EXTENT of PLEISTOCENE LAKES in the WESTERN GREAT BASIN 293 P

Total Page:16

File Type:pdf, Size:1020Kb

EXTENT of PLEISTOCENE LAKES in the WESTERN GREAT BASIN 293 P U.S. DEPARTMENT OF THE INTERIOR MISCELLANEOUS FIELD STUDIES U.S. GEOLOGICAL SURVEY MAP MF-2323 121˚ 00'00" 120˚ 00'00" 119˚ 00'00" 118˚ 00'00" 117˚ 00'00" 116˚ 00'00" 115˚ 00'00" 114˚ 00'00" INDEX MAP OF 1˚ x 2˚ QUADRANGLES COVERING THE STUDY AREA Washington Owyhee Klamath Jordan Adel Falls Valley Oregon River Idaho Alturas Vya McDermitt Wells Brigham City Susan- ville Lovelock Winnemucca Elko Tooele Lake Coyote Nevada Utah Lake Warner 1278 1457 Chico Reno Millett Ely Delta Sacra- Lake Alvord mento Walker Tonopah Lund Richfield 1311 California Lake Arizona San Jose Mariposa Goldfield Caliente Cedar City 42˚ 00'00" 42˚ 00'00" OREGON OREGON IDAHO CALIFORNIA NEVADA +134 Lake Meinzer 1768 Lake Surprise 1567 Lake Lahontan 1332 41˚ 00'00" 41˚ 00'00" +34 Winnemucca Lake Lahontan ➤ 1332 Elko Lake Clover ➤ 1730 River Lake Eagle 1570 Lake Waring River t Humbold +12 1761 Lake Franklin Lake Buffalo 1850 1414 Lake Pine Humboldt +15 +36 40˚ 00'00" 40˚ 00'00" +44 Lake Gilbert Lake Antelope 1750 Lake Diamond 1745 1829 Lake Dixie 1097 Lake Lahontan 1332 Lake Hubbs River 1920 Lake Gale 1905 River Lake Jonathan +26 NEVADA River Lake Edwards UTAH Reno 1609 Lake Newark Truckee +8 1847 Reese Lake Spring Lake Labou 1759 1274 ➤ Lake Desatoya Lake Jake Carson 1899 1945 Ely +82 Lake Tahoe 1926 39˚ 00'00" 39˚ 00'00" Walker River Lake Toiyabe 1702 Lake Wellington 1475 Lake Maxey 1762 Lake Carpenter 1824 Lake Railroad 1484 Lake Cave 1829 Lake Rhodes ➤ 1351 Tonopah Lake Tonopah 38˚ 00'00" 1463 38˚ 00'00" Lake Russell Lake Columbus Lake Reveille 2155 1402 1512 Lake Rennie Bishop NEVADA CALIFORNIA 37˚ 00'00" 37˚ 00'00" 121˚ 00'00" 120˚ 00'00" 119˚ 00'00" 118˚ 00'00" 117˚ 00'00" 116˚ 00'00" 115˚ 00'00" 114˚ 00'00" Scale 1:800,000 0 30 60 90 120 150 PLEISTOCENE LAKES SUMMARY REFERENCES CITED Kilometers Hemphill-Haley, M. A., 1987, Quaternary stratigraphy and late Holocene faulting along the Most late Pleistocene shoreline altitudes and lake names are from Mifflin and Wheat (1979). base of the eastern escarpment of Steens Mountain, southeastern Oregon: M.S. thesis, Lake Warner shoreline from Weide (1975), Lake Alvord shoreline and overflow from Hemphill- Arcata, Humboldt State University, 84 p. Haley (1987), and Lake Coyote shoreline and overflow from Lindberg and Hemphill-Haley (1988). Shaded relief base generated in Arc/Info from USGS 1:250,000-scale DEMs. Pre-late Pleistocene shorelines from Reheis and others (1993), Reheis and Morrison (1997), and Reheis and others Lindberg, D.N., and Hemphill-Haley, M.A., 1988, Late-Pleistocene pluvial history of the EXPLANATION Alvord basin, Harney Co., Oregon [abstract]: Northwest Science, v. 62, no. 2, (in press), except for Lake Wellington (Stewart and Dohrenwend, 1984). See Reheis and others p. 81. (1993; in press) for information on lake-deposit localities. Area of late Pleistocene lakes (not all are shown). Map projection: Lambert Conformal Conic. City Major drainages in the Lahontan basin Mifflin, M. D., and Wheat, M. M., 1979, Pluvial lakes and estimated pluvial climates of Shoreline altitude in meters shown below lake name Digital cartography: Michael O'Donnell and Jonathon Rademaekers. Nevada: Nevada Bureau of Mines and Geology Bulletin 94, 57 p. Pre-late Pleistocene lake-deposit locality Reheis, M. C., and Morrison, R. B., 1997, High, old pluvial lakes of western Nevada, in Late Pleistocene boundary of Lahontan basin Link, P. K., and Kowallis, B. J., eds., Proterozoic to recent stratigraphy, tectonics, and volcanology, Utah, Nevada, southern Idaho, and central Mexico: Provo, Brigham Young Maximum known area of pre-late Pleistocene lakes Manuscript approved for publication June 16, 1999 University Geology Studies, v. 1, p. 459-492. (not all basins have been examined for evidence Pliocene lake-deposit locality Any use of trade names in this publication is for descriptive purposes only and does not imply of pre-late Pleistocene deposits) endorsement by the U.S. Geological Survey Reheis, M. C., Sarna-Wojcicki, A. M., Reynolds, R. L., Repenning, C. A., and Mifflin, Inferred increase of drainage basin area M.D., in press, Pliocene to middle Pleistocene lakes in the western Great Basin: Ages Late Pleistocene overflow in pre-late Pleistocene time This map was produced on request, directly from digital files, on an electronic plotter. and connections, in Hershler, R., Currey, D., and Madsen, D., eds., Great Basin Aquatic This map is also available as a PDF file at http://greenwood.cr.usgs.gov Systems History: Washington D.C., Smithsonian Institution. Possible additional area of pre-late Pleistocene lakes Possible pre-late Pleistocene overflow and modern sill height Reheis, M.C., Slate, J.L., Sarna-Wojcicki, A.M., and Meyer, C.E., 1993, A late Pliocene to (former elevation raised by sedimentation) State borders middle Pleistocene pluvial lake in Fish Lake Valley, Nevada and California: Geological in meters above late Pleistocene lake level Society of American Bulletin, v. 105, p. 959-967. Stewart, J. H., and Dohrenwend, J. C., 1984, Geologic map of the Wellington quadrangle, Nevada: U.S. Geological Survey Open-File Report 84-211, scale 1:62,500. Weide, D. L., 1975, Postglacial geomorphology and environments of the Warner Valley Hart Mountain area, Oregon: Ph.D. dissertation, Los Angeles, University of California, EXTENT OF PLEISTOCENE LAKES IN THE WESTERN GREAT BASIN 293 p. By Marith Reheis 1999.
Recommended publications
  • Fish Lake Valley Tui Chub Listing Petition
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE FISH LAKE VALLEY TUI CHUB (SIPHATELES BICOLOR SSP. 4) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT Tui Chub, Siphateles bicolor (Avise, 2016, p. 49) March 9, 2021 CENTER FOR BIOLOGICAL DIVERSITY 1 March 9, 2021 NOTICE OF PETITION David Bernhardt, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Martha Williams Principal Deputy Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Amy Lueders, Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, NM 87103-1306 [email protected] Marc Jackson, Field Supervisor U.S. Fish and Wildlife Service Reno Fish and Wildlife Office 1340 Financial Blvd., Suite 234 Reno, Nevada 89502 [email protected] Dear Secretary Bernhardt, Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b); section 553(e) of the Administrative Procedure Act (APA), 5 U.S.C. § 553(e); and 50 C.F.R. § 424.14(a), the Center for Biological Diversity, Krista Kemppinen, and Patrick Donnelly hereby petition the Secretary of the Interior, through the U.S. Fish and Wildlife Service (“FWS” or “Service”), to protect the Fish Lake Valley tui chub (Siphateles bicolor ssp. 4) as a threatened or endangered species. The Fish Lake Valley tui chub is a recognized, but undescribed, subspecies of tui chub. Should the service not accept the tui chub as valid subspecies we request that it be considered as a distinct population as it is both discrete and significant.
    [Show full text]
  • Yucca Mountain Project Area Exists for Quality Data Development in the Vadose Zone Below About 400 Feet
    < I Mifflin & Associates 2700 East Sunset Road, SufteInc. C2 Las Vegas, Nevada 89120 PRELIMINARY 7021798-0402 & 3026 FAX: 702/798-6074 ~ADd/tDaeii -00/( YUCCA MOUNTAIN PRO1. A Summary of Technical Support Activities January 1987 to June 1988 By: Mifflin & Associates, Inc. LaS Vegas, Nevada K) Submitted to: .State of Nevada Agency for Nuclear Projects Nuclear Waste Project Office Carson City, Nevada H E C El V E ii MAY 15 1989 NUCLEAR WASTE PROJECt OFFICE May 1989 Volume I 3-4:0 89110o3028905a, WASTE PLDR wM-11PDC 1/1 1 1 TABLE OF CONTENTS I. INTRO DUCTION ............................................................................................................................ page3 AREAS OF EFFORT A. Vadose Zone Drilling Program ............................................................................................. 4 Introduction .............................................................................................................................. 5 Issues ....................................................................................................................................... 7 Appendix A ............................................................................................................................... 9 B. Clim ate Change Program ....................................................................................................... 15 Introduction .............................................................................................................................. 16 Issues ......................................................................................................................................
    [Show full text]
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States
    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
    [Show full text]
  • Open-File/Color For
    Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4).
    [Show full text]
  • Bildnachweis
    Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u;
    [Show full text]
  • Geophysical Investigations of Structures Within Southern Fish Lake Valley, Western Great Basin
    GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA by Kyle A. McBride APPROVED BY SUPERVISORY COMMITTEE: ___________________________________________ Dr. John F. Ferguson, Chair ___________________________________________ Dr. Tom H. Brikowski ___________________________________________ Dr. John S. Oldow Copyright 2016 Kyle A. McBride All Rights Reserved I dedicate this thesis to my grandfather, Bill McMullin, with whom I would have enjoyed to have the time to discuss geology and the earth sciences. GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA by KYLE A. MCBRIDE, BS, BBA THESIS Presented to the Faculty of The University of Texas at Dallas in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOSCIENCES THE UNIVERSITY OF TEXAS AT DALLAS December 2016 ACKNOWLEDGMENTS I would like to thank Dr. John Ferguson for his guidance and support throughout the duration of this project; our numerous conversations and his provided insights being crucial for the development of this thesis. I would also like to thank Dr. Ferguson for the opportunities extended to me while at UT Dallas, such as SAGE and the Denbury gravity surveys. I also want to thank Dr. John Geissman for his encouragement and mentoring during my time at UT Dallas. I want to thank my committee members for taking the time to review and comment on this document, and of course, I want to thank my wife, Denise, and my family, for their patience and support. November 2016 v GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA Publication No. ___________________ Kyle A. McBride, MS The University of Texas at Dallas, 2016 ABSTRACT Supervising Professor: John F.
    [Show full text]
  • Coyote Lake Lahontan Cutthroat Trout
    Oregon Native Fish Status Report – Volume II Coyote Lake Lahontan Cutthroat Trout Existing Populations Lahontan cutthroat trout populations in the Coyote Lakes basin are remnant of a larger population inhabiting pluvial Lake Lahontan during the Pleistocene era. Hydrologic access routes of founding cutthroat trout from Lake Lahontan basin into the Coyote Lakes basin have yet to be described (Coffin and Cowan 1995). The Coyote Lake Lahontan Cutthroat Trout SMU is comprised of five populations (Table 1). All populations express a resident life history strategy; however large individuals in the Willow and Whitehorse Complex populations suggest a migratory component may exist. Table 1. Populations, existence status, and life history of the Coyote Lake Lahontan Cutthroat Trout SMU. Exist Population Description Life History Yes Willow Willow Creek and tributaries. Resident / Migratory Yes Whitehorse Complex Whitehorse and Little Whitehorse Creeks, and Resident / Migratory tributaries. Yes Doolittle Doolittle Creek above barrier. Resident Yes Cottonwood Cottonwood Creek above barrier. Resident Yes Antelope Antelope Creek. Resident Lahontan cutthroat trout from Willow and Whitehorse creeks were transplanted into Cottonwood Creek in 1971 and 1980, and into Antelope Creek in 1972 (Hanson et al. 1993). Whether Lahontan cutthroat trout were present in these creeks prior to stocking activities is disputed (Behnke 1992, Hanson et al. 1993, Coffin and Cowan 1995, K. Jones, ODFW Research Biologist, Corvallis, OR personal communication). For the purpose of this review these populations are considered native. Lahontan cutthroat trout were also transplanted into Fifteenmile Creek above a natural barrier (Hanson et al. 1993), but they did not establish a self- sustaining population (ODFW Aquatic Inventory Project, unpublished data).
    [Show full text]
  • Carbonate Deposition, Pyramid Lake Subbasin, Nevada: 2
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 1995 Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan basin Larry Benson U.S. Geological Survey, [email protected] Michaele Kashgarian Lawrence Livemore National Laboratory Meyer Rubin U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Benson, Larry; Kashgarian, Michaele; and Rubin, Meyer, "Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan basin" (1995). USGS Staff -- Published Research. 1014. https://digitalcommons.unl.edu/usgsstaffpub/1014 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PhJ.d @ ELSEVIER Palaeogeography, Palaeoclimatology,Palaeoecology 117 (1995) 1-30 Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan basin Larry Benson a, Michaele Kashgarian b, Meyer Rubin c a U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, USA b Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, P.O.
    [Show full text]
  • Fluctuation in the Level of Pluvial Lake Lahontan During the Last 40,000 Years
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223480686 Fluctuation in the level of pluvial Lake Lahontan during the last 40,000 years Article in Quaternary Research · May 1978 DOI: 10.1016/0033-5894(78)90035-2 CITATIONS READS 91 132 All content following this page was uploaded by Larry V. Benson on 29 May 2014. The user has requested enhancement of the downloaded file. QUATERNARY RESEARCH 9,300-318 (1978) Fluctuation in the Level of Pluvial Lake Lahontan During the Last 40,000 Years LARRY V. BENSON Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California Received July 25, 1977 Samples of algal tufa, gastropods and calcite-cemented-<and were collected from the Walker and Pyramid Lake areas of the Lahontan Basin, Nevada.; X-ray diffraction petrographic and radiocarbon analyses show that massive forms o i %& such as the dendritic variety contain secondary carbon-bearing material and therefore yield unreliable radiocarbon dates. Dense coating of tufa (lithoid), however, gave radiocarbon ages in agreement with dates on coexisting aragonite gastropods. Radiocarbon data from the study were combined with previously dated noncarbonate materials [Born, S. M. (1972). “Lake Quatemary History, Deltaic Sedimentation, and Mudlump Formation at Pyramid Lake, Nevada,” Center for Water Resources, Desert Research Inst., Reno, Nevada] to give an internally consistent record of lake level fluctuations for the past 40,000 years. The main features of the Lahontan chronology are (1) extreme high stands (1330 m above sea level) 13,500 to 11,000 and 25,000 to 22,000 B.P., (2) a moderate high stand (1260 m above sea level) 20,000 to 15,000 B.P., (3) a low stand of unknown elevation 40,000 to 25,000 B.P., (4) an extremely low stand 9000 to 5OOO.EP?.and (5) an overall increas;;‘Ei%e%e~%&r and Pyramid Lakes du%g-the past 5000 years, until the late 19th century.
    [Show full text]
  • Esmeralda County Water Resource Plan 2012
    ESMERALDA COUNTY WATER RESOURCE PLAN 2012 Prepared by Farr West Engineering 5442 Longley Lane Suite B Reno, NV 89511 Esmeralda County Water Resource Plan TABLE OF CONTENTS Introduction ..................................................................................................................... 1 Guiding Principles ........................................................................................................... 5 Policies............................................................................................................................ 6 Regulatory Framework .................................................................................................... 9 Nevada Statutory Requirements .................................................................................. 9 Federal Acts and Plans .............................................................................................. 12 Water Resource Assessment ........................................................................................ 16 Topography ................................................................................................................ 16 Climate ...................................................................................................................... 16 Surface Water ............................................................................................................ 18 Springs ...................................................................................................................... 18 Groundwater
    [Show full text]
  • Geothermal Exploration Using Imaging Spectrometer Data Over Fish Lake Valley, Nevada☆
    Remote Sensing of Environment 140 (2014) 509–518 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada☆ Elizabeth F. Littlefield ⁎, Wendy M. Calvin Great Basin Center for Geothermal Energy, University of Nevada, Reno, Reno, NV, USA article info abstract Article history: The U.S. currently leads the world in installed geothermal capacity with power plants in eight states, and explo- Received 3 April 2013 ration for new electrical-grade geothermal systems is ongoing. Geothermal systems at depth may be identified at Received in revised form 5 September 2013 the surface by hot springs and fumaroles or by minerals produced by thermal fluids (hydrothermal alteration and Accepted 6 September 2013 hot spring deposits). Northern Fish Lake Valley, Nevada hosts two previously known geothermal fields. This Available online 17 October 2013 study expanded prospects and identified new areas for future exploration within the valley. We demonstrated the potential for using remote sensing data to evaluate regions that are not well explored. We used visible, Keywords: – μ fi Fish Lake Valley near, and shortwave infrared (0.4 2.5 m) remote sensing data to map sur cial mineralogy. Data were collected Nevada by three airborne imaging spectrometer instruments, AVIRIS, HyMap, and ProSpecTIR, each over different parts of Geothermal Fish Lake Valley. Minerals were identified using diagnostic spectral features. We verified remote sensing results Remote sensing in the field using a portable spectrometer to confirm agreement between field and remote spectra. Imaging spectrometer The discovery of additional geothermal resources in Fish Lake Valley may provide the necessary added incentive to build costly transmission lines to this remote location.
    [Show full text]
  • Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) G-I in the Western States As Jz;
    o 00 o H Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) g-i in the Western States as Jz; GEOLOGICAL SURVEY BULLETIN 1080 02 O PH O z eq P S3 Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) in the Western States By JOHN H. FETH GEOLOGICAL SURVEY BULLETIN 1080 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 119. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract_________._.______-___--__--_---__-_-_------.--_-_-_-__ 1 Introduction.________________________----_-_-____--__-__---._-___- 2 Definitions__ _ _____________--__-_-_--__--_--___-___-___---______ 13 Maps.._____-_______--_-__--------------------------------------- 13 Criteria for the recognition of lake deposits. __-_______.___-_-__.-_____ 17 Definitive criteria____ _ _____-____-__-________---_-___-----_._ 17 Fossils. _-_--____---__-_.---_-------_-----__-_------_. 17 Evaporite deposits..._-_------_------_-------_--------_---. 20 Shore features_________---__-_-------__-_---_-_-_--_-_--_ 21 Suggestive criteria.______.-_-_--___-____---_.-____-__-____.--_. 21 Regional relations._.._-_..-____-..--...__..._..._._.._.... 21 Local evidence.___-__---_--------_--__---_-----_--------__ 22 Grain size, bedding, and lamination...._._.____.___.___.
    [Show full text]