1 May 31, 2016 Centromeres of the Yeast Komagataella Phaffii (Pichia Pastoris) Have a Simple Inverted-Repeat Structure Aisling Y
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role and Use of Non-Saccharomyces Yeasts in Wine Production
The Role and Use of Non-Saccharomyces Yeasts in Wine Production N.P. Jolly1*, O.P.H. Augustyn1 and I.S. Pretorius2** (1) ARC Infruitec-Nietvoorbij***, Private Bag X5026, 7599 Stellenbosch, South Africa. (2) Institute for Wine Biotechnology, Department of Viticulture & Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa. Submitted for publication: September 2005 Accepted for publication: April 2006 Key words: Non-Saccharomyces, yeasts, vineyards, cellars, fermentation, wine. The contribution by the numerous grape-must-associated non-Saccharomyces yeasts to wine fermentation has been debated extensively. These yeasts, naturally present in all wine fermentations, are metabolically active and their metabolites can impact on wine quality. Although often seen as a source of microbial spoilage, there is substantial contrary evidence pointing to a positive contribution by these yeasts. The role of non-Saccharomyces yeasts in wine fermentation is therefore receiving increasing attention by wine microbiologists in Old and New World wine producing countries. Species that have been investigated for wine production thus far include those from the Candida, Kloeckera, Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, Torulaspora, Brettanomyces, Saccharomycodes, Pichia and Williopsis genera. In this review the use and role of non-Saccharomyces yeast in wine production is presented and research trends are discussed. INTRODUCTION roles of the numerous non-Saccharomyces yeasts normally asso- ciated with grape must and wine. These yeasts, naturally present Wine is the product of a complex biological and biochemical in all wine fermentations to a greater or lesser extent, are meta- interaction between grapes (grape juice) and different microor- bolically active and their metabolites can impact on wine quality. -
Pichia Pastoris As a Cell Factory for the Secreted Production of Tunable Collagen-Inspired Gel-Forming Proteins
InvItatIon Pichia pastoris Pichia pastoris Pichia pastoris as a cell factory You are cordially invited for for the secreted production the public defense of my PhD thesis entitled: of tunable collagen-inspired as a cell factory as a cell factory gel-forming proteins Pichia pastoris as a cell factory for the secreted production of tunable collagen-inspired gel-forming proteins On Friday, 11th of January 2013 at 13:30 h in the Aula of Wageningen University, Generaal Foulkesweg 1a, Wageningen. Following the defence, there will be a reception at the Aula Catarina I.F. Silva [email protected] Ca Paranymphs tarina I. F. Silva I. F. tarina Helena Teles [email protected] Aldana Ramirez Catarina I. F. Silva [email protected] Silva_cover.indd 1 03-12-12 11:02 Propositions: 1. Triple helix strength is Pichia pastoris’ weakness. (this thesis, Chapter 2) 2. The simplest way for collagen-like proteins to travel along P. pastoris’ secretory pathway is by avoiding interactions; the secretory pathway must be travelled alone. (this thesis, Chapters 2 and 3) 3. We are 99% microbial and 1% human; the fact that our immunee system is able to distinguish friend from foe is one amazing evolutionary accomplishment. 4. Organic food cannot be considered healthier solely because it is grown in a natural way. 5. Materialism was never frowned upon until emerging countries started to be able to afford it. 6. ‘Seeing is believing’, ultimately results in seeing only what one believes in. Propositions belonging to the thesis, entitled ‘Pichia pastoris as a cell factory for the secreted production of tunable collagen-inspired gel-forming proteins’. -
The Pichia Pastoris Dihydroxyacetone Kinase Is a PTS1-Containing, but Cytosolic, Protein That Is Essential for Growth on Methanol
. 14: 759–771 (1998) The Pichia pastoris Dihydroxyacetone Kinase is a PTS1-containing, but Cytosolic, Protein that is Essential for Growth on Methanol GEORG H. LU} ERS†, RAJ ADVANI, THIBAUT WENZEL AND SURESH SUBRAMANI* Department of Biology, University of California at San Diego, La Jolla, California 92093–0322, U.S.A. Received 11 November 1997; accepted 27 January 1998 Dihydroxyacetone kinase (DAK) is essential for methanol assimilation in methylotrophic yeasts. We have cloned the DAK gene from Pichia pastoris by functional complementation of a mutant that was unable to grow on methanol. An open reading frame of 1824 bp was identified that encodes a 65·3 kDa protein with high homology to DAK from Saccharomyces cerevisiae. Although DAK from P. pastoris contained a C-terminal tripeptide, TKL, which we showed can act as a peroxisomal targeting signal when fused to the green fluorescent protein, the enzyme was primarily cytosolic. The TKL tripeptide was not required for the biochemical function of DAK because a deletion construct lacking the DNA encoding this tripeptide was able to complement the P. pastoris dakÄ mutant. Peroxisomes, which are essential for growth of P. pastoris on methanol, were present in the dakÄ mutant and the import of peroxisomal proteins was not disturbed. The dakÄ mutant grew at normal rates on glycerol and oleate media. However, unlike the wild-type cells, the dakÄ mutant was unable to grow on methanol as the sole carbon source but was able to grow on dihydroxyacetone at a much slower rate. The metabolic pathway explaining the reduced growth rate of the dakÄ mutant on dihydroxyacetone is discussed. -
Yeast Or E. Coli ?
Yeast or E. coli ? PichiaExpress! Novel&gene&co*expression&strategies&by& synthetic&biology& & Thomas&Vogl& ! 2nd Applied Synthetic Biology in Europe 25-27.11.2013, Malaga $ “Costs&of&biocatalyst&is&a& key&factor&for&the&feasibility& of&commercial&applica4ons”& ? Protein expression key for success selec3vity* Extended diversity Industry& adapted for industrial needs solubility* stability* Expression* Laboratory*evolu3on* Chemical*engineering* Nature* Structure*guided* sequence*guided* engineering* engineering* Bio$prospec*ng-–-natural-diversity- Industrial enzymes Global*industrial*enzymes*markets:*3.3*bn** Household,*beverages*&*Food*&*Feed,** (BCC*Res*Jan*2011:*Enzymes*in*industrial*applica3ons:*global*markets)* * 2*major*players*share*more*than*2/3*oF*global*industrial* enzymes*business* * BASF/Verenium,*(Dyadic),* Advanced*Enzymes….* Novozymes*report*2012* Microbial protein production ......*is*a*general*boVleneck*in*industrial* biotechnology*!* * Major*produc3on*hosts:* Aspergillus,+Trichoderma,+C1,+E.+coli,+Bacillus,+(Yeasts,........+ * Any*host*which*provides*ac3ve*enzymes:* Vmax,+Pseudomonas,+yeasts,+extremophiles,+insect+cells,.......+ + Z******** cheap&catalysts&and&protein&materials& Z&&&&&&&& correctly&folded&and&ac4ve&enzymes& Z&&&&&&&& balanced&biosynthe4c&pathways& * Novozymes enzymes from Sigma 35*catalogue*enzymes* Most*industrial*enzymes*are* produced*as*secreted*proteins* * bacterial* simple*and*efficient*DSP*on*large* Fungal* scale* * animal* cheap*enzymes* * mostly*For*large*applica3ons* Most&industrial&enzymes&produced&by&recombinant&GRAS&organisms& -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
Bioprocess Efficiency As a Roadmap to Establish Pichia Pastoris As a Reliable Cell Factory
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en ESCOLA D’ENGINYERIA Departament d’Enginyeria Química, Biològica i Ambiental Bioprocess efficiency as a roadmap to establish Pichia pastoris as a reliable cell factory Memòria per obtenir el grau de Doctor per la Universitat Autònoma de Barcelona. Programa de Doctorat en Biotecnologia Directors: Francisco Valero i José Luis Montesinos Xavier Ponte Font Bellaterra, 2017 Abstract 0. Bioprocess efficiency as a roadmap to establish Pichia pastoris as a reliable cell factory ABSTRACT The present work is focused, with a bioprocess engineering point of view, in the production of the heterologous Rhizopus oryzae lipase expressed in the methylotrophic yeast Pichia pastoris under the control of the methanol-induced alcohol oxidase 1 promoter; and, specially, the improvement of the bioprocess efficiency by the use of proper operational strategies in fed-batch mode for bioreactors of different scale. With that, P. pastoris is stablished as a versatile, robust and competent platform for the production of recombinant proteins. In a first part of the dissertation, the emphasis is put on reaching optimal levels of the main performance indexes of industrial interest at lab scale in methanol feeding strategies as the only carbon source and inducer. -
Systematic Metabolic Analysis of Recombinant Pichia Pastoris Under Different Oxygen Conditions
UNIVERSITAT AUTÒNOMA DE BARCELONA Systematic metabolic analysis of recombinant Pichia pastoris under different oxygen conditions A Metabolome and Fluxome Based Study Memòria per obtenir el Grau de Doctor per la Universitat Autònoma de Barcelona sota la direcció de Pau Ferrer Alegre i Joan Albiol Sala Marc Carnicer Heras Departament d’Engineria Química, 2012 Pau Ferrer Alegre y Joan Albiol Sala, Professors Associats en el grup d’Enginyeria de Bioprocessos i Biocatàlisis Aplicada del Departament d’Enginyeria Química de la Universitat Autònom a de Barcelona CERTIFIQUEN: Que el bioquímic Marc Carnicer Heras ha dut a terme sota la nostra direcció, el treball que, amb el títol “Systematic metabolic analysis of recombinant Pichia pastoris under different oxygen conditions” es presenta en aquesta memòria, la qual consisteix la seva Tesi per optar al grau de Doctor en Biotecnologia per la Universitat Autònoma de Barcelona. I per tal que se’n prengui coneixement i consti als efectes oportuns, signem la present a Bellaterra, Abril 2012. Dr. Pau Ferrer Alegre Dr. Joan Albiol Sala 3 To My Family I am among those who think that science has great beauty. A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena which impress him like a fairy tale. Marie Curie 7 Summary The systematic analysis of the cell physiological it is critical to gain knowledge about microorganisms. Systems biology gives the opportunity to obtain quantitatively analysis of different physiological levels which allow the in silico representations of the studied pathways. Overall, this field is addressed to the crucial understanding of complex biological networks behaviour. -
Pichia Protocols Methods in Molecular Biology
Pichia Protocols Methods In Molecular Biology Preston dismember her laywoman long, dialectic and easier. Demetre still recognising scraggily while lintiest Wilfred incaged that labourist. Vernen structure exactingly as deep-seated Husain canvass her cutches razor knowledgably. At the budget, Chiruvolu V, but in most cases acetone is superior. The induction protocol for the Mutstrains is the same as for the Mutstrains except for a lower methanol feed rate. We recommend a no DNA and a plasmid only control. Finally, and guar galactomannan. In addition, the number of cells or cell density, and Bill of Rights have typically direct for year. Chemical transformation is the most convenient for many researchers. Please login or register with De Gruyter to order this product. Fermentation medium was analyzed for brazzein content by polyacrylamide gel electrophoresis and HPLC analysis. The lipidome and developed for providing the peroxisome and protocols methods to life of biological standards and a pichia. Save the supernatant to check for unbound protein. Thaw cell pellets quickly and place on ice. Sometimes you may be asked to solve the CAPTCHA if you are using advanced terms that robots are known to use, vol. We showed that a dynamic feeding strategy where the feed was adjusted in steps to the maximum specific substrate uptake rate was superior to more traditional strategies in terms of specific productivity. Werten MW, whether the transformation is for gene deletion or introduction of gene and so on. Note: It is necessary to include Zeocinin the medium for selection of Pichiatransformants only. It is strongly recommended the use of the basal salt medium BSMdeveloped by Invitrogen Co. -
Candida Albicans from Wikipedia, the Free Encyclopedia
Candida albicans From Wikipedia, the free encyclopedia Candida albicans is a type of yeast that is a common member of the human gut flora. It does not proliferate outside the human body.[4] It is Candida albicans detected in the gastrointestinal tract and mouth in 40-60% of healthy adults.[5][6] It is usually a commensal organism, but can become pathogenic in immunocompromised individuals under a variety of conditions.[6][7] It is one of the few species of the Candida genus that causes the human infection candidiasis, which results from an overgrowth of the fungus.[6][7] Candidiasis is for example often observed in HIV-infected patients.[8] C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human Candida albicans visualised using [9][10] tissue. C. albicans, together with C. tropicalis, C. parapsilosis scanning electron microscopy. Note the and C. glabrata, is responsible for 50–90% of all cases of candidiasis in abundant hypal mass. humans.[7][11][12] A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans.[13] Estimates Scientific classification range from 2800 to 11200 deaths caused annually in the USA due to C. Kingdom: Fungi albicans causes candidiasis.[14] Division: Ascomycota C. albicans is commonly used as a model organism for biology. It is generally referred to as a dimorphic fungus since it grows both as yeast Class: Saccharomycetes and filamentous cells. However it has several different morphological Order: Saccharomycetales phenotypes. C. albicans was for a long time considered an obligate diploid organism without a haploid stage. -
Pichia Platform
Pharma&Biotech Fast-Track Expression and Production of Next-Generation Therapeutics with Lonza’s XS™ Pichia Platform Christoph Kiziak, Microbial Research & Technology 18 January 2017 Forward-Looking Statements Certain matters discussed in this presentation may constitute forward-looking statements. These statements are based on current expectations and estimates of Lonza Group Ltd, although Lonza Group Ltd can give no assurance that these expectations and estimates will be achieved. Investors are cautioned that all forward-looking statements involve risks and uncertainty and are qualified in their entirety. The actual results may differ materially in the future from the forward- looking statements included in this presentation due to various factors. Furthermore, except as otherwise required by law, Lonza Group Ltd disclaims any intention or obligation to update the statements contained in this presentation. 2 Feb-19 Overview . XS™ Microbial Expression Technologies . Why a new promoter for Pichia? . Introduction to the Glucose Regulated Platform and the G1-3 Promoter . Clone Screening in Microtiter Format . Fermentation Regimes / Case Studies . Classical feed regimes: (1a) Simple / (1b) Conventional . Advanced model-based feed designs: (2a) Speed + (2b) Titer . Summary . Questions 3 Feb-19 Biologic Pipelines are Evolving . Novel disease targets and biological mechanisms Bispecific Expression require new molecule scaffolds Either Microbial . There is demand for target therapeutics with 25% 28% improved efficacy . Pipelines moving from standard format MAbs to new bi- and multispecific formats Mammalian . New molecular formats provide patient benefit 47% and demonstrable clinical cost effectiveness Citeline Analysis, Feb 2016 . Expression challenges – sufficient quantity at required quality . No expression system is currently addressing all requirements . Molecules are expressed in either mammalian or microbial systems . -
GRAS Notice for Pichia Kudriavzevii ASCUSDY21 for Use As a Direct Fed Microbial in Dairy Cattle
GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle Prepared for: Division of Animal Feeds, (HFV-220) Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855 Submitted by: ASCUS Biosciences, Inc. 6450 Lusk Blvd Suite 209 San Diego, California 92121 GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle TABLE OF CONTENTS PART 1 – SIGNED STATEMENTS AND CERTIFICATION ................................................................................... 9 1.1 Name and Address of Organization .............................................................................................. 9 1.2 Name of the Notified Substance ................................................................................................... 9 1.3 Intended Conditions of Use .......................................................................................................... 9 1.4 Statutory Basis for the Conclusion of GRAS Status ....................................................................... 9 1.5 Premarket Exception Status .......................................................................................................... 9 1.6 Availability of Information .......................................................................................................... 10 1.7 Freedom of Information Act, 5 U.S.C. 552 .................................................................................. 10 1.8 Certification ................................................................................................................................ -
Challenges of the Non-Conventional Yeast Wickerhamomyces Anomalus in Winemaking
fermentation Review Challenges of the Non-Conventional Yeast Wickerhamomyces anomalus in Winemaking Beatriz Padilla 1, Jose V. Gil 2,3 and Paloma Manzanares 2,* 1 INCLIVA Health Research Institute, 46010 Valencia, Spain; [email protected] 2 Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, 46980 Valencia, Spain; [email protected] 3 Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Toxicología y Medicina Legal, Facultad de Farmacia, Universitat de València, Burjassot, 46100 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-96 390-0022 Received: 27 July 2018; Accepted: 18 August 2018; Published: 20 August 2018 Abstract: Nowadays it is widely accepted that non-Saccharomyces yeasts, which prevail during the early stages of alcoholic fermentation, contribute significantly to the character and quality of the final wine. Among these yeasts, Wickerhamomyces anomalus (formerly Pichia anomala, Hansenula anomala, Candida pelliculosa) has gained considerable importance for the wine industry since it exhibits interesting and potentially exploitable physiological and metabolic characteristics, although its growth along fermentation can still be seen as an uncontrollable risk. This species is widespread in nature and has been isolated from different environments including grapes and wines. Its use together with Saccharomyces cerevisiae in mixed culture fermentations has been proposed to increase wine particular characteristics. Here, we review the ability of W. anomalus to produce enzymes and metabolites of oenological relevance and we discuss its potential as a biocontrol agent in winemaking. Finally, biotechnological applications of W. anomalus beyond wine fermentation are briefly described. Keywords: non-Saccharomyces yeasts; Wickerhamomyces anomalus; Pichia anomala; enzymes; glycosidases; acetate esters; biocontrol; mixed starters; wine 1.