Geophysical Investigations of Structures Within Southern Fish Lake Valley, Western Great Basin

Total Page:16

File Type:pdf, Size:1020Kb

Geophysical Investigations of Structures Within Southern Fish Lake Valley, Western Great Basin GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA by Kyle A. McBride APPROVED BY SUPERVISORY COMMITTEE: ___________________________________________ Dr. John F. Ferguson, Chair ___________________________________________ Dr. Tom H. Brikowski ___________________________________________ Dr. John S. Oldow Copyright 2016 Kyle A. McBride All Rights Reserved I dedicate this thesis to my grandfather, Bill McMullin, with whom I would have enjoyed to have the time to discuss geology and the earth sciences. GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA by KYLE A. MCBRIDE, BS, BBA THESIS Presented to the Faculty of The University of Texas at Dallas in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOSCIENCES THE UNIVERSITY OF TEXAS AT DALLAS December 2016 ACKNOWLEDGMENTS I would like to thank Dr. John Ferguson for his guidance and support throughout the duration of this project; our numerous conversations and his provided insights being crucial for the development of this thesis. I would also like to thank Dr. Ferguson for the opportunities extended to me while at UT Dallas, such as SAGE and the Denbury gravity surveys. I also want to thank Dr. John Geissman for his encouragement and mentoring during my time at UT Dallas. I want to thank my committee members for taking the time to review and comment on this document, and of course, I want to thank my wife, Denise, and my family, for their patience and support. November 2016 v GEOPHYSICAL INVESTIGATIONS OF SOUTHERN FISH LAKE VALLEY, WESTERN GREAT BASIN, CALIFORNIA Publication No. ___________________ Kyle A. McBride, MS The University of Texas at Dallas, 2016 ABSTRACT Supervising Professor: John F. Ferguson, PhD Growth of the Cucomungo Canyon restraining bend along the Fish Lake Valley-Furnace Creek fault zone has resulted in localized uplift at the southern end of Fish Lake Valley in eastern California. This thesis is part of an integrated study by the Miles Geoscience Center to develop a model of this recent deformation. This study focuses on the southernmost section of Fish Lake Valley, where Paleozoic sedimentary rocks are juxtaposed with Cenozoic sediments on multiple faulted boundaries. Structural constraints are poorly known as the faults are locally obscured by Quaternary alluvial deposits of various ages. A near surface geophysical survey utilizing high-resolution seismic refraction and microGal gravity measurements was done to explore the subsurface beneath the alluvium. Forward models were created to identify faults and ascertain vertical offsets and orientations. The geophysical models indicate a zone of extensional deformation north of the restraining bend. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................................................................................................v ABSTRACT ................................................................................................................................... vi LIST OF FIGURES ....................................................................................................................... ix LIST OF TABLES ........................................................................................................................ xii CHAPTER 1 INTRODUCTION ...................................................................................................1 CHAPTER 2 GEOLOGIC SETTING ...........................................................................................3 2.1 Geologic Unit Descriptions......................................................................................6 CHAPTER 3 GEOPHYSICAL METHODS ...............................................................................10 3.1 Seismic Refraction .................................................................................................10 3.2 Gravity ...................................................................................................................14 CHAPTER 4 PROFILE DESCRIPTIONS ..................................................................................17 4.1 Eureka Valley Road Profile ...................................................................................18 4.2 Fish Lake Valley Transect .....................................................................................18 4.3 Horse Thief Canyon Profile ...................................................................................19 4.4 Granite Arroyo Survey ...........................................................................................21 CHAPTER 5 PROFILE CONSTRUCTION ...............................................................................22 5.1 Physical Properties .................................................................................................22 CHAPTER 6 GEOPHYSICAL MODELS ..................................................................................31 6.1 Eureka Valley Road Profile ...................................................................................31 6.2 Fish Lake Valley Transect .....................................................................................35 vii 6.3 Horse Thief Canyon Profile ...................................................................................39 CHAPTER 7 DISCUSSION ........................................................................................................42 CHAPTER 8 CONCLUSION......................................................................................................44 REFERENCES ..............................................................................................................................45 VITA viii LIST OF FIGURES Figure 2.1 Map showing regional features along the Death Valley-Furnace Creek fault system. Major fault traces are shown in black. Physiographic locations are labeled in black and major fault systems are labeled in red. SP – Silver Peak Range, FLV – Fish Lake Valley, PM – Palmetto Mountains, WM – White Mountains, OV– Owens Valley, SM – Sylvania Mountains, DSV – Deep Springs Valley, EV – Eureka Valley, LCR – Last Chance Range, DV– Death Valley, CCRB – Cucomungo Canyon restraining bend, FLVFZ – Fish Lake Valley fault zone, SMFS – Sylvania Mountain fault system, OV- WMFZ– Owens Valley–White Mountains fault zone, PMFS – Palmetto Mountain fault system, DV-FCFS– Death Valley–Furnace Creek fault system. ...........................4 Figure 2.2 Map showing study location and adjacent features. Seismic refraction profile locations are shown in white in the satellite image on the right side of the figure, the location of the yellow box. Major fault traces are shown in black on the left side of the figure. Physiographic locations are labeled black and major fault locations in red. SP – Silver Peak Range, FLV – Fish Lake Valley, PM – Palmetto Mountains, SM – Sylvania Mountains, DSV – Deep Springs Valley, EV – Eureka Valley, LCR – Last Chance Range, HTH – Horse Thief Hills, CCRB – Cucomungo Canyon restraining bend, FC-FLVF – Furnace Creek and Fish Lake Valley faults, SF – Sylvania Mountain fault system, PMF – Palmetto Mountain fault system. Modified from Oldow and Geissman (2013) .........................................................................................5 Figure 2.3 Generalized geologic map of the southern edge of FLV just west of Willow Wash with geophysical survey locations indicated in the dashed black lines which are discussed in Chapter 4. This map is in the location specified by the gold box in Figure 2.1. ......................................................................................................................9 Figure 3.1 An example of seismic traces that have been gained. The first arrivals are marked with x’s and the airwave with the solid line. The selected first arrivals, shown with the blue x’s, form the traveltime curves. Adapted from Nisengard et al., 2008 ......... 12 Figure 3.2 Example of a simple two layer refraction model. A) Two layer model with computed traveltime curves plotted with the first arrivals determined from the observed seismic traces; B) Two layer model depicting ray path motion of waves created at the left shot point; C) Two layer model with wavefront propagation from the left shot point with refracted waves. Modified from Nisengard et al., 2008 .............................................13 ix Figure 4.1 Geologic Map with EVRP and FLVT profile locations. Unit descriptions can be viewed in Figure 2.2. ...................................................................................................19 Figure 4.2 Geologic map with the HTCP profile location ............................................................20 Figure 4.3 Location of the seismic refraction survey performed to determine the P-wave velocity of the crushed quartz monzonite along the DVFCFZ ..................................................20 Figure 5.1 Map of the 28 gravity stations used for Nettleton density analysis of the Pz/P metasediments shown in the top of the figure. Results of the analysis are shown in the chart on the bottom of the figure and the minimum slope 0.001798 mGal/m is associated with a density of 2500 kg/m3. .....................................................................27 Figure 5.2 Map of the 46 gravity stations used for Nettleton density analysis of unit Qa2 is shown in the top of the figure. Results of the analysis are shown in the chart on the bottom of the figure and the minimum slope 0.000596 mGal/m
Recommended publications
  • Fish Lake Valley Tui Chub Listing Petition
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE FISH LAKE VALLEY TUI CHUB (SIPHATELES BICOLOR SSP. 4) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT Tui Chub, Siphateles bicolor (Avise, 2016, p. 49) March 9, 2021 CENTER FOR BIOLOGICAL DIVERSITY 1 March 9, 2021 NOTICE OF PETITION David Bernhardt, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 exsec@ios.doi.gov Martha Williams Principal Deputy Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 Martha_Williams@fws.gov Amy Lueders, Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, NM 87103-1306 RDLueders@fws.gov Marc Jackson, Field Supervisor U.S. Fish and Wildlife Service Reno Fish and Wildlife Office 1340 Financial Blvd., Suite 234 Reno, Nevada 89502 marc_jackson@fws.gov Dear Secretary Bernhardt, Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b); section 553(e) of the Administrative Procedure Act (APA), 5 U.S.C. § 553(e); and 50 C.F.R. § 424.14(a), the Center for Biological Diversity, Krista Kemppinen, and Patrick Donnelly hereby petition the Secretary of the Interior, through the U.S. Fish and Wildlife Service (“FWS” or “Service”), to protect the Fish Lake Valley tui chub (Siphateles bicolor ssp. 4) as a threatened or endangered species. The Fish Lake Valley tui chub is a recognized, but undescribed, subspecies of tui chub. Should the service not accept the tui chub as valid subspecies we request that it be considered as a distinct population as it is both discrete and significant.
    [Show full text]
  • Mineral Resources and Mineral Resource Potential of the Saline Valley and Lower Saline Wilderness Study Areas Inyo County, California
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Mineral resources and mineral resource potential of the Saline Valley and Lower Saline Wilderness Study Areas Inyo County, California Chester T. Wrucke, Sherman P. Marsh, Gary L. Raines, R. Scott Werschky, Richard J. Blakely, and Donald B. Hoover U.S. Geological Survey and Edward L. McHugh, Clay ton M. Rumsey, Richard S. Gaps, and J. Douglas Causey U.S. Bureau of Mines U.S. Geological Survey Open-File Report 84-560 Prepared by U.S. Geological Survey and U.S. Bureau of Mines for U.S. Bureau of Land Management This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1984 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Mineral resources and mineral resource potential of the Saline Valley and Lower Saline Wilderness Study Areas Inyo County, California by Chester T. Wrucke, Sherman P. Marsh, Gary L. Raines, R. Scott Werschky, Richard J. Blakely, and Donald B. Hoover U.S. Geological Survey and Edward L. McHugh, Clayton M. Rumsey, Richard S. Gaps, and J. Douglas Causey U.S. Bureau of Mines U.S. Geological Survey Open-File Report 84-560 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1984 ILLUSTRATIONS Plate 1. Mineral resource potential map of the Saline Valley and Lower Saline Wilderness Study Areas, Inyo County, California................................ In pocket Figure 1. Map showing location of Saline Valley and Lower Saline Wilderness Study Areas, California.............. 39 2.
    [Show full text]
  • Death Valley National Park
    COMPLIMENTARY $3.95 2019/2020 YOUR COMPLETE GUIDE TO THE PARKS DEATH VALLEY NATIONAL PARK ACTIVITIES • SIGHTSEEING • DINING • LODGING TRAILS • HISTORY • MAPS • MORE OFFICIAL PARTNERS T:5.375” S:4.75” PLAN YOUR VISIT WELCOME S:7.375” In T:8.375” 1994, Death Valley National SO TASTY EVERYONE WILL WANT A BITE. Monument was expanded by 1.3 million FUN FACTS acres and redesignated a national park by the California Desert Protection Act. Established: Death Valley became a The largest national park below Alaska, national monument in 1933 and is famed this designation helped focus protection for being the hottest, lowest and driest on one the most iconic landscapes in the location in the country. The parched world. In 2018 nearly 1.7 million people landscape rises into snow-capped mountains and is home to the Timbisha visited the park, a new visitation record. Shoshone people. Death Valley is renowned for its colorful Land Area: The park’s 3.4 million acres and complex geology. Its extremes of stretch across two states, California and elevation support a great diversity of life Nevada. and provide a natural geologic museum. Highest Elevation: The top of This region is the ancestral homeland Telescope Peak is 11,049 feet high. The of the Timbisha Shoshone Tribe. The lowest is -282 feet at Badwater Basin. Timbisha established a life in concert Plants and Animals: Death Valley with nature. is home to 51 mammal species, 307 Ninety-three percent of the park is bird species, 36 reptile species, two designated wilderness, providing unique amphibian species and five fish species.
    [Show full text]
  • Eureka Valley Groundwater Basin Bulletin 118
    South Lahontan Hydrologic Region California’s Groundwater Eureka Valley Groundwater Basin Bulletin 118 Eureka Valley Groundwater Basin • Groundwater Basin Number: 6-16 • County: Inyo • Surface Area: 129,900 acres (203 square miles) Basin Boundaries and Hydrology This groundwater basin underlies Eureka Valley in northeastern Inyo County. This basin is bounded by nonwater-bearing rocks of the White Mountains on the north, of the Inyo Mountains on the west, of the Saline Range on the south, of the Last Chance Range on the east, and of the Sylvania Mountains on the northeast (Jennings 1958, DWR 1964, Strand 1967). Willow creek and unnamed washes carry runoff to Eureka (dry) Lake at the southeastern end of the valley. Average annual precipitation ranges from about 5 inches on the valley floor to 10 inches on the surrounding mountains (DWR 1964). Hydrogeologic Information Water Bearing Formations The primary water-bearing material consists of younger, unconsolidated alluvial fan material and underlying, semi-consolidated older alluvial deposits. The alluvium reaches at least 640 feet thick and groundwater in it is generally unconfined (Bader 1969, DWR 1964). Like most internally drained basins, the alluvium likely becomes interbedded with lacustrine silt and clay layers near Eureka Lake. Restrictive Structures. Some small faults are mapped as cutting Quaternary alluvial deposits in this basin (Strand 1967); however, it is not known whether or not these faults impede groundwater movement in the basin. Recharge Areas Replenishment of the basin is from percolation of runoff from the surrounding mountains through alluvial fans (Bader 1969). Groundwater likely flows southward toward Eureka Lake and perhaps southeastward into Saline Valley (Bader 1969, DWR 1964).
    [Show full text]
  • Esmeralda County Water Resource Plan 2012
    ESMERALDA COUNTY WATER RESOURCE PLAN 2012 Prepared by Farr West Engineering 5442 Longley Lane Suite B Reno, NV 89511 Esmeralda County Water Resource Plan TABLE OF CONTENTS Introduction ..................................................................................................................... 1 Guiding Principles ........................................................................................................... 5 Policies............................................................................................................................ 6 Regulatory Framework .................................................................................................... 9 Nevada Statutory Requirements .................................................................................. 9 Federal Acts and Plans .............................................................................................. 12 Water Resource Assessment ........................................................................................ 16 Topography ................................................................................................................ 16 Climate ...................................................................................................................... 16 Surface Water ............................................................................................................ 18 Springs ...................................................................................................................... 18 Groundwater
    [Show full text]
  • Geothermal Exploration Using Imaging Spectrometer Data Over Fish Lake Valley, Nevada☆
    Remote Sensing of Environment 140 (2014) 509–518 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada☆ Elizabeth F. Littlefield ⁎, Wendy M. Calvin Great Basin Center for Geothermal Energy, University of Nevada, Reno, Reno, NV, USA article info abstract Article history: The U.S. currently leads the world in installed geothermal capacity with power plants in eight states, and explo- Received 3 April 2013 ration for new electrical-grade geothermal systems is ongoing. Geothermal systems at depth may be identified at Received in revised form 5 September 2013 the surface by hot springs and fumaroles or by minerals produced by thermal fluids (hydrothermal alteration and Accepted 6 September 2013 hot spring deposits). Northern Fish Lake Valley, Nevada hosts two previously known geothermal fields. This Available online 17 October 2013 study expanded prospects and identified new areas for future exploration within the valley. We demonstrated the potential for using remote sensing data to evaluate regions that are not well explored. We used visible, Keywords: – μ fi Fish Lake Valley near, and shortwave infrared (0.4 2.5 m) remote sensing data to map sur cial mineralogy. Data were collected Nevada by three airborne imaging spectrometer instruments, AVIRIS, HyMap, and ProSpecTIR, each over different parts of Geothermal Fish Lake Valley. Minerals were identified using diagnostic spectral features. We verified remote sensing results Remote sensing in the field using a portable spectrometer to confirm agreement between field and remote spectra. Imaging spectrometer The discovery of additional geothermal resources in Fish Lake Valley may provide the necessary added incentive to build costly transmission lines to this remote location.
    [Show full text]
  • California Desert Conservation Area Wilderness Inventory : Final
    BLM LIBRARY 88005446 California Desert Conservation Area WILDERNESS INVENTORY Final Descriptive Narratives March 31, 1979 US. Department of the Interior QH bureau of Land Management 76.5 .C3 , PROPERTY OF „ Manaprr*.. of Land eureauDSC LIBRARY WW £3 15 H- DEPARTMENT OF THE INTERIOR FINAL WILDERNESS INVENTORY CALIFORNIA DESERT CONSERVATION AREA Prepared by Bureau of Land Management U. S. Department of the Interior ^1/ M~~£fz^^ State Director California State Office PROPERTY OF Bureau of Land Management DSC LIBRARY . TABLE OF CONTENTS INTRODUCTION page PART I: BASIS, PURPOSE and PROCEDURES i Section 603 : Federal Land Policy & Management Act vi Section 2(c) : Wilderness Act of 1964 vii PART II: DESCRIPTIVE NARRATIVES FOR INVENTORY AREAS 1 PART III: DESIGNATED WILDERNESS STUDY AREAS & ACREAGES 231 PART IV: PUBLIC INVOLVEMENT PROGRAM 235 A. Consultation and Coordination 236 B Use of Comments & Input 243 C Questions & Answers 245 PART V: WILDERNESS STUDY PHASE PROCEDURES 257 PART VI: GLOSSARY OF TERMS 259 INTRODUCTION This document, in combination with the accompanying map: 1. Describes the wilderness inventory process on Public Lands within the California Desert Conservation Area; 2. Identifies which of those Public Lands meet the size, roadless, and wilderness value criteria of the Wilder- ness Act of 1964, and which do not; and, 3. Lists CDCA Public Lands designated as Wilderness Study Areas by the State Director, California. This document is divided into six parts. The first part describes the basis, the purpose, and the procedures followed during the wilderness inventory process, and also describes the process for appealing or protest- ing the decision of the State Director, California, on Wilderness Study Area designation.
    [Show full text]
  • Cal Poly Geology Club Death Valley Field Trip – 2004
    Cal Poly Geology Club Death Valley Field Trip – 2004 Guidebook by Don Tarman & Dave Jessey Field Trip Organizers Danielle Wall & Leianna Michalka DEATH VALLEY Introduction Spring 2004 Discussion and Trip Log Welcome to Death Valley and environs. During the next two days we will drive through the southern half of Death Valley and see some of the most spectacular geology and scenery in the United States. A detailed road log with mileages follows this short introductory section. We hope to keep the pace leisurely so that everyone can see as much as possible and have an opportunity to ask questions and enjoy the natural beauty of the region. IMPORTANT: WATER- carry and drink plenty. FUEL- have full tank upon leaving Stovepipe Wells or Furnace Creek (total driving distance approx. 150 miles). Participants must provide for their own breakfasts Saturday morning. Lunches will be prepared at the Stovepipe Wells campground before departing. We will make a brief stop at Furnace Creek visitor’s center and for fuel etc. Meeting Points Saturday morning meet in front at the Chevron station on the north side of the highway a short distance east of the campground (8:30 AM) Sunday morning (tentative- depending upon what our last stop is Saturday) meet at the Charles Brown highway intersection with 127 just at the south side of Shoshone. (8:30 AM). Get fuel before meeting. As you know we will be camping Saturday night between the hamlets of Shoshone and Tecopa. If for some reason you become separated from the main caravan during our journey Saturday – and this would be very difficult to accomplish- simply head for Shoshone/Tecopa.
    [Show full text]
  • Groundwater Geology and Hydrology of Death Valley National Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada Natural Resource Technical Report NPS/NRSS/WRD/NRTR—2012/652 ON THE COVER The Amargosa River in the southeast part of Death Valley National Park during a flash flood in February 2005 Photography by: A. Van Luik Groundwater Geology and Hydrology of Death Valley National Park, California and Nevada Natural Resource Technical Report NPS/NRSS/WRD/NRTR—2012/652 M. S. Bedinger Hydrologist U.S. Geological Survey, Retired Carlsborg, WA J. R. Harrill Hydrologist U.S. Geological Survey, Retired Carson City, NV December 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and envi- ronmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scien- tifically credible, technically accurate, appropriately written for the intended audience, and designed and pub- lished in a professional manner.
    [Show full text]
  • Appraisal of the Water Resources of Death Valley, California-Nevada
    UNITED STATES DEPARTMENT OF THE GEOLOGICAL SURVEY APPRAISAL OF THE WATER RESOURCES OF DEATH VALLEY, CALIFORNIA-NEVADA By G. A. Miller Prepared in cooperation with the National Park Service MAR l 3 1978 Menlo Park, California December 1977 CONTENTS Conversion factors Abstract Introduction Purpose and scope Conclusions Acknowledgments Geography and climate Present and potential water supply Water for man Water for wildlife Springs, seeps, and wells Current situation Numbering system for wells and springs Previous investigations Geohydrology of the monument Geology Stratigraphy and water-bearing character of the rocks Structure Drainage relations Ground water Occurrence and movement Recharge Discharge Interbasin flow of ground water into Death Valley Water quality Hydrologic areas Southern Death Valley Black Mountains Funeral Mountains GrapevineMountains Northern Death Valley Cottonwood Mountains Southern Panamint Range Mesquite Flat The saltpan and adjacent alluvial fans Well and spring monitoring Selected references CONTENTS I LLUSTRATIONS Page Figures 1-4. Maps showing: 1. Location of Death Valley National Monument--------- 3 2. Major geographic features-------------------------- S 3. Death Valley National Monument and vicinity, California and Nevada, showing the location of selected springs, wells, and surface-water measurement sites----------------------------In pocket 4. Death Valley National Monument coverage by published geologic maps -------------------------- 15 S. Diagrammatic section showing ground-water flow system and distribution of dissolved solids and vegetation at Tule Spring------------------- ---------------------------- 22 6. Hydrographs of Texas Spring and test well 27N/1-24B1------- 29 7-8. Maps showing: 7. Generalized geohydrology of the Furnace Creek area, showing postulated movement of ground water from the Funeral Mountains to major springs 8. Hydrologic areas discussed in reporte-------------- 40 9.
    [Show full text]
  • MF-2381-A Front
    Table 1. Correlation table of upper Tertiary and Quaternary surficial units in the geologic map of the Death Valley ground-water model area and other stratigraphic sequences in and adjoining the Death Valley area. Only correlations with regional-scale mapping projects which were directly incorporated into the geologic map of the Death Valley ground-water model area are included. [First column from left includes surficial units for Death Valley ground-water model area at regional (1:250,000) scale. The next five columns to right are Quaternary surficial units from five mapping projects both published and in progress that were incorporated into the Death Valley ground-water model area mapping program. Correlations on chart are based primarily on corresponding age ranges of units and only secondarily on genetic association (for example, alluvium vs. discharge deposits) to minimize effects of contrasting level of detail in various types of units among studies. Numbers in parentheses refer to minimum and maximum age estimates, in ka] Geologic map of the Death Valley Geologic map of the Geologic map of the Geologic map of the Geologic map of the Geologic map of the ground-water model area— Yucca Mountain Nevada Test Site— Indian Springs Pahranagat Las Vegas quadrangle— 1:250,000 scale1 region— 1:100,000 scale3 quadrangle— quadrangle— 1:100,000 scale6 1:50,000 scale2 1:100,000 scale4 1:100,000 scale5 Qc, Qp Qar (0-1) Qay, Qayy, Qay, (0-2) Qay, Qey, Qayo, Qfy, Qayf Qya, Qyf, Qae, Qed, Qp, Qs, Qsc Qfo, Qpy, (Qayfe) Qve, Qyl Qps Qd, Qsy, (0-18) Qay, Qey Qayo Qsyy, Qse (5-18) (5-18) Qau, Qt, Qau QTau, Qe Qlb QTd, QTm, Qua, Qp, Qe, Qls, Qai, Qaiy, QTsf, QTc, Qal, Qse, QTs Qam, Qem, Qsd Qp, QTol Qao, Qaoi, QTls QTu Qls Qog, (30-250) Qso, Qscd, (0->758) Qao, Qlc Qia, Qof, Qol QTos?, Qai, Qeo Qsab, Qb, (18-758) QTs? Qby, Qbw Qfw Qao QTa (500->758) QTog, (500->758) QTa Qoa, Qof QTos, QTa, Qb, Qbo, Qfw QToa QTs, 1 Units are summarized in unit description text and in Table 2.
    [Show full text]
  • Northern and Eastern Mojave Plan Vol 2 2002
    - UNITED STATES DEPARTMENT OF INTERIOR BUREAU OF LAND MANAGEMENT CALIFORNIA DESERT DISTRICT PROPOSED ORTHERN AND EASTE MOJ ~E DESERT MANAGEMENT PLA VOLUME II • APPENDICES JULY 2002 LIST OF APPENDICES APPENDIX TITLE Appendix A: Proposed Desert Tortoise Conservation Strategy Appendix B: NEMO Implementation Strategy Appendix C: Description and Strategy for Addressing Desert Tortoise Issues Appendix D: Desert Tortoise Monitoring Appendix E: Cattle Grazing Use Guidelines in NEMO Desert Tortoise Habitat Appendix F: Mechanism to Track Surface Disturbance and Habitat Restoration Appendix G: Recommended Special Management Actions for the Recovery of T&E Plants Appendix H: Recommended Special Management Actions for the Recovery of the Vole Appendix I: Species of Special Consideration in NEMO Appendix J: Upland Public Lands Assessment Criteria / Proper Functioning Condition Appendix k: Current Management Situation Appendix L: Planning Criteria for the NEMO Planning Effort Appendix M: Summary of CDCA Plan Maintenance Actions Resulting From the CDPA Appendix N: Land Tenure Strategy Appendix O: Wild and Scenic River Eligibility Study for the Amargosa River Appendix P: Development of Standards for Public Land Health and Grazing Management Guidelines Appendix Q: Route Designation Methodology and Route-Specific Designations Appendix R: List of G-E-M Resource Areas Appendix S: Wild and Scenic River Eligibility Study for Cottonwood Creek Appendix T: Wild and Scenic River Eligibility Study for Surprise Canyon Appendix U: Public Comments and Responses Appendix V: USFWS Biological Opinion for Threatened and Endangered Plants in the Planning Area Appendix W: USFWS Biological Opinion for Threatened Desert Tortoise in the Planning Area This Page Left Intentionally Blank Appendix A Proposed Desert Tortoise Conservation Strategy Changes to this chapter in developing the FEIS 1.
    [Show full text]