Genome Sequence of the Non-Conventional Wine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review
fermentation Review Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review Valentina Martin, Maria Jose Valera , Karina Medina, Eduardo Boido and Francisco Carrau * Enology and Fermentation Biotechnology Area, Food Science and Technology Department, Facultad de Quimica, Universidad de la Republica, Montevideo 11800, Uruguay; [email protected] (V.M.); [email protected] (M.J.V.); [email protected] (K.M.); [email protected] (E.B.) * Correspondence: [email protected]; Tel.: +598-292-481-94 Received: 7 August 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on mature grapes and play a significant role at the beginning of fermentation, producing enzymes and aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis, H. guilliermondii, H. uvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae, H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive contribution to winemaking. Some consistent results have shown more intense flavors and complex, full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases in alcohols and acids have been reported, due to different fermentation pathways compared to conventional wine yeasts. -
Identification and Phylogeny of Ascomycetous Yeasts from Analysis
Antonie van Leeuwenhoek 73: 331–371, 1998. 331 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences Cletus P. Kurtzman∗ & Christie J. Robnett Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Ser- vice, U.S. Department of Agriculture, Peoria, Illinois 61604, USA (∗ author for correspondence) E-mail: [email protected] Received 19 June 1998; accepted 19 June 1998 Key words: Ascomycetous yeasts, phylogeny, ribosomal DNA, systematics Abstract Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported. Introduction lesser ranges of nDNA relatedness than those found among heterothallic species. Disadvantages of nDNA reassociation studies in- Procedures commonly used for yeast identification clude the need for pairwise comparisons of all isolates rely on the appearance of cellular morphology and dis- under study and that resolution is limited to the ge- tinctive reactions on a standardized set of fermentation netic distance of sister species, i.e., closely related and assimilation tests. -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
Use of Conventional Taxonomy, Electrophoretic Karyotyping and DNA–DNA Hybridization for the Classification of Fermentative Apiculate Yeasts
International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1665–1672 Printed in Great Britain Use of conventional taxonomy, electrophoretic karyotyping and DNA–DNA hybridization for the classification of fermentative apiculate yeasts Ann Vaughan-Martini, Paola Angelini and Gianluigi Cardinali Author for correspondence: Ann Vaughan-Martini. Tel: j39 075 585 6479. Fax: j39 075 585 6470. e-mail: avaughan!unipg.it Industrial Yeasts Collection A taxonomic study was conducted that considered strains of the genera (DBVPG), Dipartimento di Hanseniaspora/Kloeckera held in the Industrial Yeasts Collection (DBVPG) of Biologia Vegetale, ' Universita' di Perugia, Sez. the Dipartimento di Biologia Vegetale of the Universita di Perugia, Italy. Microbiologia Applicata, Standard phenotypic as well as molecular criteria were considered in a effort Borgo XX Giugno 74, to revisit the classification of these strains, some of which have been in the 06121 Perugia, Italy collection for about 50 years. Results of salient physiological tests showed that some of the DBVPG and type strains could not be identified by current taxonomic keys. Electrophoretic karyotypes were identical for some species, with the type strains of the seven accepted species showing only five distinct chromosomal patterns. DNA–DNA hybridization analyses, using a non- radioactive dot-blot technique, allowed for the distinction of taxa. The taxonomic implications of these results are discussed. Keywords: Hanseniaspora, conventional and molecular taxonomy, non-radioactive dot-blot DNA reassociation, pulsed-field gel electrophoresis INTRODUCTION confirm sporulation in some strains of Hansenia and therefore assigned it to an anamorphic taxon of The genus Hanseniaspora was created when Klo$ cker fermenting, apiculate yeasts. He then proposed the (1912) described the species Hanseniaspora valbyensis, generic name Hanseniaspora for the perfect taxa. -
Candida Albicans from Wikipedia, the Free Encyclopedia
Candida albicans From Wikipedia, the free encyclopedia Candida albicans is a type of yeast that is a common member of the human gut flora. It does not proliferate outside the human body.[4] It is Candida albicans detected in the gastrointestinal tract and mouth in 40-60% of healthy adults.[5][6] It is usually a commensal organism, but can become pathogenic in immunocompromised individuals under a variety of conditions.[6][7] It is one of the few species of the Candida genus that causes the human infection candidiasis, which results from an overgrowth of the fungus.[6][7] Candidiasis is for example often observed in HIV-infected patients.[8] C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human Candida albicans visualised using [9][10] tissue. C. albicans, together with C. tropicalis, C. parapsilosis scanning electron microscopy. Note the and C. glabrata, is responsible for 50–90% of all cases of candidiasis in abundant hypal mass. humans.[7][11][12] A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans.[13] Estimates Scientific classification range from 2800 to 11200 deaths caused annually in the USA due to C. Kingdom: Fungi albicans causes candidiasis.[14] Division: Ascomycota C. albicans is commonly used as a model organism for biology. It is generally referred to as a dimorphic fungus since it grows both as yeast Class: Saccharomycetes and filamentous cells. However it has several different morphological Order: Saccharomycetales phenotypes. C. albicans was for a long time considered an obligate diploid organism without a haploid stage. -
1 Extensive Loss of Cell Cycle and DNA Repair Genes in an Ancient Lineage of Bipolar Budding
bioRxiv preprint doi: https://doi.org/10.1101/546366; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Extensive loss of cell cycle and DNA repair genes in an ancient lineage of bipolar budding 2 yeasts 3 4 Jacob L. Steenwyk1, Dana A. Opulente2, Jacek Kominek2, Xing-Xing Shen1, Xiaofan Zhou3, 5 Abigail L. Labella1, Noah P. Bradley1, Brandt F. Eichman1, Neža Čadež5, Diego Libkind6, 6 Jeremy DeVirgilio7, Amanda Beth Hulfachor4, Cletus P. Kurtzman7, Chris Todd Hittinger2*, and 7 Antonis Rokas1* 8 9 1. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 10 2. Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research 11 Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of 12 Wisconsin–Madison, Wisconsin 53706, USA 13 3. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative 14 Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China 15 4. Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow 16 Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, 17 USA 18 5. University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, 19 Jamnikarjeva 101, 1000 Ljubljana, Slovenia 20 6. Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino 21 Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del 22 Comahue - CONICET, San Carlos de Bariloche, 8400, Río Negro, Argentina 1 bioRxiv preprint doi: https://doi.org/10.1101/546366; this version posted February 11, 2019. -
Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics .............................................................................................................................. -
C. P. Kurtzman's Evolving Concepts of Species, Genus and Higher Categories
FEMS Yeast Research, 18, 2018, foy103 doi: 10.1093/femsyr/foy103 Advance Access Publication Date: 20 September 2018 Minireview MINIREVIEW C. P. Kurtzman’s evolving concepts of species, genus Downloaded from https://academic.oup.com/femsyr/article/18/8/foy103/5104380 by guest on 29 September 2021 and higher categories Marc-Andre´ Lachance Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada Corresponding author: Tel. 1-519-661-3752; E-mail: [email protected] One sentence summary: Cletus P. Kurtzman revolutionised yeast systematics; this is an overview of the evolution of his thoughts on yeast species, genera and higher categories. Editor: Teun Boekhout ABSTRACT Cletus P. Kurtzman transformed the way yeast systematists practice their trade and how they perceive the yeast species. He redefined many genera of ascomycetous yeasts and provided a sound basis upon which to base higher taxonomic categories. Within his extraordinary corpus lies a trail of elements that can be used to reconstruct his evolving vision of the concepts that underlie the species and the genus, rarely set in a theoretical framework. While occasionally tipping his hat to the biological and phylogenetic species, Kurtzman espoused a concept founded primarily on genetic distance, even when claiming otherwise. In contrast, his notion of genus incorporated components of both genetic distance and phylogenetic structure, and possibly a size consideration. A phylogenetic approach predominated with higher taxa. Keywords: Cletus P. Kurtzman; yeast species; yeast genus; genetic distance; phylogenetics; Ascomycetes INTRODUCTION Kurtzman’s laboratory lived up to the highest standards and implemented forefront methodologies for imaging, ascospore ‘I have never done anything “useful”. -
Downloaded from NCBI Genbank Or Sequence
Lind and Pollard Microbiome (2021) 9:58 https://doi.org/10.1186/s40168-021-01015-y METHODOLOGY Open Access Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing Abigail L. Lind1 and Katherine S. Pollard1,2,3,4,5* Abstract Background: Microbial eukaryotes are found alongside bacteria and archaea in natural microbial systems, including host-associated microbiomes. While microbial eukaryotes are critical to these communities, they are challenging to study with shotgun sequencing techniques and are therefore often excluded. Results: Here, we present EukDetect, a bioinformatics method to identify eukaryotes in shotgun metagenomic sequencing data. Our approach uses a database of 521,824 universal marker genes from 241 conserved gene families, which we curated from 3713 fungal, protist, non-vertebrate metazoan, and non-streptophyte archaeplastida genomes and transcriptomes. EukDetect has a broad taxonomic coverage of microbial eukaryotes, performs well on low-abundance and closely related species, and is resilient against bacterial contamination in eukaryotic genomes. Using EukDetect, we describe the spatial distribution of eukaryotes along the human gastrointestinal tract, showing that fungi and protists are present in the lumen and mucosa throughout the large intestine. We discover that there is a succession of eukaryotes that colonize the human gut during the first years of life, mirroring patterns of developmental succession observed in gut bacteria. By comparing DNA and RNA sequencing of paired samples from human stool, we find that many eukaryotes continue active transcription after passage through the gut, though some do not, suggesting they are dormant or nonviable. We analyze metagenomic data from the Baltic Sea and find that eukaryotes differ across locations and salinity gradients. -
Comparative Genomics of Protoploid Saccharomycetaceae
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution of protoploid yeast genomes ___________________________________________________________________________ Comparative genomics of protoploid Saccharomycetaceae. The Génolevures Consortium (1) Running title: Evolution of protoploid yeast genomes Key words: protein families, synteny, tandems, annotation, SONS, ancestor genome Corresponding author: Jean Luc Souciet Université de Strasbourg, CNRS, UMR 7156 Institut de Botanique, 28 rue Goethe, F-67000 Strasbourg, France Tel: 33 3 90 24 18 17 FAX: 33 3 90 24 20 28 e-mail: [email protected] (1) List of participants and affiliations appear at the end of the paper 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution of protoploid yeast genomes ___________________________________________________________________________ Abstract Our knowledge on yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call “protoploid” because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species, Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade) and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Klyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of ca. -
Kazachstania Molopis Fungal Planet Description Sheets 421
420 Persoonia – Volume 42, 2019 Kazachstania molopis Fungal Planet description sheets 421 Fungal Planet 926 – 19 July 2019 Kazachstania molopis Gouliamova, R.A. Dimitrov, sp. nov. Etymology. molopis, referring to the host beetle Molops piceus (Cara Notes — In our previous article we determined the lower bidae) from which two new strains were isolated. and upper bounds for the range of species discrimination in Classification — Saccharomycetaceae, Saccharomycetales, the Kazachstania clade based on sequence identity value Saccharomycetes. (SI) and distance between physiological profiles (DPP): SI (98.5–83.7 %) and DPP (8–18) (Dimitrov & Gouliamova 2019). After 7 d at 25 °C in 5 % glucose broth, the cells are ovoid to el- A phylogenetic analysis of combined ITS and LSU sequences lipsoidal, 2–4 × 4–7 μm, occurring singly or in clusters. Asexual placed the new strain IMB 4R on a separate branch between K. viti reproduction occurs by multilateral budding. Poorly developed cola and K. kunashiriensis. Pairwise analysis of sequences pseudohyphae can be present. After 7 d at 25 °C on YPGA in a multiple alignment showed that the new strains show (yeast extract, pepton, glucose agar) the colony is cream, bu- 87.95 % identity (847 identical nt., 90 nt subst., 123 gaps) with tyrous, glistening, convex and with an entire margin. Dalmau K. kunashiriensis and 85.49 % identity (884 identical nt., 137 plate culture after 10 d on morphology agar did not show pseu- subst., 138 gaps) with K. viticola. The new strains can be dif- dohyphae or true hyphae. Sexual reproduction was detected ferentiated from both K. -
Taxonomy of Yeasts
^ÍV/-^ TECHmcAL BULLETIN NO. 1029 May 1951 .— 5 Taxonomy of Yeasts By LYNFERD J. WICKERHAM Zymologist Northern Regional Research Laboratory Bureau of Agricultural and Industrial Chemistry Agricultural Research Administration -- ! f^ R A R Y Jüri¿ 51951 U.Î. ainnrmm sf A«RIOüLTURí UNITED STATES DEPARTMENT OF AcKictrLTURE, WASHINGTON, D. C. PREFACE In early attempts at yeast classification, the characteristics em- ployed for separating the larger groups of yeasts were the ability to grow as filaments, the ability to produce asci which consist of two cells fused together, the shape of the ascospores, the ability to pro- duce a gaseous fermentation of one or more sugars, and the ability to produce pellicles on liquid media. Evidence obtained in the present study indicates that the use of the foregoing characteristics led to the unintentional cleavage of natural, or phylogenetic groups into sections. Moreover, sections of different phylogenetic lines which had in common only one or two of the characteristics just mentioned were often assembled into the same genus. These characteristics, applied by Hansen, Barker, and Klocker dur- ing the early 1900's, continue in use as the basis for separating genera and subgenera in the presently accepted system of yeast classification. As a result, all of the larger genera of both the ascosporogenous and nonascosporogenous yeasts contain dissimilar types. The mixing has been thorough—in many cases the true relationships which exist among species of the different genera have been concealed. Correction of this situation by the arrangement of species m what appear to be phylogenetic lines of related species is believed to be a major advance.