaging, ascospore ‘I have never done anything “useful”. -
A Curated Ortholog Database for Yeasts and Fungi Spanning 600 Million Years of Evolution
bioRxiv preprint doi: https://doi.org/10.1101/237974; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution Kevin Correia1, Shi M. Yu1, and Radhakrishnan Mahadevan1,2,* 1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada, ON 2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada Corresponding author: Radhakrishnan Mahadevan∗ Email address: [email protected] ABSTRACT Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML were used to reconstruct the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://kcorreia.github. io/aybrah/) to review ortholog groups, predictions for mitochondrial localization and transmembrane domains, literature references, and phylogenetic reconstructions. -
Taxonomy of Yeasts
^ÍV/-^ TECHmcAL BULLETIN NO. 1029 May 1951 .— 5 Taxonomy of Yeasts By LYNFERD J. WICKERHAM Zymologist Northern Regional Research Laboratory Bureau of Agricultural and Industrial Chemistry Agricultural Research Administration -- ! f^ R A R Y Jüri¿ 51951 U.Î. ainnrmm sf A«RIOüLTURí UNITED STATES DEPARTMENT OF AcKictrLTURE, WASHINGTON, D. C. PREFACE In early attempts at yeast classification, the characteristics em- ployed for separating the larger groups of yeasts were the ability to grow as filaments, the ability to produce asci which consist of two cells fused together, the shape of the ascospores, the ability to pro- duce a gaseous fermentation of one or more sugars, and the ability to produce pellicles on liquid media. Evidence obtained in the present study indicates that the use of the foregoing characteristics led to the unintentional cleavage of natural, or phylogenetic groups into sections. Moreover, sections of different phylogenetic lines which had in common only one or two of the characteristics just mentioned were often assembled into the same genus. These characteristics, applied by Hansen, Barker, and Klocker dur- ing the early 1900's, continue in use as the basis for separating genera and subgenera in the presently accepted system of yeast classification. As a result, all of the larger genera of both the ascosporogenous and nonascosporogenous yeasts contain dissimilar types. The mixing has been thorough—in many cases the true relationships which exist among species of the different genera have been concealed. Correction of this situation by the arrangement of species m what appear to be phylogenetic lines of related species is believed to be a major advance. -
Genome Sequence of the Non-Conventional Wine
DNA Research, 2019, 26(1), 67–83 doi: 10.1093/dnares/dsy039 Advance Access Publication Date: 20 November 2018 Full Paper Full Paper Downloaded from https://academic.oup.com/dnaresearch/article-abstract/26/1/67/5193709 by Technische Universitaet Muenchen user on 30 April 2020 Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation Isabel Seixas1,2, Catarina Barbosa1,2, Arlete Mendes-Faia1,2, Ulrich Gu¨ ldener3, Roge´ rio Tenreiro2, Ana Mendes-Ferreira1,2*, and Nuno P. Mira4* 1WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Tra´s-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal, 2BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Cieˆncias, Universidade de Lisboa Campo Grande, 1749-016 Lisbon, Portugal, 3Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universita¨t Mu¨nchen, Maximus von-Imhof- Forum 3, 85354 Freising, Germany, and 4Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Te´cnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal *To whom correspondence should be addressed. Tel. þ351218419181. Email: [email protected] (N.P.M.); Tel. þ351 259 350 550. Email: [email protected] (A.M.-F.) Edited by Dr. Katsumi Isono Received 23 May 2018; Editorial decision 13 October 2018; Accepted 16 October 2018 Abstract Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape- musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile.