Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering Ronnie Machielsen Promotoren: Prof. dr. J. van der Oost Hoogleraar Microbiologie en Biochemie Wageningen Universiteit Prof. dr. W.M. de Vos Hoogleraar Microbiologie Wageningen Universiteit Leden van de Promotiecommissie: Prof. dr. P.C. Wright University of Sheffield Prof. dr. R. Wever Universiteit van Amsterdam Prof. dr. M.A. Huynen Radboud Universiteit Nijmegen Prof. dr. H. Gruppen Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering Ronnie Machielsen Proefschrift Ter verkrijging van de graad van doctor Op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 16 oktober 2007 des namiddags te half twee in de Aula Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering Ronnie Machielsen Ph.D. thesis Wageningen University, Wageningen, The Netherlands (2007) 136 p., with summary in Dutch ISBN 978 90 8504 710 0 Abstract Machielsen, R. (2007). Microbial Alcohol Dehydrogenases: Identification, Characterization and Engineering. PhD thesis. Laboratory of Microbiology, Wageningen University, The Netherlands. Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety of substrate specificities and are involved in an astonishingly wide range of metabolic processes, in all living organisms. Besides the scientific interest in ADHs, they are also attractive biocatalysts for industrial applications. Especially, their capability to catalyze chemo-, stereo-, and region-selective reactions endows them with considerable potential for a range of applications in food, pharmaceutical and fine chemicals industries. Natural enzymes are, however, optimized and often highly specialized for certain biological functions; hence, in many instances natural enzymes do not perform optimally in an industrial process. Laboratory evolution (random methods) and/or rationale- based protein engineering (design methods) can be applied to obtain enzyme variants, which are suitable for a particular industrial application. This study describes the identification, characterization and engineering of microbial ADHs. Because protein stability is an important issue for in vitro applications, thermophiles are considered a potential source of thermozymes. The genes coding for sixteen putative ADHs were identified in the genome of the hyperthermophilic archaeon Pyrococcus furiosus and a more detailed level of function prediction was attempted for all identified genes. Subsequently, fifteen of the putative ADHs were heterologously produced and an initial screening for activities was performed in which two of the putative ADHs showed activities. Next, these two ADHs, AdhD and Pf-TDH, were purified and characterized. AdhD is a member of the aldo-keto reductase superfamily and Pf- TDH is a L-threonine dehydrogenase. In addition, either laboratory evolution or rationale protein engineering was applied to improve the properties of two selected ADHs to extend their potential for industrial applications. AdhA, a thermostable ADH of P. furiosus, was engineered by laboratory evolution to improve the production of (2S,5S)-hexanediol at moderate temperatures. High-resolution 3D structures are required to perform the directed engineering of proteins. The ADH of Lactobacillus brevis (Lb-ADH) was selected because a 1.0 Å resolution structure was available, and because of its potential for industrial application. Structure-based computational protein engineering was applied to adjust its cofactor specificity. Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability. Table of contents Chapter 1 Aim and outline of the thesis 9 Chapter 2 General introduction 13 Chapter 3 Identification and heterologous production of NAD(P)-dependent 43 alcohol dehydrogenases from the hyperthermophilic archaeon Pyrococcus furiosus Chapter 4 Production and characterization of a thermostable alcohol 57 dehydrogenase that belongs to the aldo-keto reductase superfamily Chapter 5 Production and characterization of a thermostable L-threonine 71 dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus Chapter 6 Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to 85 improve the production of (2S,5S)-hexanediol at moderate temperatures Chapter 7 Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase 101 by computational design Chapter 8 Summary and concluding remarks 115 Samenvatting en conclusies 121 Dankwoord / Acknowledgements 129 Curriculum vitae 131 List of publications 133 Activities in the frame of VLAG research school 135 Chapter 1 Aim and outline of the thesis Chapter 1 Alcohol dehydrogenases (ADHs) are present in virtually all organisms. They catalyze the interconversion of alcohols, aldehydes and ketones. ADHs require a cofactor, display a wide variety of substrate specificities, and play an important role in a broad range of physiological processes (e.g. alcohol and alkane metabolism, and cell defense towards exogenous alcohols and aldehydes). These features make them very interesting from a scientific perspective. Stable and enantioselective ADHs (e.g. Pyrococcus furiosus AdhA and Lactobacillus brevis ADH, mentioned further on) have also considerable potential for a range of applications in food, pharmaceutical and fine chemicals industries. The production of enantio- and diastereomerically pure diols is particularly desired because these are important chemical building blocks. Biocatalysis is gradually taking over from chemical catalysis in many industrial applications. Enzymes are environmentally friendly, biodegradable, efficient, and low cost in terms of resource requirements; as such they provide benefits compared to traditional chemical approaches in various industrial processes. In many instances, however, natural enzymes do not perform optimally in a particular unnatural process, and as such can be unsuitable for large-scale industrial applications. Industry needs enzymes that have (i) a high activity over longer periods of time, (ii) a high stability under harsh physical (high temperature) and chemical (non-aqueous solvents) conditions, and (iii) a high specificity and selectivity that does allow the enzyme to efficiently generate specific products that are not necessarily present in nature. There are three major and principally different routes to obtain enzyme variants with improved features: (1) isolating enzymes from organisms living in environments that correspond as much as possible to actual process conditions, (2) rationale- based protein engineering, and (3) laboratory evolution (random methods). The aim of the research described in this thesis was to identify and characterize novel and stable alcohol dehydrogenases for the production of fine chemicals, and to improve the properties of selected alcohol dehydrogenases to extend their potential for industrial applications. The latter has been done by laboratory evolution (random methods) and rationale protein engineering. In search for (thermo)stable ADHs for the production of aldehydes, ketones and (chiral) alcohols the hyperthermophilic archaeon Pyrococcus furiosus was chosen. Enzymes from hyperthermophiles, i.e., microorganisms that grow optimally above 80°C, generally display an extreme stability at high temperature, high pressure, as well as high concentrations of chemical denaturants; this feature generally makes hyperthermophiles a very good source of robust enzymes. In addition, the genome sequence of P. furiosus and of several closely related micro-organisms were available. Furthermore, the research described in this thesis was part of the EU project PYRED, which aimed to exploit the very high reducing power of P. furiosus (including possibly engineered strains) for the production of aldehydes, ketones and (chiral) alcohols. Therefore, identification, production and characterization of ADHs from P. furiosus, as described in this thesis, were important for the possible in vivo and in vitro production of valuable fine chemicals. 10 Aim and outline To extend their potential for industrial applications AdhA, an alcohol dehydrogenase of P. furiosus, and the alcohol dehydrogenase of Lactobacillus brevis (Lb-ADH) were selected to be improved. AdhA was selected to improve its low-temperature activity for the production of (2S,5S)-hexanediol, while retaining the stability of the enzyme. Lb-ADH is R- specific, relatively stable and has a broad substrate specificity. These features have already made the enzyme very attractive for industrial applications. However, a drawback is its preference for NADP(H) as a cofactor, which is more expensive and labile than NAD(H). As the atomic resolution (1.0 Å) structure of Lb-ADH is available, it was possible to perform structure-based computational protein engineering. In both projects a clear engineering challenge, either improving the low-temperature activity or adjusting the cofactor specificity, could be dealt with. In addition, both laboratory evolution and rationale protein engineering could be utilized. Chapter 2 gives a general introduction and a review on improving enzyme performance by the random approach of laboratory evolution as well as by rational and computational design. The
Recommended publications
  • Dehydrogenase Gene of Entamoeba Histolytica
    Proc. Nad. Acad. Sci. USA Vol. 89, pp. 10188-10192, November 1992 Medical Sciences Cloning and expression of an NADP+-dependent alcohol dehydrogenase gene of Entamoeba histolytica (amebiasis/protozoan parasite/fermentation/inhibitors) AJIT KUMAR*, PEI-SHEN SHENtt, STEVEN DESCOTEAUX*, JAN POHL§, GORDON BAILEYt, AND JOHN SAMUELSON*1II *Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115; tDepartment of Biochemistry, Morehouse School of Medicine, Atlanta, GA 30310; §Microchemical Facility, Emory University, Atlanta, GA 30322; and 'Department of Pathology, New England Deaconess Hospital, Boston, MA 02215 Communicated by Elkan Blout, June 29, 1992 (receivedfor review May 1, 1992) ABSTRACT Ethanol is the major metabolic product of NAD(P)+ so that the reducing equivalents are regenerated glucose fermentation by the protozoan parasite Entmoeba (4-7). Both NADP+-dependent and NAD+-dependent alco- histolytica under the anaerobic conditions found in the lumen hol dehydrogenase (ADH) activities have been identified in of the colon. Here an internal peptide sequence determined E. histolytica trophozoites (4-7). The NADP+-dependent from a major 39-kDa amoeba protein isolated by isoeLtric ADH (EhADHi; EC 1.1.1.2) was found to be composed of focusing followed by SDS/PAGE was used to clone the gene for four -30-kDa subunits, prefer secondary alcohols to primary the E. histolytica NADP+-dependent alcohol dehydrogenase alcohols, and be inhibited by the substrate analogue pyrazole (EhADH1; EC 1.1.1.2). The EhADHi clone had an open (7). The amoeba NAD+-dependent ADH (EC 1.1.1.1) is not reading frame that was 360 amino acids long and encoded a well-characterized (4).
    [Show full text]
  • Regulation of ATP Levels in Escherichia Coli Using CRISPR
    Tao et al. Microb Cell Fact (2018) 17:147 https://doi.org/10.1186/s12934-018-0995-7 Microbial Cell Factories RESEARCH Open Access Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production Sha Tao, Ying Qian, Xin Wang, Weijia Cao, Weichao Ma, Kequan Chen* and Pingkai Ouyang Abstract Background: Microbial biosynthesis of natural products holds promise for preclinical studies and treating diseases. For instance, pinocembrin is a natural favonoid with important pharmacologic characteristics and is widely used in preclinical studies. However, high yield of natural products production is often limited by the intracellular cofactor level, including adenosine triphosphate (ATP). To address this challenge, tailored modifcation of ATP concentration in Escherichia coli was applied in efcient pinocembrin production. Results: In the present study, a clustered regularly interspaced short palindromic repeats (CRISPR) interference sys- tem was performed for screening several ATP-related candidate genes, where metK and proB showed its potential to improve ATP level and increased pinocembrin production. Subsequently, the repression efciency of metK and proB were optimized to achieve the appropriate levels of ATP and enhancing the pinocembrin production, which allowed the pinocembrin titer increased to 102.02 mg/L. Coupled with the malonyl-CoA engineering and optimization of culture and induction condition, a fnal pinocembrin titer of 165.31 mg/L was achieved, which is 10.2-fold higher than control strains. Conclusions: Our results introduce a strategy to approach the efcient biosynthesis of pinocembrin via ATP level strengthen using CRISPR interference. Furthermore coupled with the malonyl-CoA engineering and induction condi- tion have been optimized for pinocembrin production.
    [Show full text]
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Expressing a Cytosolic Pyruvate Dehydrogenase Complex To
    Zhang et al. Microb Cell Fact (2020) 19:226 https://doi.org/10.1186/s12934-020-01493-z Microbial Cell Factories RESEARCH Open Access Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae Yiming Zhang1†, Mo Su1†, Ning Qin1, Jens Nielsen1,2,3 and Zihe Liu1* Abstract Background: Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results: Overexpression of the PDH complex signifcantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake fask, which was 83.2% higher than the control strain YJZ08. Profle analysis of free fatty acid suggested the cyto- solic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions: We demonstrated that cytosolic PDH pathway enabled more efcient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cyto- solic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.
    [Show full text]
  • Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi- Step Catalysis
    Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi- Step Catalysis Walaa K. Abdallah Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2018 Walaa K. Abdallah All rights reserved Abstract Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi-Step Catalysis Walaa K. Abdallah Enzymes are desirable catalysts as they may exhibit high activity, high selectivity, and may be easily engineered. Additionally, enzymes can be mass-produced recombinantly making them a potentially less expensive option than their organic or inorganic counterparts. As a result, they are being used more in industrial applications making their relevance ubiquitous. In this work, various engineering approaches were developed to control the activity and selectivity of enzymes for multi-step catalysis. Unlike nature, many industrial processes require multiple steps to produce the desired product, which is both timely and expensive. Through the use of enzymes, biosynthesis can be used to develop efficient multi-step catalytic cascades. The majority of this work focused on engineering a hyperthermophilic enzyme from the aldo-keto reductase (AKR) superfamily, alcohol dehydrogenase D (AdhD) from Pyrococcus furiosus, to develop approaches to control activity and selectivity. As the AKR superfamily contains many unifying characteristics, such as a conserved catalytic tetrad, (α/β)8-barrel quaternary fold, conserved cofactor binding pocket, and varying substrate loops, the approaches developed here can be applied to many enzymes. AKR members participate in a broad range of redox reactions, such as those involving aldehydes, hydrocarbons, xenobiotics, and many more, and are necessary in physiological processes in all living systems, making these enzymes industrially relevant.
    [Show full text]
  • Phosphine Stabilizers for Oxidoreductase Enzymes
    Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M.
    [Show full text]
  • Engineering Alcohol Oxidases for Substrate Scope and Their Application in Flow and Cascade Biocatalysis
    ENGINEERING ALCOHOL OXIDASES FOR SUBSTRATE SCOPE AND THEIR APPLICATION IN FLOW AND CASCADE BIOCATALYSIS Rachel Heath, University of Manchester [email protected] Matthew Thompson, EnginZyme Jeremy Ramsden, University of Manchester Sebastian Cosgrove, University of Manchester William Finnigan, University of Manchester Nicholas Turner, University of Manchester Key Words: oxidation, primary alcohol, secondary alcohol, high-throughput screening, thermostability Alcohol oxidases have significant advantages over alcohol dehydrogenases (ADHs) for biocatalytic oxidation of alcohols: they don’t require addition of (expensive) nicotinamide cofactors (or a recycling system for cofactor regeneration) and the catalytic reaction is irreversible. Although alcohol oxidases generate hydrogen peroxide when they turn over, this issue can be alleviated by addition of catalase, which, not only removes the peroxide, but also creates more oxygen for cofactor regeneration. Alcohol oxidases are perceived to have a limited substrate scope preventing their wider use in synthesis. Thus, we present the engineering of two alcohol oxidases for increased substrate scope, one for the selective oxidation of primary alcohols and one for secondary alcohol oxidation. Arthrobacter chlorophenolicus choline oxidase and Streptomyces hygroscopicus cholesterol oxidase were selected as the primary and secondary alcohol oxidase, respectively. Examination of crystal structures of homologous alcohol oxidases revealed positions in the active site and entrance channel to target for saturation mutagenesis. Libraries were screened using a high-throughput assay based on the detection of hydrogen peroxide using hexanol as the substrate for evolution of choline oxidase and cyclohexanol for evolution of cholesterol oxidase. Mutations from positive hits were combined and, in these cases, resulted in variants with further improvements in both kcat and conversion to the carbonyl in biotransformations.
    [Show full text]
  • Vitamin K1 Prevents Diabetic Cataract by Inhibiting Lens Aldose Reductase 2 (ALR2) Activity Received: 21 May 2019 R
    www.nature.com/scientificreports OPEN Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity Received: 21 May 2019 R. Thiagarajan1,5, M. K. N. Sai Varsha2, V. Srinivasan3, R. Ravichandran4 & K. Saraboji1 Accepted: 24 September 2019 This study investigated the potential of vitamin K1 as a novel lens aldose reductase inhibitor in a Published: xx xx xxxx streptozotocin-induced diabetic cataract model. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, activation of lens aldose reductase 2 (ALR2) and accumulation of sorbitol in eye lens which could have contributed to diabetic cataract formation. However, when diabetic rats were treated with vitamin K1 (5 mg/kg, sc, twice a week) it resulted in lowering of blood glucose and inhibition of lens aldose reductase activity because of which there was a corresponding decrease in lens sorbitol accumulation. These results suggest that vitamin K1 is a potent inhibitor of lens aldose reductase enzyme and we made an attempt to understand the nature of this inhibition using crude lens homogenate as well as recombinant human aldose reductase enzyme. Our results from protein docking and spectrofuorimetric analyses clearly show that vitamin K1 is a potent inhibitor of ALR2 and this inhibition is primarily mediated by the blockage of DL-glyceraldehyde binding to ALR2. At the same time docking also suggests that vitamin K1 overlaps at the NADPH binding site of ALR2, which probably shows that vitamin K1 could possibly bind both these sites in the enzyme. Another deduction that we can derive from the experiments performed with pure protein is that ALR2 has three levels of afnity, frst for NADPH, second for vitamin K1 and third for the substrate DL-glyceraldehyde.
    [Show full text]
  • Is There a Role for Ethanol Assay Using Alcohol Dehydrogenase in a Basic Drugs and Alcohol Screen of Blood Following Routine Autopsies?
    Journal of Clinical Pathology and Forensic Medicine Vol. 3(2), pp. 17-19, December 2012 Available online at http://www.academicjournals.org/JCPFM DOI: 10.5897/JCPFM12.003 ISSN 2I41-2405 ©2012 Academic Journals Short Communication Is there a role for ethanol assay using alcohol dehydrogenase in a basic drugs and alcohol screen of blood following routine autopsies? William Tormey 1,2 and Tara Moore 3 1Biomedical Sciences, University of Ulster Cromore Road, Coleraine, BT52 1SA, Northern Ireland. 2Department of Chemical Pathology, Beaumont Hospital, Dublin 9, Ireland. 3Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland. Accepted 22 March, 2012 The external examination system of determining the cause of death as operated in Dundee, Scotland is controversial. The addition of a blood or urine specimen for drugs and alcohol processed by hospital autoanalysers will reduce error in death certification. This is even more convenient to organise with a shorter turn-around time than imaging by computed tomography (CT) or magnetic resonance imaging (MRI). These measures may reduce the autopsy rate and ameliorate the distress of families of the deceased. Key words: Autopsy, alcohol, death. INTRODUCTION For over a decade, there has been controversy over the dehydrogenase and the back reaction nicotinamide appropriateness of the high rate of coroner’s autopsies adenine dinucleotide (NAD) to NADH measured (Pounder, 2000; Rutty et al., 2001). Advocacy of the spectrophotometrically at 340 nm on the Olympus 5400 “view and grant” system of issuing the cause of death as autoanalyser for the analysis of alcohol. The data sheet operated in Dundee, Scotland has been challenged and claims that the assay can accurately quantitate alcohol imaging is suggested as a partial answer to lessen the concentrations within the range of 10 to 600 mg/dl.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • Clostridium Difficile Exploits a Host Metabolite Produced During Toxin-Mediated Infection
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Clostridium difficile exploits a host metabolite produced during toxin-mediated infection 2 3 Kali M. Pruss and Justin L. Sonnenburg* 4 5 Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford 6 CA, USA 94305 7 *Corresponding author address: [email protected] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Several enteric pathogens can gain specific metabolic advantages over other members of 24 the microbiota by inducing host pathology and inflammation. The pathogen Clostridium 25 difficile (Cd) is responsible for a toxin-mediated colitis that causes 15,000 deaths in the U.S. 26 yearly1, yet the molecular mechanisms by which Cd benefits from toxin-induced colitis 27 remain understudied. Up to 21% of healthy adults are asymptomatic carriers of toxigenic 28 Cd2, indicating that Cd can persist as part of a healthy microbiota; antibiotic-induced 29 perturbation of the gut ecosystem is associated with transition to toxin-mediated disease.
    [Show full text]
  • How Is Alcohol Metabolized by the Body?
    Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to­ acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.
    [Show full text]